|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import csv |
|
import json |
|
import math |
|
import time |
|
|
|
import numpy as np |
|
import torch |
|
import torch.optim as optim |
|
import torch.utils.data as data |
|
from nltk.tokenize.treebank import TreebankWordDetokenizer |
|
from pplm_classification_head import ClassificationHead |
|
from torch import nn |
|
from torchtext import data as torchtext_data |
|
from torchtext import datasets |
|
from tqdm import tqdm, trange |
|
|
|
from transformers import GPT2LMHeadModel, GPT2Tokenizer |
|
|
|
|
|
torch.manual_seed(0) |
|
np.random.seed(0) |
|
EPSILON = 1e-10 |
|
example_sentence = "This is incredible! I love it, this is the best chicken I have ever had." |
|
max_length_seq = 100 |
|
|
|
|
|
class Discriminator(nn.Module): |
|
"""Transformer encoder followed by a Classification Head""" |
|
|
|
def __init__(self, class_size, pretrained_model="gpt2-medium", cached_mode=False, device="cpu"): |
|
super().__init__() |
|
self.tokenizer = GPT2Tokenizer.from_pretrained(pretrained_model) |
|
self.encoder = GPT2LMHeadModel.from_pretrained(pretrained_model) |
|
self.embed_size = self.encoder.transformer.config.hidden_size |
|
self.classifier_head = ClassificationHead(class_size=class_size, embed_size=self.embed_size) |
|
self.cached_mode = cached_mode |
|
self.device = device |
|
|
|
def get_classifier(self): |
|
return self.classifier_head |
|
|
|
def train_custom(self): |
|
for param in self.encoder.parameters(): |
|
param.requires_grad = False |
|
self.classifier_head.train() |
|
|
|
def avg_representation(self, x): |
|
mask = x.ne(0).unsqueeze(2).repeat(1, 1, self.embed_size).float().to(self.device).detach() |
|
hidden = self.encoder.transformer(x)["last_hidden_state"] |
|
masked_hidden = hidden * mask |
|
avg_hidden = torch.sum(masked_hidden, dim=1) / (torch.sum(mask, dim=1).detach() + EPSILON) |
|
return avg_hidden |
|
|
|
def forward(self, x): |
|
if self.cached_mode: |
|
avg_hidden = x.to(self.device) |
|
else: |
|
avg_hidden = self.avg_representation(x.to(self.device)) |
|
|
|
logits = self.classifier_head(avg_hidden) |
|
probs = nn.functional.log_softmax(logits, dim=-1) |
|
|
|
return probs |
|
|
|
|
|
class Dataset(data.Dataset): |
|
def __init__(self, X, y): |
|
"""Reads source and target sequences from txt files.""" |
|
self.X = X |
|
self.y = y |
|
|
|
def __len__(self): |
|
return len(self.X) |
|
|
|
def __getitem__(self, index): |
|
"""Returns one data pair (source and target).""" |
|
data = {} |
|
data["X"] = self.X[index] |
|
data["y"] = self.y[index] |
|
return data |
|
|
|
|
|
def collate_fn(data): |
|
def pad_sequences(sequences): |
|
lengths = [len(seq) for seq in sequences] |
|
|
|
padded_sequences = torch.zeros(len(sequences), max(lengths)).long() |
|
|
|
for i, seq in enumerate(sequences): |
|
end = lengths[i] |
|
padded_sequences[i, :end] = seq[:end] |
|
|
|
return padded_sequences, lengths |
|
|
|
item_info = {} |
|
for key in data[0].keys(): |
|
item_info[key] = [d[key] for d in data] |
|
|
|
x_batch, _ = pad_sequences(item_info["X"]) |
|
y_batch = torch.tensor(item_info["y"], dtype=torch.long) |
|
|
|
return x_batch, y_batch |
|
|
|
|
|
def cached_collate_fn(data): |
