|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Fine-tuning the library models for tapex on table-based question answering tasks. |
|
Adapted from script: https://github.com/huggingface/transformers/blob/master/examples/pytorch/summarization/run_summarization.py |
|
""" |
|
|
|
import logging |
|
import os |
|
import sys |
|
from collections import defaultdict |
|
from dataclasses import dataclass, field |
|
from functools import partial |
|
from typing import List, Optional |
|
|
|
import nltk |
|
import numpy as np |
|
import pandas as pd |
|
from datasets import load_dataset |
|
from filelock import FileLock |
|
|
|
import transformers |
|
from transformers import ( |
|
AutoConfig, |
|
BartForConditionalGeneration, |
|
DataCollatorForSeq2Seq, |
|
HfArgumentParser, |
|
Seq2SeqTrainer, |
|
Seq2SeqTrainingArguments, |
|
TapexTokenizer, |
|
set_seed, |
|
) |
|
from transformers.file_utils import is_offline_mode |
|
from transformers.trainer_utils import get_last_checkpoint, is_main_process |
|
from transformers.utils import check_min_version |
|
|
|
|
|
|
|
check_min_version("4.17.0.dev0") |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
try: |
|
nltk.data.find("tokenizers/punkt") |
|
except (LookupError, OSError): |
|
if is_offline_mode(): |
|
raise LookupError( |
|
"Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files" |
|
) |
|
with FileLock(".lock") as lock: |
|
nltk.download("punkt", quiet=True) |
|
|
|
|
|
@dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. |
|
""" |
|
|
|
model_name_or_path: str = field( |
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}, |
|
) |
|
config_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} |
|
) |
|
tokenizer_name: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"Pretrained tokenizer name or path if not the same as model_name. " |
|
"By default we use BART-large tokenizer for TAPEX-large." |
|
) |
|
}, |
|
) |
|
cache_dir: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"}, |
|
) |
|
use_fast_tokenizer: bool = field( |
|
default=True, |
|
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, |
|
) |
|
model_revision: str = field( |
|
default="main", |
|
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, |
|
) |
|
use_auth_token: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Will use the token generated when running `huggingface-cli login` (necessary to use this script " |
|
"with private models)." |
|
) |
|
}, |
|
) |
|
|
|
|
|
@dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
""" |
|
|
|
dataset_name: Optional[str] = field( |
|
default="wikitablequestions", metadata={"help": "The name of the dataset to use (via the datasets library)."} |
|
) |
|
dataset_config_name: Optional[str] = field( |
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} |
|
) |
|
train_file: Optional[str] = field( |
|
default=None, metadata={"help": "The input training data file (a jsonlines or csv file)."} |
|
) |
|
validation_file: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"An optional input evaluation data file to evaluate the metrics (rouge) on (a jsonlines or csv file)." |
|
) |
|
}, |
|
) |
|
test_file: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": "An optional input test data file to evaluate the metrics (rouge) on (a jsonlines or csv file)." |
|
}, |
|
) |
|
overwrite_cache: bool = field( |
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} |
|
) |
|
preprocessing_num_workers: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "The number of processes to use for the preprocessing."}, |
|
) |
|
max_source_length: Optional[int] = field( |
|
default=1024, |
|
metadata={ |
|
"help": ( |
|
"The maximum total input sequence length after tokenization. Sequences longer " |
|
"than this will be truncated, sequences shorter will be padded." |
|
) |
|
}, |
|
) |
|
max_target_length: Optional[int] = field( |
|
default=128, |
|
metadata={ |
|
"help": ( |
|
"The maximum total sequence length for target text after tokenization. Sequences longer " |
|
"than this will be truncated, sequences shorter will be padded." |
|
) |
|
}, |
|
) |
|
val_max_target_length: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"The maximum total sequence length for validation target text after tokenization. Sequences longer " |
|
"than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`." |
|
