|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Fine-tuning a 🤗 Transformers model on token classification tasks (NER, POS, CHUNKS) |
|
""" |
|
|
|
import json |
|
import logging |
|
import os |
|
import random |
|
from dataclasses import dataclass, field |
|
from typing import Optional |
|
|
|
import datasets |
|
import evaluate |
|
import tensorflow as tf |
|
from datasets import ClassLabel, load_dataset |
|
|
|
import transformers |
|
from transformers import ( |
|
CONFIG_MAPPING, |
|
AutoConfig, |
|
AutoTokenizer, |
|
DataCollatorForTokenClassification, |
|
HfArgumentParser, |
|
PushToHubCallback, |
|
TFAutoModelForTokenClassification, |
|
TFTrainingArguments, |
|
create_optimizer, |
|
set_seed, |
|
) |
|
from transformers.utils import send_example_telemetry |
|
from transformers.utils.versions import require_version |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
logger.addHandler(logging.StreamHandler()) |
|
require_version("datasets>=1.8.0", "To fix: pip install -r examples/tensorflow/token-classification/requirements.txt") |
|
|
|
|
|
|
|
@dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. |
|
""" |
|
|
|
model_name_or_path: str = field( |
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} |
|
) |
|
config_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} |
|
) |
|
tokenizer_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} |
|
) |
|
cache_dir: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, |
|
) |
|
model_revision: str = field( |
|
default="main", |
|
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, |
|
) |
|
use_auth_token: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Will use the token generated when running `huggingface-cli login` (necessary to use this script " |
|
"with private models)." |
|
) |
|
}, |
|
) |
|
|
|
|
|
@dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
""" |
|
|
|
task_name: Optional[str] = field(default="ner", metadata={"help": "The name of the task (ner, pos...)."}) |
|
dataset_name: Optional[str] = field( |
|
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} |
|
) |
|
dataset_config_name: Optional[str] = field( |
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} |
|
) |
|
train_file: Optional[str] = field( |
|
default=None, metadata={"help": "The input training data file (a csv or JSON file)."} |
|
) |
|
validation_file: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."}, |
|
) |
|
test_file: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "An optional input test data file to predict on (a csv or JSON file)."}, |
|
) |
|
text_column_name: Optional[str] = field( |
|
default=None, metadata={"help": "The column name of text to input in the file (a csv or JSON file)."} |
|
) |
|
label_column_name: Optional[str] = field( |
|
default=None, metadata={"help": "The column name of label to input in the file (a csv or JSON file)."} |
|
) |
|
overwrite_cache: bool = field( |
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} |
|
) |
|
preprocessing_num_workers: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "The number of processes to use for the preprocessing."}, |
|
) |
|
max_length: Optional[int] = field(default=256, metadata={"help": "Max length (in tokens) for truncation/padding"}) |
|
pad_to_max_length: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Whether to pad all samples to model maximum sentence length. " |
|
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More " |
|
"efficient on GPU but very bad for TPU." |
|
) |
|
}, |
|
) |
|
max_train_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of training examples to this " |
|
"value if set." |
|
) |
|
}, |
|
) |
|
max_eval_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of evaluation examples to this " |
|
"value if set." |
|
) |
|
}, |
|
) |
|
max_predict_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of prediction examples to this " |
|
"value if set." |
|
) |
|
}, |
|
) |
|
label_all_tokens: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Whether to put the label for one word on all tokens of generated by that word or just on the " |
|
"one (in which case the other tokens will have a padding index)." |
|
) |
|
}, |
|
) |
|
return_entity_level_metrics: bool = field( |
|
default=False, |