|
item_info = {} |
|
for key in data[0].keys(): |
|
item_info[key] = [d[key] for d in data] |
|
|
|
x_batch = torch.cat(item_info["X"], 0) |
|
y_batch = torch.tensor(item_info["y"], dtype=torch.long) |
|
|
|
return x_batch, y_batch |
|
|
|
|
|
def train_epoch(data_loader, discriminator, optimizer, epoch=0, log_interval=10, device="cpu"): |
|
samples_so_far = 0 |
|
discriminator.train_custom() |
|
for batch_idx, (input_t, target_t) in enumerate(data_loader): |
|
input_t, target_t = input_t.to(device), target_t.to(device) |
|
|
|
optimizer.zero_grad() |
|
|
|
output_t = discriminator(input_t) |
|
loss = nn.functional.nll_loss(output_t, target_t) |
|
loss.backward(retain_graph=True) |
|
optimizer.step() |
|
|
|
samples_so_far += len(input_t) |
|
|
|
if batch_idx % log_interval == 0: |
|
print( |
|
"Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format( |
|
epoch + 1, |
|
samples_so_far, |
|
len(data_loader.dataset), |
|
100 * samples_so_far / len(data_loader.dataset), |
|
loss.item(), |
|
) |
|
) |
|
|
|
|
|
def evaluate_performance(data_loader, discriminator, device="cpu"): |
|
discriminator.eval() |
|
test_loss = 0 |
|
correct = 0 |
|
with torch.no_grad(): |
|
for input_t, target_t in data_loader: |
|
input_t, target_t = input_t.to(device), target_t.to(device) |
|
output_t = discriminator(input_t) |
|
|
|
test_loss += nn.functional.nll_loss(output_t, target_t, reduction="sum").item() |
|
|
|
pred_t = output_t.argmax(dim=1, keepdim=True) |
|
correct += pred_t.eq(target_t.view_as(pred_t)).sum().item() |
|
|
|
test_loss /= len(data_loader.dataset) |
|
|
|
print( |
|
"Performance on test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)".format( |
|
test_loss, correct, len(data_loader.dataset), 100.0 * correct / len(data_loader.dataset) |
|
) |
|
) |
|
|
|
|
|
def predict(input_sentence, model, classes, cached=False, device="cpu"): |
|
input_t = model.tokenizer.encode(input_sentence) |
|
input_t = torch.tensor([input_t], dtype=torch.long, device=device) |
|
if cached: |
|
input_t = model.avg_representation(input_t) |
|
|
|
log_probs = model(input_t).data.cpu().numpy().flatten().tolist() |
|
print("Input sentence:", input_sentence) |
|
print( |
|
"Predictions:", |
|
", ".join("{}: {:.4f}".format(c, math.exp(log_prob)) for c, log_prob in zip(classes, log_probs)), |
|
) |
|
|
|
|
|
def get_cached_data_loader(dataset, batch_size, discriminator, shuffle=False, device="cpu"): |
|
data_loader = torch.utils.data.DataLoader(dataset=dataset, batch_size=batch_size, collate_fn=collate_fn) |
|
|
|
xs = [] |
|
ys = [] |
|
for batch_idx, (x, y) in enumerate(tqdm(data_loader, ascii=True)): |
|
with torch.no_grad(): |
|
x = x.to(device) |
|
avg_rep = discriminator.avg_representation(x).cpu().detach() |
|
avg_rep_list = torch.unbind(avg_rep.unsqueeze(1)) |
|
xs += avg_rep_list |
|
ys += y.cpu().numpy().tolist() |
|
|
|
data_loader = torch.utils.data.DataLoader( |
|
dataset=Dataset(xs, ys), batch_size=batch_size, shuffle=shuffle, collate_fn=cached_collate_fn |
|
) |
|
|
|
return data_loader |
|
|
|
|
|
def train_discriminator( |
|
dataset, |
|
dataset_fp=None, |
|
pretrained_model="gpt2-medium", |
|
epochs=10, |
|
batch_size=64, |
|
log_interval=10, |
