# coding=utf-8 | |
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
from transformers import BertGenerationTokenizer | |
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow | |
from transformers.utils import cached_property | |
from ...test_tokenization_common import TokenizerTesterMixin | |
SPIECE_UNDERLINE = "▁" | |
SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model") | |
class BertGenerationTokenizationTest(TokenizerTesterMixin, unittest.TestCase): | |
tokenizer_class = BertGenerationTokenizer | |
test_rust_tokenizer = False | |
test_sentencepiece = True | |
def setUp(self): | |
super().setUp() | |
tokenizer = BertGenerationTokenizer(SAMPLE_VOCAB, keep_accents=True) | |
tokenizer.save_pretrained(self.tmpdirname) | |
def test_convert_token_and_id(self): | |
"""Test ``_convert_token_to_id`` and ``_convert_id_to_token``.""" | |
token = "<s>" | |
token_id = 1 | |
self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id) | |
self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token) | |
def test_get_vocab(self): | |
vocab_keys = list(self.get_tokenizer().get_vocab().keys()) | |
self.assertEqual(vocab_keys[0], "<unk>") | |
self.assertEqual(vocab_keys[1], "<s>") | |
self.assertEqual(vocab_keys[-1], "<pad>") | |
self.assertEqual(len(vocab_keys), 1_002) | |
def test_vocab_size(self): | |
self.assertEqual(self.get_tokenizer().vocab_size, 1_000) | |
def test_full_tokenizer(self): | |
tokenizer = BertGenerationTokenizer(SAMPLE_VOCAB, keep_accents=True) | |
tokens = tokenizer.tokenize("This is a test") | |
self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"]) | |
self.assertListEqual( | |
tokenizer.convert_tokens_to_ids(tokens), | |
[285, 46, 10, 170, 382], | |
) | |
tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.") | |
self.assertListEqual( | |
tokens, | |
[ | |
SPIECE_UNDERLINE + "I", | |
SPIECE_UNDERLINE + "was", | |
SPIECE_UNDERLINE + "b", | |
"or", | |
"n", | |
SPIECE_UNDERLINE + "in", | |
SPIECE_UNDERLINE + "", | |
"9", | |
"2", | |
"0", | |
"0", | |
"0", | |
",", | |
SPIECE_UNDERLINE + "and", | |
SPIECE_UNDERLINE + "this", | |
SPIECE_UNDERLINE + "is", | |
SPIECE_UNDERLINE + "f", | |
"al", | |
"s", | |
"é", | |
".", | |
], | |
) | |
ids = tokenizer.convert_tokens_to_ids(tokens) | |
self.assertListEqual( | |
ids, | |
[8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4], | |
) | |
back_tokens = tokenizer.convert_ids_to_tokens(ids) | |
self.assertListEqual( | |
back_tokens, | |
[ | |
SPIECE_UNDERLINE + "I", | |
SPIECE_UNDERLINE + "was", | |
SPIECE_UNDERLINE + "b", | |
"or", | |
"n", | |
SPIECE_UNDERLINE + "in", | |
SPIECE_UNDERLINE + "", | |
"<unk>", | |
"2", | |
"0", | |
"0", | |
"0", | |
",", | |
SPIECE_UNDERLINE + "and", | |
SPIECE_UNDERLINE + "this", | |
SPIECE_UNDERLINE + "is", | |
SPIECE_UNDERLINE + "f", | |
"al", | |
"s", | |
"<unk>", | |
".", | |
], | |
) | |
def big_tokenizer(self): | |
return BertGenerationTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") | |
def test_tokenization_base_easy_symbols(self): | |
symbols = "Hello World!" | |
original_tokenizer_encodings = [18536, 2260, 101] | |
self.assertListEqual(original_tokenizer_encodings, self.big_tokenizer.encode(symbols)) | |
def test_tokenization_base_hard_symbols(self): | |
symbols = ( | |
'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' | |
" add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" | |
) | |
original_tokenizer_encodings = [ | |
871, | |
419, | |
358, | |
946, | |
991, | |
2521, | |
452, | |
358, | |
1357, | |
387, | |
7751, | |
3536, | |
112, | |
985, | |
456, | |
126, | |
865, | |
938, | |
5400, | |
5734, | |
458, | |
1368, | |
467, | |
786, | |
2462, | |
5246, | |
1159, | |
633, | |
865, | |
4519, | |
457, | |
582, | |
852, | |
2557, | |
427, | |
916, | |
508, | |
405, | |
34324, | |
497, | |
391, | |
408, | |
11342, | |
1244, | |
385, | |
100, | |
938, | |
985, | |
456, | |
574, | |
362, | |
12597, | |
3200, | |
3129, | |
1172, | |
] | |
self.assertListEqual(original_tokenizer_encodings, self.big_tokenizer.encode(symbols)) | |
def test_torch_encode_plus_sent_to_model(self): | |
import torch | |
from transformers import BertGenerationConfig, BertGenerationEncoder | |
# Build sequence | |
first_ten_tokens = list(self.big_tokenizer.get_vocab().keys())[:10] | |
sequence = " ".join(first_ten_tokens) | |
encoded_sequence = self.big_tokenizer.encode_plus(sequence, return_tensors="pt", return_token_type_ids=False) | |
batch_encoded_sequence = self.big_tokenizer.batch_encode_plus( | |
[sequence + " " + sequence], return_tensors="pt", return_token_type_ids=False | |
) | |
config = BertGenerationConfig() | |
model = BertGenerationEncoder(config) | |
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size | |
with torch.no_grad(): | |
model(**encoded_sequence) | |
model(**batch_encoded_sequence) | |
def test_tokenizer_integration(self): | |
# fmt: off | |
expected_encoding = {'input_ids': [[39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114], [448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 | |
# fmt: on | |
self.tokenizer_integration_test_util( | |
expected_encoding=expected_encoding, | |
model_name="google/bert_for_seq_generation_L-24_bbc_encoder", | |
revision="c817d1fd1be2ffa69431227a1fe320544943d4db", | |
) | |