|
metadata={"help": "Whether to return all the entity levels during evaluation or just the overall ones."}, |
|
) |
|
|
|
def __post_init__(self): |
|
if self.dataset_name is None and self.train_file is None and self.validation_file is None: |
|
raise ValueError("Need either a dataset name or a training/validation file.") |
|
else: |
|
if self.train_file is not None: |
|
extension = self.train_file.split(".")[-1] |
|
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." |
|
if self.validation_file is not None: |
|
extension = self.validation_file.split(".")[-1] |
|
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." |
|
self.task_name = self.task_name.lower() |
|
|
|
|
|
|
|
|
|
|
|
def main(): |
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments)) |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
|
|
|
|
|
send_example_telemetry("run_ner", model_args, data_args, framework="tensorflow") |
|
|
|
|
|
|
|
|
|
|
|
logger.setLevel(logging.INFO) |
|
datasets.utils.logging.set_verbosity_warning() |
|
transformers.utils.logging.set_verbosity_info() |
|
|
|
|
|
if training_args.seed is not None: |
|
set_seed(training_args.seed) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if data_args.dataset_name is not None: |
|
|
|
raw_datasets = load_dataset( |
|
data_args.dataset_name, |
|
data_args.dataset_config_name, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
else: |
|
data_files = {} |
|
if data_args.train_file is not None: |
|
data_files["train"] = data_args.train_file |
|
if data_args.validation_file is not None: |
|
data_files["validation"] = data_args.validation_file |
|
extension = data_args.train_file.split(".")[-1] |
|
raw_datasets = load_dataset( |
|
extension, |
|
data_files=data_files, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
|
|
|
|
|
|
if raw_datasets["train"] is not None: |
|
column_names = raw_datasets["train"].column_names |
|
features = raw_datasets["train"].features |
|
else: |
|
column_names = raw_datasets["validation"].column_names |
|
features = raw_datasets["validation"].features |
|
|
|
if data_args.text_column_name is not None: |
|
text_column_name = data_args.text_column_name |
|
elif "tokens" in column_names: |
|
text_column_name = "tokens" |
|
else: |
|
text_column_name = column_names[0] |
|
|
|
if data_args.label_column_name is not None: |
|
label_column_name = data_args.label_column_name |
|
elif f"{data_args.task_name}_tags" in column_names: |
|
label_column_name = f"{data_args.task_name}_tags" |
|
else: |
|
label_column_name = column_names[1] |
|
|
|
|
|
|
|
def get_label_list(labels): |
|
unique_labels = set() |
|
for label in labels: |
|
unique_labels = unique_labels | set(label) |
|
label_list = list(unique_labels) |
|
label_list.sort() |
|
return label_list |
|
|
|
if isinstance(features[label_column_name].feature, ClassLabel): |
|
label_list = features[label_column_name].feature.names |
|
|
|
label_to_id = {i: i for i in range(len(label_list))} |
|
else: |
|
label_list = get_label_list(raw_datasets["train"][label_column_name]) |
|
label_to_id = {l: i for i, l in enumerate(label_list)} |
|
num_labels = len(label_list) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if model_args.config_name: |
|
config = AutoConfig.from_pretrained(model_args.config_name, num_labels=num_labels) |
|
elif model_args.model_name_or_path: |
|
config = AutoConfig.from_pretrained(model_args.model_name_or_path, num_labels=num_labels) |
|
else: |
|
config = CONFIG_MAPPING[model_args.model_type]() |
|
logger.warning("You are instantiating a new config instance from scratch.") |
|
|
|
tokenizer_name_or_path = model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path |
|
if not tokenizer_name_or_path: |
|
raise ValueError( |
|
"You are instantiating a new tokenizer from scratch. This is not supported by this script." |
|
"You can do it from another script, save it, and load it from here, using --tokenizer_name." |
|
) |
|
|
|
if config.model_type in {"gpt2", "roberta"}: |
|
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path, use_fast=True, add_prefix_space=True) |
|
else: |
|
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path, use_fast=True) |
|
|
|
|
|
|
|
|
|
padding = "max_length" if data_args.pad_to_max_length else False |