|
save_model=False, |
|
cached=False, |
|
no_cuda=False, |
|
): |
|
device = "cuda" if torch.cuda.is_available() and not no_cuda else "cpu" |
|
|
|
print("Preprocessing {} dataset...".format(dataset)) |
|
start = time.time() |
|
|
|
if dataset == "SST": |
|
idx2class = ["positive", "negative", "very positive", "very negative", "neutral"] |
|
class2idx = {c: i for i, c in enumerate(idx2class)} |
|
|
|
discriminator = Discriminator( |
|
class_size=len(idx2class), pretrained_model=pretrained_model, cached_mode=cached, device=device |
|
).to(device) |
|
|
|
text = torchtext_data.Field() |
|
label = torchtext_data.Field(sequential=False) |
|
train_data, val_data, test_data = datasets.SST.splits( |
|
text, |
|
label, |
|
fine_grained=True, |
|
train_subtrees=True, |
|
) |
|
|
|
x = [] |
|
y = [] |
|
for i in trange(len(train_data), ascii=True): |
|
seq = TreebankWordDetokenizer().detokenize(vars(train_data[i])["text"]) |
|
seq = discriminator.tokenizer.encode(seq) |
|
seq = torch.tensor([50256] + seq, device=device, dtype=torch.long) |
|
x.append(seq) |
|
y.append(class2idx[vars(train_data[i])["label"]]) |
|
train_dataset = Dataset(x, y) |
|
|
|
test_x = [] |
|
test_y = [] |
|
for i in trange(len(test_data), ascii=True): |
|
seq = TreebankWordDetokenizer().detokenize(vars(test_data[i])["text"]) |
|
seq = discriminator.tokenizer.encode(seq) |
|
seq = torch.tensor([50256] + seq, device=device, dtype=torch.long) |
|
test_x.append(seq) |
|
test_y.append(class2idx[vars(test_data[i])["label"]]) |
|
test_dataset = Dataset(test_x, test_y) |
|
|
|
discriminator_meta = { |
|
"class_size": len(idx2class), |
|
"embed_size": discriminator.embed_size, |
|
"pretrained_model": pretrained_model, |
|
"class_vocab": class2idx, |
|
"default_class": 2, |
|
} |
|
|
|
elif dataset == "clickbait": |
|
idx2class = ["non_clickbait", "clickbait"] |
|
class2idx = {c: i for i, c in enumerate(idx2class)} |
|
|
|
discriminator = Discriminator( |
|
class_size=len(idx2class), pretrained_model=pretrained_model, cached_mode=cached, device=device |
|
).to(device) |
|
|
|
with open("datasets/clickbait/clickbait_train_prefix.txt") as f: |
|
data = [] |
|
for i, line in enumerate(f): |
|
try: |
|
data.append(eval(line)) |
|
except Exception: |
|
print("Error evaluating line {}: {}".format(i, line)) |
|
continue |
|
x = [] |
|
y = [] |
|
with open("datasets/clickbait/clickbait_train_prefix.txt") as f: |
|
for i, line in enumerate(tqdm(f, ascii=True)): |
|
try: |
|
d = eval(line) |
|
seq = discriminator.tokenizer.encode(d["text"]) |
|
|
|
if len(seq) < max_length_seq: |
|
seq = torch.tensor([50256] + seq, device=device, dtype=torch.long) |
|
else: |
|
print("Line {} is longer than maximum length {}".format(i, max_length_seq)) |
|
continue |
|
x.append(seq) |
|
y.append(d["label"]) |
|
except Exception: |
|
print("Error evaluating / tokenizing line {}, skipping it".format(i)) |
|
pass |
|
|
|
full_dataset = Dataset(x, y) |
|
train_size = int(0.9 * len(full_dataset)) |
|
test_size = len(full_dataset) - train_size |
|
train_dataset, test_dataset = torch.utils.data.random_split(full_dataset, [train_size, test_size]) |
|
|
|
discriminator_meta = { |
|
"class_size": len(idx2class), |
|
