|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Fine-tuning the library models for summarization. |
|
""" |
|
|
|
|
|
import json |
|
import logging |
|
import os |
|
import sys |
|
from dataclasses import dataclass, field |
|
from typing import Optional |
|
|
|
import datasets |
|
import evaluate |
|
import nltk |
|
import numpy as np |
|
import tensorflow as tf |
|
from datasets import load_dataset |
|
from filelock import FileLock |
|
|
|
import transformers |
|
from transformers import ( |
|
AutoConfig, |
|
AutoTokenizer, |
|
DataCollatorForSeq2Seq, |
|
HfArgumentParser, |
|
KerasMetricCallback, |
|
PushToHubCallback, |
|
TFAutoModelForSeq2SeqLM, |
|
TFTrainingArguments, |
|
create_optimizer, |
|
set_seed, |
|
) |
|
from transformers.trainer_utils import get_last_checkpoint |
|
from transformers.utils import check_min_version, is_offline_mode, send_example_telemetry |
|
from transformers.utils.versions import require_version |
|
|
|
|
|
|
|
|
|
check_min_version("4.32.0.dev0") |
|
|
|
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt") |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
try: |
|
nltk.data.find("tokenizers/punkt") |
|
except (LookupError, OSError): |
|
if is_offline_mode(): |
|
raise LookupError( |
|
"Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files" |
|
) |
|
with FileLock(".lock") as lock: |
|
nltk.download("punkt", quiet=True) |
|
|
|
|
|
|
|
|
|
@dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. |
|
""" |
|
|
|
model_name_or_path: str = field( |
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} |
|
) |
|
config_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} |
|
) |
|
tokenizer_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} |
|
) |
|
cache_dir: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"}, |
|
) |
|
use_fast_tokenizer: bool = field( |
|
default=True, |
|
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, |
|
) |
|
model_revision: str = field( |
|
default="main", |
|
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, |
|
) |
|
use_auth_token: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Will use the token generated when running `huggingface-cli login` (necessary to use this script " |
|
"with private models)." |
|
) |
|
}, |
|
) |
|
|
|
|
|
@dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
""" |
|
|
|
dataset_name: Optional[str] = field( |
|
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} |
|
) |
|
dataset_config_name: Optional[str] = field( |
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} |
|
) |
|
text_column: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."}, |
|
) |
|
summary_column: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "The name of the column in the datasets containing the summaries (for summarization)."}, |
|
) |
|
train_file: Optional[str] = field( |
|
default=None, metadata={"help": "The input training data file (a jsonlines or csv file)."} |
|
) |
|
validation_file: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"An optional input evaluation data file to evaluate the metrics (rouge) on (a jsonlines or csv file)." |
|
) |
|
}, |
|
) |
|
test_file: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": "An optional input test data file to evaluate the metrics (rouge) on (a jsonlines or csv file)." |
|
}, |
|
) |
|
overwrite_cache: bool = field( |
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} |
|
) |
|
preprocessing_num_workers: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "The number of processes to use for the preprocessing."}, |
|
) |
|
max_source_length: Optional[int] = field( |
|
default=1024, |
|
metadata={ |
|
"help": ( |
|
"The maximum total input sequence length after tokenization. Sequences longer " |
|
"than this will be truncated, sequences shorter will be padded." |
|
) |
|
}, |
|
) |
|
max_target_length: Optional[int] = field( |
|
default=128, |
|
metadata={ |
|
"help": ( |
|
"The maximum total sequence length for target text after tokenization. Sequences longer " |
|
"than this will be truncated, sequences shorter will be padded." |
|
) |
|
}, |
|
) |
|