|
|
|
|
|
|
|
def tokenize_and_align_labels(examples): |
|
tokenized_inputs = tokenizer( |
|
examples[text_column_name], |
|
max_length=data_args.max_length, |
|
padding=padding, |
|
truncation=True, |
|
|
|
is_split_into_words=True, |
|
) |
|
|
|
labels = [] |
|
for i, label in enumerate(examples[label_column_name]): |
|
word_ids = tokenized_inputs.word_ids(batch_index=i) |
|
previous_word_idx = None |
|
label_ids = [] |
|
for word_idx in word_ids: |
|
|
|
|
|
if word_idx is None: |
|
label_ids.append(-100) |
|
|
|
elif word_idx != previous_word_idx: |
|
label_ids.append(label_to_id[label[word_idx]]) |
|
|
|
|
|
else: |
|
label_ids.append(label_to_id[label[word_idx]] if data_args.label_all_tokens else -100) |
|
previous_word_idx = word_idx |
|
|
|
labels.append(label_ids) |
|
tokenized_inputs["labels"] = labels |
|
return tokenized_inputs |
|
|
|
processed_raw_datasets = raw_datasets.map( |
|
tokenize_and_align_labels, |
|
batched=True, |
|
remove_columns=raw_datasets["train"].column_names, |
|
desc="Running tokenizer on dataset", |
|
) |
|
|
|
train_dataset = processed_raw_datasets["train"] |
|
eval_dataset = processed_raw_datasets["validation"] |
|
|
|
if data_args.max_train_samples is not None: |
|
max_train_samples = min(len(train_dataset), data_args.max_train_samples) |
|
train_dataset = train_dataset.select(range(max_train_samples)) |
|
|
|
if data_args.max_eval_samples is not None: |
|
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) |
|
eval_dataset = eval_dataset.select(range(max_eval_samples)) |
|
|
|
|
|
for index in random.sample(range(len(train_dataset)), 3): |
|
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") |
|
|
|
|
|
with training_args.strategy.scope(): |
|
|
|
if model_args.model_name_or_path: |
|
model = TFAutoModelForTokenClassification.from_pretrained( |
|
model_args.model_name_or_path, |
|
config=config, |
|
) |
|
else: |
|
logger.info("Training new model from scratch") |
|
model = TFAutoModelForTokenClassification.from_config(config) |
|
|
|
|
|
|
|
embeddings = model.get_input_embeddings() |
|
|
|
|
|
|
|
|
|
if hasattr(embeddings, "embeddings"): |
|
embedding_size = embeddings.embeddings.shape[0] |
|
else: |
|
embedding_size = embeddings.weight.shape[0] |
|
if len(tokenizer) > embedding_size: |
|
model.resize_token_embeddings(len(tokenizer)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
collate_fn = DataCollatorForTokenClassification(tokenizer=tokenizer, return_tensors="np") |
|
num_replicas = training_args.strategy.num_replicas_in_sync |
|
total_train_batch_size = training_args.per_device_train_batch_size * num_replicas |
|
|
|
dataset_options = tf.data.Options() |
|
dataset_options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tf_train_dataset = model.prepare_tf_dataset( |
|
train_dataset, |
|
collate_fn=collate_fn, |
|
batch_size=total_train_batch_size, |
|
shuffle=True, |
|
).with_options(dataset_options) |
|
total_eval_batch_size = training_args.per_device_eval_batch_size * num_replicas |
|
tf_eval_dataset = model.prepare_tf_dataset( |
|
eval_dataset, |
|
collate_fn=collate_fn, |
|
batch_size=total_eval_batch_size, |
|
shuffle=False, |
|
).with_options(dataset_options) |
|
|
|
|
|
|
|
|
|
num_train_steps = int(len(tf_train_dataset) * training_args.num_train_epochs) |
|
if training_args.warmup_steps > 0: |
|
num_warmup_steps = training_args.warmup_steps |
|
elif training_args.warmup_ratio > 0: |
|
num_warmup_steps = int(num_train_steps * training_args.warmup_ratio) |
|
else: |
|
num_warmup_steps = 0 |
|
|
|
optimizer, lr_schedule = create_optimizer( |
|
init_lr=training_args.learning_rate, |
|
num_train_steps=num_train_steps, |
|
num_warmup_steps=num_warmup_steps, |
|
adam_beta1=training_args.adam_beta1, |
|
adam_beta2=training_args.adam_beta2, |
|
adam_epsilon=training_args.adam_epsilon, |
|
weight_decay_rate=training_args.weight_decay, |
|
adam_global_clipnorm=training_args.max_grad_norm, |
|
) |
|
|
|
|
|
model.compile(optimizer=optimizer, jit_compile=training_args.xla) |
|
|
|
|
|
|
|
metric = evaluate.load("seqeval") |
|
|
|
def get_labels(y_pred, y_true): |
|
|
|
|
|
|
|
true_predictions = [ |
|
[label_list[p] for (p, l) in zip(pred, gold_label) if l != -100] |
|
for pred, gold_label in zip(y_pred, y_true) |