"This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " |
|
"during ``evaluate`` and ``predict``." |
|
) |
|
}, |
|
) |
|
pad_to_max_length: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Whether to pad all samples to model maximum sentence length. " |
|
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More " |
|
"efficient on GPU but very bad for TPU." |
|
) |
|
}, |
|
) |
|
max_train_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of training examples to this " |
|
"value if set." |
|
) |
|
}, |
|
) |
|
max_eval_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of evaluation examples to this " |
|
"value if set." |
|
) |
|
}, |
|
) |
|
max_predict_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of prediction examples to this " |
|
"value if set." |
|
) |
|
}, |
|
) |
|
num_beams: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"Number of beams to use for evaluation. This argument will be passed to ``model.generate``, " |
|
"which is used during ``evaluate`` and ``predict``." |
|
) |
|
}, |
|
) |
|
ignore_pad_token_for_loss: bool = field( |
|
default=True, |
|
metadata={ |
|
"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not." |
|
}, |
|
) |
|
|
|
def __post_init__(self): |
|
if self.dataset_name is None and self.train_file is None and self.validation_file is None: |
|
raise ValueError("Need either a dataset name or a training/validation file.") |
|
else: |
|
if self.train_file is not None: |
|
extension = self.train_file.split(".")[-1] |
|
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." |
|
if self.validation_file is not None: |
|
extension = self.validation_file.split(".")[-1] |
|
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." |
|
if self.val_max_target_length is None: |
|
self.val_max_target_length = self.max_target_length |
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)) |
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
|
|
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) |
|
else: |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
|
|
|
last_checkpoint = None |
|
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: |
|
last_checkpoint = get_last_checkpoint(training_args.output_dir) |
|
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: |
|
raise ValueError( |
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. " |
|
"Use --overwrite_output_dir to overcome." |
|
) |
|
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: |
|
logger.info( |
|
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " |
|
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." |
|
) |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
handlers=[logging.StreamHandler(sys.stdout)], |
|
) |
|
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN) |
|
|
|
|
|
logger.warning( |
|
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" |
|
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" |
|
) |
|
|
|
if is_main_process(training_args.local_rank): |
|
transformers.utils.logging.set_verbosity_info() |
|
logger.info(f"Training/evaluation parameters {training_args}") |
|
|
|
|
|
set_seed(training_args.seed) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if data_args.dataset_name is not None: |
|
|
|
datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir) |
|
else: |
|
data_files = {} |
|
if data_args.train_file is not None: |
|
data_files["train"] = data_args.train_file |
|
extension = data_args.train_file.split(".")[-1] |
|
if data_args.validation_file is not None: |
|
data_files["validation"] = data_args.validation_file |
|
extension = data_args.validation_file.split(".")[-1] |
|
if data_args.test_file is not None: |
|
data_files["test"] = data_args.test_file |
|
extension = data_args.test_file.split(".")[-1] |
|
datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config = AutoConfig.from_pretrained( |
|
model_args.config_name if model_args.config_name else model_args.model_name_or_path, |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
|
|
|
|
|
|
config.no_repeat_ngram_size = 0 |
|
config.max_length = 1024 |
|
config.early_stopping = False |
|
|
|
|
|
tokenizer = TapexTokenizer.from_pretrained( |
|
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, |
|
cache_dir=model_args.cache_dir, |
|
use_fast=model_args.use_fast_tokenizer, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
add_prefix_space=True, |
|
) |
|
|
|
|
|
