|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Fine-tuning the library models for tapex on table-based fact verification tasks. |
|
Adapted from script: https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py |
|
""" |
|
|
|
import logging |
|
import os |
|
import random |
|
import sys |
|
from dataclasses import dataclass, field |
|
from typing import Optional |
|
|
|
import datasets |
|
import numpy as np |
|
import pandas as pd |
|
from datasets import load_dataset |
|
|
|
import transformers |
|
from transformers import ( |
|
AutoConfig, |
|
BartForSequenceClassification, |
|
DataCollatorWithPadding, |
|
EvalPrediction, |
|
HfArgumentParser, |
|
TapexTokenizer, |
|
Trainer, |
|
TrainingArguments, |
|
default_data_collator, |
|
set_seed, |
|
) |
|
from transformers.trainer_utils import get_last_checkpoint |
|
from transformers.utils import check_min_version |
|
from transformers.utils.versions import require_version |
|
|
|
|
|
|
|
check_min_version("4.17.0.dev0") |
|
|
|
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
|
|
Using `HfArgumentParser` we can turn this class |
|
into argparse arguments to be able to specify them on |
|
the command line. |
|
""" |
|
|
|
dataset_name: Optional[str] = field( |
|
default="tab_fact", metadata={"help": "The name of the dataset to use (via the datasets library)."} |
|
) |
|
dataset_config_name: Optional[str] = field( |
|
default="tab_fact", |
|
metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}, |
|
) |
|
max_seq_length: int = field( |
|
default=1024, |
|
metadata={ |
|
"help": ( |
|
"The maximum total input sequence length after tokenization. Sequences longer " |
|
"than this will be truncated, sequences shorter will be padded." |
|
) |
|
}, |
|
) |
|
overwrite_cache: bool = field( |
|
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."} |
|
) |
|
pad_to_max_length: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Whether to pad all samples to `max_seq_length`. " |
|
"If False, will pad the samples dynamically when batching to the maximum length in the batch." |
|
) |
|
}, |
|
) |
|
max_train_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of training examples to this " |
|
"value if set." |
|
) |
|
}, |
|
) |
|
max_eval_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of evaluation examples to this " |
|
"value if set." |
|
) |
|
}, |
|
) |
|
max_predict_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of prediction examples to this " |
|
"value if set." |
|
) |
|
}, |
|
) |
|
train_file: Optional[str] = field( |
|
default=None, metadata={"help": "A csv or a json file containing the training data."} |
|
) |
|
validation_file: Optional[str] = field( |
|
default=None, metadata={"help": "A csv or a json file containing the validation data."} |
|
) |
|
test_file: Optional[str] = field(default=None, metadata={"help": "A csv or a json file containing the test data."}) |
|
|
|
def __post_init__(self): |
|
if self.dataset_name is not None: |
|
pass |
|
elif self.train_file is None or self.validation_file is None: |
|
raise ValueError("Need either a GLUE task, a training/validation file or a dataset name.") |
|
else: |
|
train_extension = self.train_file.split(".")[-1] |
|
assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." |
|
validation_extension = self.validation_file.split(".")[-1] |
|
assert ( |
|
validation_extension == train_extension |
|
), "`validation_file` should have the same extension (csv or json) as `train_file`." |
|
|
|
|
|
@dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. |
|
""" |
|
|
|
model_name_or_path: str = field( |
|
default=None, metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} |
|
) |
|
config_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} |
|
) |
|
tokenizer_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} |
|
) |
|
cache_dir: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, |
|
) |
|
use_fast_tokenizer: bool = field( |
|
default=True, |
|
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, |
|
) |
|
model_revision: str = field( |
|
default="main", |
|
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, |
|
) |
|
use_auth_token: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Will use the token generated when running `huggingface-cli login` (necessary to use this script " |
|
"with private models)." |
|
) |
|
}, |
|
) |