"embed_size": discriminator.embed_size, |
|
"pretrained_model": pretrained_model, |
|
"class_vocab": class2idx, |
|
"default_class": 1, |
|
} |
|
|
|
elif dataset == "toxic": |
|
idx2class = ["non_toxic", "toxic"] |
|
class2idx = {c: i for i, c in enumerate(idx2class)} |
|
|
|
discriminator = Discriminator( |
|
class_size=len(idx2class), pretrained_model=pretrained_model, cached_mode=cached, device=device |
|
).to(device) |
|
|
|
x = [] |
|
y = [] |
|
with open("datasets/toxic/toxic_train.txt") as f: |
|
for i, line in enumerate(tqdm(f, ascii=True)): |
|
try: |
|
d = eval(line) |
|
seq = discriminator.tokenizer.encode(d["text"]) |
|
|
|
if len(seq) < max_length_seq: |
|
seq = torch.tensor([50256] + seq, device=device, dtype=torch.long) |
|
else: |
|
print("Line {} is longer than maximum length {}".format(i, max_length_seq)) |
|
continue |
|
x.append(seq) |
|
y.append(int(np.sum(d["label"]) > 0)) |
|
except Exception: |
|
print("Error evaluating / tokenizing line {}, skipping it".format(i)) |
|
pass |
|
|
|
full_dataset = Dataset(x, y) |
|
train_size = int(0.9 * len(full_dataset)) |
|
test_size = len(full_dataset) - train_size |
|
train_dataset, test_dataset = torch.utils.data.random_split(full_dataset, [train_size, test_size]) |
|
|
|
discriminator_meta = { |
|
"class_size": len(idx2class), |
|
"embed_size": discriminator.embed_size, |
|
"pretrained_model": pretrained_model, |
|
"class_vocab": class2idx, |
|
"default_class": 0, |
|
} |
|
|
|
else: |
|
|
|
|
|
|
|
if dataset_fp is None: |
|
raise ValueError("When generic dataset is selected, dataset_fp needs to be specified aswell.") |
|
|
|
classes = set() |
|
with open(dataset_fp) as f: |
|
csv_reader = csv.reader(f, delimiter="\t") |
|
for row in tqdm(csv_reader, ascii=True): |
|
if row: |
|
classes.add(row[0]) |
|
|
|
idx2class = sorted(classes) |
|
class2idx = {c: i for i, c in enumerate(idx2class)} |
|
|
|
discriminator = Discriminator( |
|
class_size=len(idx2class), pretrained_model=pretrained_model, cached_mode=cached, device=device |
|
).to(device) |
|
|
|
x = [] |
|
y = [] |
|
with open(dataset_fp) as f: |
|
csv_reader = csv.reader(f, delimiter="\t") |
|
for i, row in enumerate(tqdm(csv_reader, ascii=True)): |
|
if row: |
|
label = row[0] |
|
text = row[1] |
|
|
|
try: |
|
seq = discriminator.tokenizer.encode(text) |
|
if len(seq) < max_length_seq: |
|
seq = torch.tensor([50256] + seq, device=device, dtype=torch.long) |
|
|
|
else: |
|
print("Line {} is longer than maximum length {}".format(i, max_length_seq)) |
|
continue |
|
|
|
x.append(seq) |
|
y.append(class2idx[label]) |
|
|
|
except Exception: |
|
print("Error tokenizing line {}, skipping it".format(i)) |
|
pass |
|
|
|
full_dataset = Dataset(x, y) |
|
train_size = int(0.9 * len(full_dataset)) |
|
test_size = len(full_dataset) - train_size |
|
train_dataset, test_dataset = torch.utils.data.random_split(full_dataset, [train_size, test_size]) |
|
|
|
discriminator_meta = { |
|
"class_size": len(idx2class), |
|
"embed_size": discriminator.embed_size, |
|
"pretrained_model": pretrained_model, |
|
"class_vocab": class2idx, |
|
"default_class": 0, |
|
} |
|
|
|
end = time.time() |
|
print("Preprocessed {} data points".format(len(train_dataset) + len(test_dataset))) |