model = BartForConditionalGeneration.from_pretrained( |
|
model_args.model_name_or_path, |
|
from_tf=bool(".ckpt" in model_args.model_name_or_path), |
|
config=config, |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
|
|
if model.config.decoder_start_token_id is None: |
|
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined") |
|
|
|
|
|
|
|
if training_args.do_train: |
|
column_names = datasets["train"].column_names |
|
elif training_args.do_eval: |
|
column_names = datasets["validation"].column_names |
|
elif training_args.do_predict: |
|
column_names = datasets["test"].column_names |
|
else: |
|
logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.") |
|
return |
|
|
|
|
|
max_target_length = data_args.max_target_length |
|
padding = "max_length" if data_args.pad_to_max_length else False |
|
|
|
if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"): |
|
logger.warning( |
|
"label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for" |
|
f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory" |
|
) |
|
|
|
def preprocess_tableqa_function(examples, is_training=False): |
|
""" |
|
The is_training FLAG is used to identify if we could use the supervision |
|
to truncate the table content if it is required. |
|
""" |
|
|
|
questions = [question.lower() for question in examples["question"]] |
|
example_tables = examples["table"] |
|
tables = [ |
|
pd.DataFrame.from_records(example_table["rows"], columns=example_table["header"]) |
|
for example_table in example_tables |
|
] |
|
|
|
|
|
answers = examples["answers"] |
|
|
|
|
|
|
|
if is_training: |
|
model_inputs = tokenizer( |
|
table=tables, |
|
query=questions, |
|
answer=answers, |
|
max_length=data_args.max_source_length, |
|
padding=padding, |
|
truncation=True, |
|
) |
|
else: |
|
model_inputs = tokenizer( |
|
table=tables, query=questions, max_length=data_args.max_source_length, padding=padding, truncation=True |
|
) |
|
|
|
labels = tokenizer( |
|
answer=[", ".join(answer) for answer in answers], |
|
max_length=max_target_length, |
|
padding=padding, |
|
truncation=True, |
|
) |
|
|
|
|
|
|
|
if padding == "max_length" and data_args.ignore_pad_token_for_loss: |
|
labels["input_ids"] = [ |
|
[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"] |
|
] |
|
|
|
model_inputs["labels"] = labels["input_ids"] |
|
|
|
return model_inputs |
|
|
|
|
|
preprocess_tableqa_function_training = partial(preprocess_tableqa_function, is_training=True) |
|
|
|
if training_args.do_train: |
|
if "train" not in datasets: |
|
raise ValueError("--do_train requires a train dataset") |
|
train_dataset = datasets["train"] |
|
if data_args.max_train_samples is not None: |
|
train_dataset = train_dataset.select(range(data_args.max_train_samples)) |
|
train_dataset = train_dataset.map( |
|
preprocess_tableqa_function_training, |
|
batched=True, |
|
num_proc=data_args.preprocessing_num_workers, |
|
remove_columns=column_names, |
|
load_from_cache_file=not data_args.overwrite_cache, |
|
) |
|
|
|
if training_args.do_eval: |
|
max_target_length = data_args.val_max_target_length |
|
if "validation" not in datasets: |
|
raise ValueError("--do_eval requires a validation dataset") |
|
eval_dataset = datasets["validation"] |
|
if data_args.max_eval_samples is not None: |
|
eval_dataset = eval_dataset.select(range(data_args.max_eval_samples)) |
|
eval_dataset = eval_dataset.map( |
|
preprocess_tableqa_function, |
|
batched=True, |
|
num_proc=data_args.preprocessing_num_workers, |
|
remove_columns=column_names, |
|
load_from_cache_file=not data_args.overwrite_cache, |
|
) |
|
|
|
if training_args.do_predict: |
|
max_target_length = data_args.val_max_target_length |
|
if "test" not in datasets: |
|
raise ValueError("--do_predict requires a test dataset") |
|
predict_dataset = datasets["test"] |
|
if data_args.max_predict_samples is not None: |
|
predict_dataset = predict_dataset.select(range(data_args.max_predict_samples)) |
|
predict_dataset = predict_dataset.map( |
|
preprocess_tableqa_function, |
|
batched=True, |
|
num_proc=data_args.preprocessing_num_workers, |
|
remove_columns=column_names, |
|
load_from_cache_file=not data_args.overwrite_cache, |
|
) |
|
|
|
|
|
label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id |
|
data_collator = DataCollatorForSeq2Seq( |
|
tokenizer, |
|
model=model, |
|
label_pad_token_id=label_pad_token_id, |
|