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) |
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
|
|
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) |
|
else: |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
handlers=[logging.StreamHandler(sys.stdout)], |
|
) |
|
|
|
log_level = training_args.get_process_log_level() |
|
logger.setLevel(log_level) |
|
datasets.utils.logging.set_verbosity(log_level) |
|
transformers.utils.logging.set_verbosity(log_level) |
|
transformers.utils.logging.enable_default_handler() |
|
transformers.utils.logging.enable_explicit_format() |
|
|
|
|
|
logger.warning( |
|
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" |
|
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" |
|
) |
|
logger.info(f"Training/evaluation parameters {training_args}") |
|
|
|
|
|
last_checkpoint = None |
|
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: |
|
last_checkpoint = get_last_checkpoint(training_args.output_dir) |
|
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: |
|
raise ValueError( |
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. " |
|
"Use --overwrite_output_dir to overcome." |
|
) |
|
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: |
|
logger.info( |
|
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " |
|
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." |
|
) |
|
|
|
|
|
set_seed(training_args.seed) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if data_args.dataset_name is not None: |
|
|
|
raw_datasets = load_dataset( |
|
data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir |
|
) |
|
else: |
|
|
|
|
|
data_files = {"train": data_args.train_file, "validation": data_args.validation_file} |
|
|
|
|
|
|
|
if training_args.do_predict: |
|
if data_args.test_file is not None: |
|
train_extension = data_args.train_file.split(".")[-1] |
|
test_extension = data_args.test_file.split(".")[-1] |
|
assert ( |
|
test_extension == train_extension |
|
), "`test_file` should have the same extension (csv or json) as `train_file`." |
|
data_files["test"] = data_args.test_file |
|
else: |
|
raise ValueError("Need either a GLUE task or a test file for `do_predict`.") |
|
|
|
for key in data_files.keys(): |
|
logger.info(f"load a local file for {key}: {data_files[key]}") |
|
|
|
if data_args.train_file.endswith(".csv"): |
|
|
|
raw_datasets = load_dataset("csv", data_files=data_files, cache_dir=model_args.cache_dir) |
|
else: |
|
|
|
raw_datasets = load_dataset("json", data_files=data_files, cache_dir=model_args.cache_dir) |
|
|
|
|
|
|
|
|
|
label_list = raw_datasets["train"].features["label"].names |
|
num_labels = len(label_list) |
|
|
|
|
|
|
|
|
|
|
|
config = AutoConfig.from_pretrained( |
|
model_args.config_name if model_args.config_name else model_args.model_name_or_path, |
|
num_labels=num_labels, |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
|
|
tokenizer = TapexTokenizer.from_pretrained( |
|
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, |
|
cache_dir=model_args.cache_dir, |
|
use_fast=model_args.use_fast_tokenizer, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
add_prefix_space=True, |
|
) |
|
model = BartForSequenceClassification.from_pretrained( |
|
model_args.model_name_or_path, |
|
from_tf=bool(".ckpt" in model_args.model_name_or_path), |
|
config=config, |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
|
|
|
|
if data_args.pad_to_max_length: |
|
padding = "max_length" |
|
else: |
|
|
|
padding = False |
|
|
|
|
|
model.config.label2id = {"Refused": 0, "Entailed": 1} |
|
model.config.id2label = {0: "Refused", 1: "Entailed"} |
|
|
|
if data_args.max_seq_length > tokenizer.model_max_length: |
|
logger.warning( |
|
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" |
|
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." |
|
) |
|
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) |
|
|
|
def preprocess_tabfact_function(examples): |
|
|
|
def _convert_table_text_to_pandas(_table_text): |
|
"""Runs the structured pandas table object for _table_text. |
|
An example _table_text can be: round#clubs remaining\nfirst round#156\n |
|
""" |
|
_table_content = [_table_row.split("#") for _table_row in _table_text.strip("\n").split("\n")] |
|
_table_pd = pd.DataFrame.from_records(_table_content[1:], columns=_table_content[0]) |
|
return _table_pd |
|
|
|
questions = examples["statement"] |