|
] |
|
true_labels = [ |
|
[label_list[l] for (p, l) in zip(pred, gold_label) if l != -100] |
|
for pred, gold_label in zip(y_pred, y_true) |
|
] |
|
return true_predictions, true_labels |
|
|
|
def compute_metrics(): |
|
results = metric.compute() |
|
if data_args.return_entity_level_metrics: |
|
|
|
final_results = {} |
|
for key, value in results.items(): |
|
if isinstance(value, dict): |
|
for n, v in value.items(): |
|
final_results[f"{key}_{n}"] = v |
|
else: |
|
final_results[key] = value |
|
return final_results |
|
else: |
|
return { |
|
"precision": results["overall_precision"], |
|
"recall": results["overall_recall"], |
|
"f1": results["overall_f1"], |
|
"accuracy": results["overall_accuracy"], |
|
} |
|
|
|
|
|
|
|
|
|
push_to_hub_model_id = training_args.push_to_hub_model_id |
|
model_name = model_args.model_name_or_path.split("/")[-1] |
|
if not push_to_hub_model_id: |
|
if data_args.dataset_name is not None: |
|
push_to_hub_model_id = f"{model_name}-finetuned-{data_args.dataset_name}" |
|
else: |
|
push_to_hub_model_id = f"{model_name}-finetuned-token-classification" |
|
|
|
model_card_kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "token-classification"} |
|
if data_args.dataset_name is not None: |
|
model_card_kwargs["dataset_tags"] = data_args.dataset_name |
|
if data_args.dataset_config_name is not None: |
|
model_card_kwargs["dataset_args"] = data_args.dataset_config_name |
|
model_card_kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}" |
|
else: |
|
model_card_kwargs["dataset"] = data_args.dataset_name |
|
|
|
if training_args.push_to_hub: |
|
callbacks = [ |
|
PushToHubCallback( |
|
output_dir=training_args.output_dir, |
|
hub_model_id=push_to_hub_model_id, |
|
hub_token=training_args.push_to_hub_token, |
|
tokenizer=tokenizer, |
|
**model_card_kwargs, |
|
) |
|
] |
|
else: |
|
callbacks = [] |
|
|
|
|
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num examples = {len(train_dataset)}") |
|
logger.info(f" Num Epochs = {training_args.num_train_epochs}") |
|
logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}") |
|
logger.info(f" Total train batch size = {total_train_batch_size}") |
|
|
|
|
|
model.fit( |
|
tf_train_dataset, |
|
validation_data=tf_eval_dataset, |
|
epochs=int(training_args.num_train_epochs), |
|
callbacks=callbacks, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
try: |
|
predictions = model.predict(tf_eval_dataset, batch_size=training_args.per_device_eval_batch_size)["logits"] |
|
except tf.python.framework.errors_impl.InvalidArgumentError: |
|
raise ValueError( |
|
"Concatenating predictions failed! If your version of TensorFlow is 2.8.0 or older " |
|
"then you will need to use --pad_to_max_length to generate predictions, as older " |
|
"versions of TensorFlow cannot concatenate variable-length predictions as RaggedTensor." |
|
) |
|
if isinstance(predictions, tf.RaggedTensor): |
|
predictions = predictions.to_tensor(default_value=-100) |
|
predictions = tf.math.argmax(predictions, axis=-1).numpy() |
|
if "label" in eval_dataset: |
|
labels = eval_dataset.with_format("tf")["label"] |
|
else: |
|
labels = eval_dataset.with_format("tf")["labels"] |
|
if isinstance(labels, tf.RaggedTensor): |
|
labels = labels.to_tensor(default_value=-100) |
|
labels = labels.numpy() |
|
attention_mask = eval_dataset.with_format("tf")["attention_mask"] |
|
if isinstance(attention_mask, tf.RaggedTensor): |
|
attention_mask = attention_mask.to_tensor(default_value=-100) |
|
attention_mask = attention_mask.numpy() |
|
labels[attention_mask == 0] = -100 |
|
preds, refs = get_labels(predictions, labels) |
|
metric.add_batch( |
|
predictions=preds, |
|
references=refs, |
|
) |
|
eval_metric = compute_metrics() |
|
logger.info("Evaluation metrics:") |
|
for key, val in eval_metric.items(): |
|
logger.info(f"{key}: {val:.4f}") |
|
|
|
if training_args.output_dir is not None: |
|
output_eval_file = os.path.join(training_args.output_dir, "all_results.json") |
|
with open(output_eval_file, "w") as writer: |
|
writer.write(json.dumps(eval_metric)) |
|
|
|
|
|
if training_args.output_dir is not None and not training_args.push_to_hub: |
|
|
|
model.save_pretrained(training_args.output_dir) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|