|
print("Data preprocessing took: {:.3f}s".format(end - start)) |
|
|
|
if cached: |
|
print("Building representation cache...") |
|
|
|
start = time.time() |
|
|
|
train_loader = get_cached_data_loader(train_dataset, batch_size, discriminator, shuffle=True, device=device) |
|
|
|
test_loader = get_cached_data_loader(test_dataset, batch_size, discriminator, device=device) |
|
|
|
end = time.time() |
|
print("Building representation cache took: {:.3f}s".format(end - start)) |
|
|
|
else: |
|
train_loader = torch.utils.data.DataLoader( |
|
dataset=train_dataset, batch_size=batch_size, shuffle=True, collate_fn=collate_fn |
|
) |
|
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, collate_fn=collate_fn) |
|
|
|
if save_model: |
|
with open("{}_classifier_head_meta.json".format(dataset), "w") as meta_file: |
|
json.dump(discriminator_meta, meta_file) |
|
|
|
optimizer = optim.Adam(discriminator.parameters(), lr=0.0001) |
|
|
|
for epoch in range(epochs): |
|
start = time.time() |
|
print("\nEpoch", epoch + 1) |
|
|
|
train_epoch( |
|
discriminator=discriminator, |
|
data_loader=train_loader, |
|
optimizer=optimizer, |
|
epoch=epoch, |
|
log_interval=log_interval, |
|
device=device, |
|
) |
|
evaluate_performance(data_loader=test_loader, discriminator=discriminator, device=device) |
|
|
|
end = time.time() |
|
print("Epoch took: {:.3f}s".format(end - start)) |
|
|
|
print("\nExample prediction") |
|
predict(example_sentence, discriminator, idx2class, cached=cached, device=device) |
|
|
|
if save_model: |
|
|
|
|
|
|
|
|
|
torch.save( |
|
discriminator.get_classifier().state_dict(), |
|
"{}_classifier_head_epoch_{}.pt".format(dataset, epoch + 1), |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description="Train a discriminator on top of GPT-2 representations") |
|
parser.add_argument( |
|
"--dataset", |
|
type=str, |
|
default="SST", |
|
choices=("SST", "clickbait", "toxic", "generic"), |
|
help=( |
|
"dataset to train the discriminator on." |
|
"In case of generic, the dataset is expected" |
|
"to be a TSBV file with structure: class \\t text" |
|
), |
|
) |
|
parser.add_argument( |
|
"--dataset_fp", |
|
type=str, |
|
default="", |
|
help="File path of the dataset to use. Needed only in case of generic datadset", |
|
) |
|
parser.add_argument( |
|
"--pretrained_model", type=str, default="gpt2-medium", help="Pretrained model to use as encoder" |
|
) |
|
parser.add_argument("--epochs", type=int, default=10, metavar="N", help="Number of training epochs") |
|
parser.add_argument( |
|
"--batch_size", type=int, default=64, metavar="N", help="input batch size for training (default: 64)" |
|
) |
|
parser.add_argument( |
|
"--log_interval", |
|
type=int, |
|
default=10, |
|
metavar="N", |
|
help="how many batches to wait before logging training status", |
|
) |
|
parser.add_argument("--save_model", action="store_true", help="whether to save the model") |
|
parser.add_argument("--cached", action="store_true", help="whether to cache the input representations") |
|
parser.add_argument("--no_cuda", action="store_true", help="use to turn off cuda") |
|
args = parser.parse_args() |
|
|
|
train_discriminator(**(vars(args))) |
|
|