|
tables = list(map(_convert_table_text_to_pandas, examples["table_text"])) |
|
result = tokenizer(tables, questions, padding=padding, max_length=max_seq_length, truncation=True) |
|
|
|
result["label"] = examples["label"] |
|
return result |
|
|
|
with training_args.main_process_first(desc="dataset map pre-processing"): |
|
raw_datasets = raw_datasets.map( |
|
preprocess_tabfact_function, |
|
batched=True, |
|
load_from_cache_file=not data_args.overwrite_cache, |
|
desc="Running tokenizer on dataset", |
|
) |
|
if training_args.do_train: |
|
if "train" not in raw_datasets: |
|
raise ValueError("--do_train requires a train dataset") |
|
train_dataset = raw_datasets["train"] |
|
if data_args.max_train_samples is not None: |
|
train_dataset = train_dataset.select(range(data_args.max_train_samples)) |
|
|
|
if training_args.do_eval: |
|
if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: |
|
raise ValueError("--do_eval requires a validation dataset") |
|
eval_dataset = raw_datasets["validation"] |
|
if data_args.max_eval_samples is not None: |
|
eval_dataset = eval_dataset.select(range(data_args.max_eval_samples)) |
|
|
|
if training_args.do_predict or data_args.test_file is not None: |
|
if "test" not in raw_datasets and "test_matched" not in raw_datasets: |
|
raise ValueError("--do_predict requires a test dataset") |
|
predict_dataset = raw_datasets["test"] |
|
if data_args.max_predict_samples is not None: |
|
predict_dataset = predict_dataset.select(range(data_args.max_predict_samples)) |
|
|
|
|
|
if training_args.do_train: |
|
for index in random.sample(range(len(train_dataset)), 3): |
|
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") |
|
|
|
|
|
|
|
def compute_metrics(p: EvalPrediction): |
|
preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions |
|
preds = np.argmax(preds, axis=1) |
|
return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()} |
|
|
|
|
|
if data_args.pad_to_max_length: |
|
data_collator = default_data_collator |
|
elif training_args.fp16: |
|
data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8) |
|
else: |
|
data_collator = None |
|
|
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=train_dataset if training_args.do_train else None, |
|
eval_dataset=eval_dataset if training_args.do_eval else None, |
|
compute_metrics=compute_metrics, |
|
tokenizer=tokenizer, |
|
data_collator=data_collator, |
|
) |
|
|
|
|
|
if training_args.do_train: |
|
checkpoint = None |
|
if training_args.resume_from_checkpoint is not None: |
|
checkpoint = training_args.resume_from_checkpoint |
|
elif last_checkpoint is not None: |
|
checkpoint = last_checkpoint |
|
train_result = trainer.train(resume_from_checkpoint=checkpoint) |
|
metrics = train_result.metrics |
|
max_train_samples = ( |
|
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) |
|
) |
|
metrics["train_samples"] = min(max_train_samples, len(train_dataset)) |
|
|
|
trainer.save_model() |
|
|
|
trainer.log_metrics("train", metrics) |
|
trainer.save_metrics("train", metrics) |
|
trainer.save_state() |
|
|
|
|
|
if training_args.do_eval: |
|
logger.info("*** Evaluate ***") |
|
|
|
metrics = trainer.evaluate(eval_dataset=eval_dataset) |
|
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset) |
|
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset)) |
|
|
|
trainer.log_metrics("eval", metrics) |
|
trainer.save_metrics("eval", metrics) |
|
|
|
if training_args.do_predict: |
|
logger.info("*** Predict ***") |
|
|
|
|
|
predict_dataset = predict_dataset.remove_columns("label") |
|
predictions = trainer.predict(predict_dataset, metric_key_prefix="predict").predictions |
|
predictions = np.argmax(predictions, axis=1) |
|
|
|
output_predict_file = os.path.join(training_args.output_dir, "predict_results_tabfact.txt") |
|
if trainer.is_world_process_zero(): |
|
with open(output_predict_file, "w") as writer: |
|
logger.info("***** Predict Results *****") |
|
writer.write("index\tprediction\n") |
|
for index, item in enumerate(predictions): |
|
item = label_list[item] |
|
writer.write(f"{index}\t{item}\n") |
|
|
|
kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"} |
|
|
|
if training_args.push_to_hub: |
|
trainer.push_to_hub(**kwargs) |
|
else: |
|
trainer.create_model_card(**kwargs) |
|
|
|
|
|
def _mp_fn(index): |
|
|
|
main() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|