val_max_target_length: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"The maximum total sequence length for validation target text after tokenization. Sequences longer " |
|
"than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`." |
|
"This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " |
|
"during ``evaluate`` and ``predict``." |
|
) |
|
}, |
|
) |
|
pad_to_max_length: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Whether to pad all samples to model maximum sentence length. " |
|
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More " |
|
"efficient on GPU but very bad for TPU." |
|
) |
|
}, |
|
) |
|
max_train_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of training examples to this " |
|
"value if set." |
|
) |
|
}, |
|
) |
|
max_eval_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of evaluation examples to this " |
|
"value if set." |
|
) |
|
}, |
|
) |
|
max_predict_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of prediction examples to this " |
|
"value if set." |
|
) |
|
}, |
|
) |
|
num_beams: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"Number of beams to use for evaluation. This argument will be passed to ``model.generate``, " |
|
"which is used during ``evaluate`` and ``predict``." |
|
) |
|
}, |
|
) |
|
ignore_pad_token_for_loss: bool = field( |
|
default=True, |
|
metadata={ |
|
"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not." |
|
}, |
|
) |
|
source_prefix: Optional[str] = field( |
|
default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."} |
|
) |
|
|
|
def __post_init__(self): |
|
if self.dataset_name is None and self.train_file is None and self.validation_file is None: |
|
raise ValueError("Need either a dataset name or a training/validation file.") |
|
else: |
|
if self.train_file is not None: |
|
extension = self.train_file.split(".")[-1] |
|
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." |
|
if self.validation_file is not None: |
|
extension = self.validation_file.split(".")[-1] |
|
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." |
|
if self.val_max_target_length is None: |
|
self.val_max_target_length = self.max_target_length |
|
|
|
|
|
|
|
|
|
|
|
summarization_name_mapping = { |
|
"amazon_reviews_multi": ("review_body", "review_title"), |
|
"big_patent": ("description", "abstract"), |
|
"cnn_dailymail": ("article", "highlights"), |
|
"orange_sum": ("text", "summary"), |
|
"pn_summary": ("article", "summary"), |
|
"psc": ("extract_text", "summary_text"), |
|
"samsum": ("dialogue", "summary"), |
|
"thaisum": ("body", "summary"), |
|
"xglue": ("news_body", "news_title"), |
|
"xsum": ("document", "summary"), |
|
"wiki_summary": ("article", "highlights"), |
|
"multi_news": ("document", "summary"), |
|
} |
|
|
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments)) |
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
|
|
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) |
|
else: |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
|
|
|
|
|
send_example_telemetry("run_summarization", model_args, data_args, framework="tensorflow") |
|
|
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
handlers=[logging.StreamHandler(sys.stdout)], |
|
) |
|
logger.setLevel(logging.INFO) |
|
datasets.utils.logging.set_verbosity(logging.INFO) |
|
transformers.utils.logging.set_verbosity(logging.INFO) |
|
|
|
|
|
logger.info(f"Training/evaluation parameters {training_args}") |
|
|
|
|
|
|
|
if data_args.source_prefix is None and model_args.model_name_or_path in [ |
|
"t5-small", |
|
"t5-base", |
|
"t5-large", |
|
"t5-3b", |
|
"t5-11b", |
|
]: |
|
logger.warning( |
|
"You're running a t5 model but didn't provide a source prefix, which is the expected, e.g. with " |
|
"`--source_prefix 'summarize: ' `" |
|
) |
|
|
|
|
|
|
|
last_checkpoint = None |
|
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: |
|
last_checkpoint = get_last_checkpoint(training_args.output_dir) |
|
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: |
|
raise ValueError( |
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. " |
|
"Use --overwrite_output_dir to overcome." |
|
) |
|
