|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
import copy |
|
import tempfile |
|
import unittest |
|
|
|
from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPT2Config, T5Config, TapasConfig, is_tf_available |
|
from transformers.testing_utils import ( |
|
DUMMY_UNKNOWN_IDENTIFIER, |
|
SMALL_MODEL_IDENTIFIER, |
|
RequestCounter, |
|
require_tensorflow_probability, |
|
require_tf, |
|
slow, |
|
) |
|
|
|
from ..bert.test_modeling_bert import BertModelTester |
|
|
|
|
|
if is_tf_available(): |
|
from transformers import ( |
|
TFAutoModel, |
|
TFAutoModelForCausalLM, |
|
TFAutoModelForMaskedLM, |
|
TFAutoModelForPreTraining, |
|
TFAutoModelForQuestionAnswering, |
|
TFAutoModelForSeq2SeqLM, |
|
TFAutoModelForSequenceClassification, |
|
TFAutoModelForTableQuestionAnswering, |
|
TFAutoModelForTokenClassification, |
|
TFAutoModelWithLMHead, |
|
TFBertForMaskedLM, |
|
TFBertForPreTraining, |
|
TFBertForQuestionAnswering, |
|
TFBertForSequenceClassification, |
|
TFBertModel, |
|
TFFunnelBaseModel, |
|
TFFunnelModel, |
|
TFGPT2LMHeadModel, |
|
TFRobertaForMaskedLM, |
|
TFT5ForConditionalGeneration, |
|
TFTapasForQuestionAnswering, |
|
) |
|
from transformers.models.auto.modeling_tf_auto import ( |
|
TF_MODEL_FOR_CAUSAL_LM_MAPPING, |
|
TF_MODEL_FOR_MASKED_LM_MAPPING, |
|
TF_MODEL_FOR_PRETRAINING_MAPPING, |
|
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, |
|
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, |
|
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, |
|
TF_MODEL_MAPPING, |
|
) |
|
from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST |
|
from transformers.models.gpt2.modeling_tf_gpt2 import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST |
|
from transformers.models.t5.modeling_tf_t5 import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST |
|
from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST |
|
|
|
|
|
class NewModelConfig(BertConfig): |
|
model_type = "new-model" |
|
|
|
|
|
if is_tf_available(): |
|
|
|
class TFNewModel(TFBertModel): |
|
config_class = NewModelConfig |
|
|
|
|
|
@require_tf |
|
class TFAutoModelTest(unittest.TestCase): |
|
@slow |
|
def test_model_from_pretrained(self): |
|
model_name = "bert-base-cased" |
|
config = AutoConfig.from_pretrained(model_name) |
|
self.assertIsNotNone(config) |
|
self.assertIsInstance(config, BertConfig) |
|
|
|
model = TFAutoModel.from_pretrained(model_name) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, TFBertModel) |
|
|
|
@slow |
|
def test_model_for_pretraining_from_pretrained(self): |
|
model_name = "bert-base-cased" |
|
config = AutoConfig.from_pretrained(model_name) |
|
self.assertIsNotNone(config) |
|
self.assertIsInstance(config, BertConfig) |
|
|
|
model = TFAutoModelForPreTraining.from_pretrained(model_name) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, TFBertForPreTraining) |
|
|
|
@slow |
|
def test_model_for_causal_lm(self): |
|
for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
config = AutoConfig.from_pretrained(model_name) |
|
self.assertIsNotNone(config) |
|
self.assertIsInstance(config, GPT2Config) |
|
|
|
model = TFAutoModelForCausalLM.from_pretrained(model_name) |
|
model, loading_info = TFAutoModelForCausalLM.from_pretrained(model_name, output_loading_info=True) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, TFGPT2LMHeadModel) |
|
|
|
@slow |
|
def test_lmhead_model_from_pretrained(self): |
|
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
config = AutoConfig.from_pretrained(model_name) |
|
self.assertIsNotNone(config) |
|
self.assertIsInstance(config, BertConfig) |
|
|
|
model = TFAutoModelWithLMHead.from_pretrained(model_name) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, TFBertForMaskedLM) |
|
|
|
@slow |
|
def test_model_for_masked_lm(self): |
|
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
config = AutoConfig.from_pretrained(model_name) |
|
self.assertIsNotNone(config) |
|
self.assertIsInstance(config, BertConfig) |
|
|
|
model = TFAutoModelForMaskedLM.from_pretrained(model_name) |
|
model, loading_info = TFAutoModelForMaskedLM.from_pretrained(model_name, output_loading_info=True) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, TFBertForMaskedLM) |
|
|
|
@slow |
|
def test_model_for_encoder_decoder_lm(self): |
|
for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
config = AutoConfig.from_pretrained(model_name) |
|
self.assertIsNotNone(config) |
|
self.assertIsInstance(config, T5Config) |
|
|
|
model = TFAutoModelForSeq2SeqLM.from_pretrained(model_name) |
|
model, loading_info = TFAutoModelForSeq2SeqLM.from_pretrained(model_name, output_loading_info=True) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, TFT5ForConditionalGeneration) |
|
|
|
@slow |
|
def test_sequence_classification_model_from_pretrained(self): |
|
|
|
for model_name in ["bert-base-uncased"]: |
|
config = AutoConfig.from_pretrained(model_name) |
|
self.assertIsNotNone(config) |
|
self.assertIsInstance(config, BertConfig) |
|
|
|
model = TFAutoModelForSequenceClassification.from_pretrained(model_name) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, TFBertForSequenceClassification) |
|
|
|
@slow |
|
def test_question_answering_model_from_pretrained(self): |
|
|
|
for model_name in ["bert-base-uncased"]: |
|
config = AutoConfig.from_pretrained(model_name) |