pad_to_multiple_of=8 if training_args.fp16 else None, |
|
) |
|
|
|
def postprocess_text(preds, labels): |
|
preds = [pred.strip() for pred in preds] |
|
labels = [label.strip() for label in labels] |
|
|
|
return preds, labels |
|
|
|
def compute_metrics(eval_preds): |
|
preds, labels = eval_preds |
|
if isinstance(preds, tuple): |
|
preds = preds[0] |
|
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) |
|
if data_args.ignore_pad_token_for_loss: |
|
|
|
labels = np.where(labels != -100, labels, tokenizer.pad_token_id) |
|
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) |
|
|
|
|
|
decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels) |
|
|
|
delimiter = ", " |
|
|
|
|
|
def evaluate_example(predict_str: str, ground_str: str): |
|
predict_spans = predict_str.split(delimiter) |
|
ground_spans = ground_str.split(delimiter) |
|
predict_values = defaultdict(lambda: 0) |
|
ground_values = defaultdict(lambda: 0) |
|
for span in predict_spans: |
|
try: |
|
predict_values[float(span)] += 1 |
|
except ValueError: |
|
predict_values[span.strip()] += 1 |
|
for span in ground_spans: |
|
try: |
|
ground_values[float(span)] += 1 |
|
except ValueError: |
|
ground_values[span.strip()] += 1 |
|
_is_correct = predict_values == ground_values |
|
return _is_correct |
|
|
|
def get_denotation_accuracy(predictions: List[str], references: List[str]): |
|
assert len(predictions) == len(references) |
|
correct_num = 0 |
|
for predict_str, ground_str in zip(predictions, references): |
|
is_correct = evaluate_example(predict_str.lower(), ground_str.lower()) |
|
if is_correct: |
|
correct_num += 1 |
|
return correct_num / len(predictions) |
|
|
|
accuracy = get_denotation_accuracy(decoded_preds, decoded_labels) |
|
result = {"denotation_accuracy": accuracy} |
|
|
|
return result |
|
|
|
|
|
trainer = Seq2SeqTrainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=train_dataset if training_args.do_train else None, |
|
eval_dataset=eval_dataset if training_args.do_eval else None, |
|
tokenizer=tokenizer, |
|
data_collator=data_collator, |
|
compute_metrics=compute_metrics if training_args.predict_with_generate else None, |
|
) |
|
|
|
if training_args.do_train: |
|
checkpoint = None |
|
if training_args.resume_from_checkpoint is not None: |
|
checkpoint = training_args.resume_from_checkpoint |
|
elif last_checkpoint is not None: |
|
checkpoint = last_checkpoint |
|
train_result = trainer.train(resume_from_checkpoint=checkpoint) |
|
trainer.save_model() |
|
|
|
metrics = train_result.metrics |
|
max_train_samples = ( |
|
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) |
|
) |
|
metrics["train_samples"] = min(max_train_samples, len(train_dataset)) |
|
|
|
trainer.log_metrics("train", metrics) |
|
trainer.save_metrics("train", metrics) |
|
trainer.save_state() |
|
|
|
|
|
results = {} |
|
if training_args.do_eval: |
|
logger.info("*** Evaluate ***") |
|
|
|
metrics = trainer.evaluate( |
|
max_length=data_args.val_max_target_length, num_beams=data_args.num_beams, metric_key_prefix="eval" |
|
) |
|
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset) |
|
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset)) |
|
|
|
trainer.log_metrics("eval", metrics) |
|
trainer.save_metrics("eval", metrics) |
|
|
|
if training_args.do_predict: |
|
logger.info("*** Predict ***") |
|
|
|
predict_results = trainer.predict( |
|
predict_dataset, |
|
metric_key_prefix="predict", |
|
max_length=data_args.val_max_target_length, |
|
num_beams=data_args.num_beams, |
|
) |
|
metrics = predict_results.metrics |
|
max_predict_samples = ( |
|
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset) |
|
) |
|
metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset)) |
|
|
|
trainer.log_metrics("predict", metrics) |
|
trainer.save_metrics("predict", metrics) |
|
|
|
if trainer.is_world_process_zero(): |
|
if training_args.predict_with_generate: |
|
predictions = tokenizer.batch_decode( |
|
predict_results.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True |
|
) |
|
predictions = [pred.strip() for pred in predictions] |
|
output_prediction_file = os.path.join(training_args.output_dir, "tapex_predictions.txt") |
|
with open(output_prediction_file, "w") as writer: |
|
writer.write("\n".join(predictions)) |
|
|
|
return results |
|
|
|
|
|
def _mp_fn(index): |
|
|
|
main() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|