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: |
|
logger.info( |
|
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " |
|
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." |
|
) |
|
|
|
|
|
|
|
set_seed(training_args.seed) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if data_args.dataset_name is not None: |
|
|
|
raw_datasets = load_dataset( |
|
data_args.dataset_name, |
|
data_args.dataset_config_name, |
|
cache_dir=model_args.cache_dir, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
else: |
|
data_files = {} |
|
if data_args.train_file is not None: |
|
data_files["train"] = data_args.train_file |
|
extension = data_args.train_file.split(".")[-1] |
|
if data_args.validation_file is not None: |
|
data_files["validation"] = data_args.validation_file |
|
extension = data_args.validation_file.split(".")[-1] |
|
if data_args.test_file is not None: |
|
data_files["test"] = data_args.test_file |
|
extension = data_args.test_file.split(".")[-1] |
|
raw_datasets = load_dataset( |
|
extension, |
|
data_files=data_files, |
|
cache_dir=model_args.cache_dir, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config = AutoConfig.from_pretrained( |
|
model_args.config_name if model_args.config_name else model_args.model_name_or_path, |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, |
|
cache_dir=model_args.cache_dir, |
|
use_fast=model_args.use_fast_tokenizer, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
|
|
prefix = data_args.source_prefix if data_args.source_prefix is not None else "" |
|
|
|
|
|
|
|
|
|
if training_args.do_train: |
|
column_names = raw_datasets["train"].column_names |
|
elif training_args.do_eval: |
|
column_names = raw_datasets["validation"].column_names |
|
else: |
|
logger.info("There is nothing to do. Please pass `do_train`, and/or `do_eval`.") |
|
return |
|
|
|
|
|
dataset_columns = summarization_name_mapping.get(data_args.dataset_name, None) |
|
if data_args.text_column is None: |
|
text_column = dataset_columns[0] if dataset_columns is not None else column_names[0] |
|
else: |
|
text_column = data_args.text_column |
|
if text_column not in column_names: |
|
raise ValueError( |
|
f"--text_column' value '{data_args.text_column}' needs to be one of: {', '.join(column_names)}" |
|
) |
|
if data_args.summary_column is None: |
|
summary_column = dataset_columns[1] if dataset_columns is not None else column_names[1] |
|
else: |
|
summary_column = data_args.summary_column |
|
if summary_column not in column_names: |
|
raise ValueError( |
|
f"--summary_column' value '{data_args.summary_column}' needs to be one of: {', '.join(column_names)}" |
|
) |
|
|
|
|
|
max_target_length = data_args.max_target_length |
|
padding = "max_length" if data_args.pad_to_max_length else False |
|
|
|
def preprocess_function(examples): |
|
inputs = examples[text_column] |
|
targets = examples[summary_column] |
|
inputs = [prefix + inp for inp in inputs] |
|
model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True) |
|
|
|
|
|
labels = tokenizer(text_target=targets, max_length=max_target_length, padding=padding, truncation=True) |
|
|
|
|
|
|
|
if padding == "max_length" and data_args.ignore_pad_token_for_loss: |
|
labels["input_ids"] = [ |
|
[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"] |
|
] |
|
|
|
model_inputs["labels"] = labels["input_ids"] |
|
return model_inputs |
|
|
|
if training_args.do_train: |
|
if "train" not in raw_datasets: |
|
raise ValueError("--do_train requires a train dataset") |
|
train_dataset = raw_datasets["train"] |
|
if data_args.max_train_samples is not None: |
|
max_train_samples = min(len(train_dataset), data_args.max_train_samples) |
|
train_dataset = train_dataset.select(range(max_train_samples)) |
|
with training_args.main_process_first(desc="train dataset map pre-processing"): |
|
train_dataset = train_dataset.map( |
|
preprocess_function, |
|
batched=True, |
|
num_proc=data_args.preprocessing_num_workers, |
|
remove_columns=column_names, |
|
load_from_cache_file=not data_args.overwrite_cache, |
|
desc="Running tokenizer on train dataset", |
|
) |
|
else: |
|
train_dataset = None |
|
|
|
if training_args.do_eval: |