|
self.assertIsNotNone(config) |
|
self.assertIsInstance(config, BertConfig) |
|
|
|
model = TFAutoModelForQuestionAnswering.from_pretrained(model_name) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, TFBertForQuestionAnswering) |
|
|
|
@slow |
|
@require_tensorflow_probability |
|
def test_table_question_answering_model_from_pretrained(self): |
|
for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: |
|
config = AutoConfig.from_pretrained(model_name) |
|
self.assertIsNotNone(config) |
|
self.assertIsInstance(config, TapasConfig) |
|
|
|
model = TFAutoModelForTableQuestionAnswering.from_pretrained(model_name) |
|
model, loading_info = TFAutoModelForTableQuestionAnswering.from_pretrained( |
|
model_name, output_loading_info=True |
|
) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, TFTapasForQuestionAnswering) |
|
|
|
def test_from_pretrained_identifier(self): |
|
model = TFAutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER) |
|
self.assertIsInstance(model, TFBertForMaskedLM) |
|
self.assertEqual(model.num_parameters(), 14410) |
|
self.assertEqual(model.num_parameters(only_trainable=True), 14410) |
|
|
|
def test_from_identifier_from_model_type(self): |
|
model = TFAutoModelWithLMHead.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER) |
|
self.assertIsInstance(model, TFRobertaForMaskedLM) |
|
self.assertEqual(model.num_parameters(), 14410) |
|
self.assertEqual(model.num_parameters(only_trainable=True), 14410) |
|
|
|
def test_from_pretrained_with_tuple_values(self): |
|
|
|
model = TFAutoModel.from_pretrained("sgugger/funnel-random-tiny") |
|
self.assertIsInstance(model, TFFunnelModel) |
|
|
|
config = copy.deepcopy(model.config) |
|
config.architectures = ["FunnelBaseModel"] |
|
model = TFAutoModel.from_config(config) |
|
self.assertIsInstance(model, TFFunnelBaseModel) |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
model.save_pretrained(tmp_dir) |
|
model = TFAutoModel.from_pretrained(tmp_dir) |
|
self.assertIsInstance(model, TFFunnelBaseModel) |
|
|
|
def test_new_model_registration(self): |
|
try: |
|
AutoConfig.register("new-model", NewModelConfig) |
|
|
|
auto_classes = [ |
|
TFAutoModel, |
|
TFAutoModelForCausalLM, |
|
TFAutoModelForMaskedLM, |
|
TFAutoModelForPreTraining, |
|
TFAutoModelForQuestionAnswering, |
|
TFAutoModelForSequenceClassification, |
|
TFAutoModelForTokenClassification, |
|
] |
|
|
|
for auto_class in auto_classes: |
|
with self.subTest(auto_class.__name__): |
|
|
|
with self.assertRaises(ValueError): |
|
auto_class.register(BertConfig, TFNewModel) |
|
auto_class.register(NewModelConfig, TFNewModel) |
|
|
|
with self.assertRaises(ValueError): |
|
auto_class.register(BertConfig, TFBertModel) |
|
|
|
|
|
tiny_config = BertModelTester(self).get_config() |
|
config = NewModelConfig(**tiny_config.to_dict()) |
|
model = auto_class.from_config(config) |
|
self.assertIsInstance(model, TFNewModel) |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
model.save_pretrained(tmp_dir) |
|
new_model = auto_class.from_pretrained(tmp_dir) |
|
self.assertIsInstance(new_model, TFNewModel) |
|
|
|
finally: |
|
if "new-model" in CONFIG_MAPPING._extra_content: |
|
del CONFIG_MAPPING._extra_content["new-model"] |
|
for mapping in ( |
|
TF_MODEL_MAPPING, |
|
TF_MODEL_FOR_PRETRAINING_MAPPING, |
|
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, |
|
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, |
|
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, |
|
TF_MODEL_FOR_CAUSAL_LM_MAPPING, |
|
TF_MODEL_FOR_MASKED_LM_MAPPING, |
|
): |
|
if NewModelConfig in mapping._extra_content: |
|
del mapping._extra_content[NewModelConfig] |
|
|
|
def test_repo_not_found(self): |
|
with self.assertRaisesRegex( |
|
EnvironmentError, "bert-base is not a local folder and is not a valid model identifier" |
|
): |
|
_ = TFAutoModel.from_pretrained("bert-base") |
|
|
|
def test_revision_not_found(self): |
|
with self.assertRaisesRegex( |
|
EnvironmentError, r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" |
|
): |
|
_ = TFAutoModel.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, revision="aaaaaa") |
|
|
|
def test_model_file_not_found(self): |
|
with self.assertRaisesRegex( |
|
EnvironmentError, |
|
"hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin", |
|
): |
|
_ = TFAutoModel.from_pretrained("hf-internal-testing/config-no-model") |
|
|
|
def test_model_from_pt_suggestion(self): |
|
with self.assertRaisesRegex(EnvironmentError, "Use `from_pt=True` to load this model"): |
|
_ = TFAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only") |
|
|
|
def test_cached_model_has_minimum_calls_to_head(self): |
|
|
|
_ = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert") |
|
with RequestCounter() as counter: |
|
_ = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert") |
|
self.assertEqual(counter.get_request_count, 0) |
|
self.assertEqual(counter.head_request_count, 1) |
|
self.assertEqual(counter.other_request_count, 0) |
|
|
|
|
|
_ = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded") |
|
with RequestCounter() as counter: |
|
_ = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded") |
|
self.assertEqual(counter.get_request_count, 0) |
|
self.assertEqual(counter.head_request_count, 1) |
|
self.assertEqual(counter.other_request_count, 0) |
|
|