|
max_target_length = data_args.val_max_target_length |
|
if "validation" not in raw_datasets: |
|
raise ValueError("--do_eval requires a validation dataset") |
|
eval_dataset = raw_datasets["validation"] |
|
if data_args.max_eval_samples is not None: |
|
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) |
|
eval_dataset = eval_dataset.select(range(max_eval_samples)) |
|
with training_args.main_process_first(desc="validation dataset map pre-processing"): |
|
eval_dataset = eval_dataset.map( |
|
preprocess_function, |
|
batched=True, |
|
num_proc=data_args.preprocessing_num_workers, |
|
remove_columns=column_names, |
|
load_from_cache_file=not data_args.overwrite_cache, |
|
desc="Running tokenizer on validation dataset", |
|
) |
|
else: |
|
eval_dataset = None |
|
|
|
|
|
|
|
def postprocess_text(preds, labels): |
|
preds = [pred.strip() for pred in preds] |
|
labels = [label.strip() for label in labels] |
|
|
|
|
|
preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds] |
|
labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels] |
|
|
|
return preds, labels |
|
|
|
|
|
|
|
with training_args.strategy.scope(): |
|
|
|
model = TFAutoModelForSeq2SeqLM.from_pretrained( |
|
model_args.model_name_or_path, |
|
config=config, |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
|
|
|
|
|
|
embeddings = model.get_input_embeddings() |
|
|
|
|
|
|
|
|
|
if hasattr(embeddings, "embeddings"): |
|
embedding_size = embeddings.embeddings.shape[0] |
|
else: |
|
embedding_size = embeddings.weight.shape[0] |
|
if len(tokenizer) > embedding_size: |
|
model.resize_token_embeddings(len(tokenizer)) |
|
|
|
|
|
|
|
if model.config.decoder_start_token_id is None: |
|
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined") |
|
|
|
label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id |
|
data_collator = DataCollatorForSeq2Seq( |
|
tokenizer, |
|
model=model, |
|
label_pad_token_id=label_pad_token_id, |
|
pad_to_multiple_of=128, |
|
return_tensors="np", |
|
) |
|
|
|
dataset_options = tf.data.Options() |
|
dataset_options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF |
|
|
|
num_replicas = training_args.strategy.num_replicas_in_sync |
|
total_train_batch_size = training_args.per_device_train_batch_size * num_replicas |
|
total_eval_batch_size = training_args.per_device_eval_batch_size * num_replicas |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tf_train_dataset = model.prepare_tf_dataset( |
|
train_dataset, |
|
collate_fn=data_collator, |
|
batch_size=total_train_batch_size, |
|
shuffle=True, |
|
).with_options(dataset_options) |
|
tf_eval_dataset = model.prepare_tf_dataset( |
|
eval_dataset, |
|
collate_fn=data_collator, |
|
batch_size=total_eval_batch_size, |
|
shuffle=False, |
|
).with_options(dataset_options) |
|
|
|
|
|
|
|
num_train_steps = int(len(tf_train_dataset) * training_args.num_train_epochs) |
|
if training_args.warmup_steps > 0: |
|
num_warmup_steps = training_args.warmup_steps |
|
elif training_args.warmup_ratio > 0: |
|
num_warmup_steps = int(num_train_steps * training_args.warmup_ratio) |
|
else: |
|
num_warmup_steps = 0 |
|
if training_args.do_train: |
|
optimizer, lr_schedule = create_optimizer( |
|
init_lr=training_args.learning_rate, |
|
num_train_steps=num_train_steps, |
|
num_warmup_steps=num_warmup_steps, |
|
adam_beta1=training_args.adam_beta1, |
|
adam_beta2=training_args.adam_beta2, |
|
adam_epsilon=training_args.adam_epsilon, |
|
weight_decay_rate=training_args.weight_decay, |
|
adam_global_clipnorm=training_args.max_grad_norm, |
|
) |
|
else: |
|
optimizer = None |
|
|
|
|
|
|
|
|
|
if training_args.do_eval: |
|
metric = evaluate.load("rouge") |
|
|
|
if data_args.val_max_target_length is None: |
|
data_args.val_max_target_length = data_args.max_target_length |
|
|
|
gen_kwargs = { |
|
"max_length": data_args.val_max_target_length if data_args is not None else config.max_length, |
|
"num_beams": data_args.num_beams, |
|
"no_repeat_ngram_size": 0, |
|
} |
|
|
|
def compute_metrics(preds): |
|
predictions, labels = preds |
|
if isinstance(predictions, tuple): |
|
predictions = predictions[0] |
|
decoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True) |
|
labels = np.where(labels != -100, labels, tokenizer.pad_token_id) |
|
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) |
|
decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels) |
|
metrics = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True) |
|
|
|
metrics = {key: round(val.mid.fmeasure * 100, 4) for key, val in metrics.items()} |
|
return metrics |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
metric_callback = KerasMetricCallback( |
|
metric_fn=compute_metrics, |
|
eval_dataset=tf_eval_dataset, |
|
predict_with_generate=True, |
|
use_xla_generation=True, |
|
generate_kwargs=gen_kwargs, |
|
) |
|
callbacks = [metric_callback] |
|
else: |
|
callbacks = [] |
|
|
|
|
|
|
|
push_to_hub_model_id = training_args.push_to_hub_model_id |
|
model_name = model_args.model_name_or_path.split("/")[-1] |
|
if not push_to_hub_model_id: |
|
if data_args.dataset_name is not None: |
|
push_to_hub_model_id = f"{model_name}-finetuned-{data_args.dataset_name}" |
|
else: |
|
push_to_hub_model_id = f"{model_name}-finetuned-summarization" |
|
|
|
model_card_kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "summarization"} |
|
if data_args.dataset_name is not None: |
|
model_card_kwargs["dataset_tags"] = data_args.dataset_name |
|
if data_args.dataset_config_name is not None: |
|
model_card_kwargs["dataset_args"] = data_args.dataset_config_name |
|
model_card_kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}" |
|
else: |
|
model_card_kwargs["dataset"] = data_args.dataset_name |
|
|
|
if training_args.push_to_hub: |
|
|
|
callbacks.append( |
|
PushToHubCallback( |
|
output_dir=training_args.output_dir, |
|
hub_model_id=push_to_hub_model_id, |
|
hub_token=training_args.push_to_hub_token, |
|
tokenizer=tokenizer, |
|
**model_card_kwargs, |
|
) |
|
) |
|
|
|
|
|
|
|
|
|
|
|
model.compile(optimizer=optimizer, jit_compile=training_args.xla) |
|
eval_metrics = None |
|
if training_args.do_train: |
|
logger.info("***** Running training *****") |
|
logger.info(f" Num examples = {len(train_dataset)}") |
|
logger.info(f" Num Epochs = {training_args.num_train_epochs}") |
|
logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}") |
|
logger.info(f" Total train batch size = {total_train_batch_size}") |
|
logger.info(f" Total optimization steps = {num_train_steps}") |
|
|
|
if training_args.xla and not data_args.pad_to_max_length: |
|
logger.warning( |
|
"XLA training may be slow at first when --pad_to_max_length is not set " |
|
"until all possible shapes have been compiled." |
|
) |
|
history = model.fit(tf_train_dataset, epochs=int(training_args.num_train_epochs), callbacks=callbacks) |
|
eval_metrics = {key: val[-1] for key, val in history.history.items()} |
|
|
|
|
|
|
|
|
|
if training_args.do_eval and not training_args.do_train: |
|
|
|
logger.info("Evaluation...") |
|
|
|
|
|
@tf.function(jit_compile=True) |
|
def generate(**kwargs): |
|
return model.generate(**kwargs) |
|
|
|
for batch, labels in tf_eval_dataset: |
|
batch.update(gen_kwargs) |
|
generated_tokens = generate(**batch) |
|
if isinstance(generated_tokens, tuple): |
|
generated_tokens = generated_tokens[0] |
|
decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) |
|
labels = np.where(labels != -100, labels, tokenizer.pad_token_id) |
|
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) |
|
decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels) |
|
|
|
metric.add_batch(predictions=decoded_preds, references=decoded_labels) |
|
|
|
eval_metrics = metric.compute(use_stemmer=True) |
|
|
|
result = {key: round(val.mid.fmeasure * 100, 4) for key, val in eval_metrics.items()} |
|
logger.info(result) |
|
|
|
|
|
if training_args.output_dir is not None and eval_metrics is not None: |
|
output_eval_file = os.path.join(training_args.output_dir, "all_results.json") |
|
with open(output_eval_file, "w") as writer: |
|
writer.write(json.dumps(eval_metrics)) |
|
|
|
if training_args.output_dir is not None and not training_args.push_to_hub: |
|
|
|
model.save_pretrained(training_args.output_dir) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|