|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Fine-pruning Masked BERT on sequence classification on GLUE.""" |
|
|
|
import argparse |
|
import glob |
|
import json |
|
import logging |
|
import os |
|
import random |
|
|
|
import numpy as np |
|
import torch |
|
from emmental import MaskedBertConfig, MaskedBertForSequenceClassification |
|
from torch import nn |
|
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset |
|
from torch.utils.data.distributed import DistributedSampler |
|
from tqdm import tqdm, trange |
|
|
|
from transformers import ( |
|
WEIGHTS_NAME, |
|
AdamW, |
|
BertConfig, |
|
BertForSequenceClassification, |
|
BertTokenizer, |
|
get_linear_schedule_with_warmup, |
|
) |
|
from transformers import glue_compute_metrics as compute_metrics |
|
from transformers import glue_convert_examples_to_features as convert_examples_to_features |
|
from transformers import glue_output_modes as output_modes |
|
from transformers import glue_processors as processors |
|
|
|
|
|
try: |
|
from torch.utils.tensorboard import SummaryWriter |
|
except ImportError: |
|
from tensorboardX import SummaryWriter |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
MODEL_CLASSES = { |
|
"bert": (BertConfig, BertForSequenceClassification, BertTokenizer), |
|
"masked_bert": (MaskedBertConfig, MaskedBertForSequenceClassification, BertTokenizer), |
|
} |
|
|
|
|
|
def set_seed(args): |
|
random.seed(args.seed) |
|
np.random.seed(args.seed) |
|
torch.manual_seed(args.seed) |
|
if args.n_gpu > 0: |
|
torch.cuda.manual_seed_all(args.seed) |
|
|
|
|
|
def schedule_threshold( |
|
step: int, |
|
total_step: int, |
|
warmup_steps: int, |
|
initial_threshold: float, |
|
final_threshold: float, |
|
initial_warmup: int, |
|
final_warmup: int, |
|
final_lambda: float, |
|
): |
|
if step <= initial_warmup * warmup_steps: |
|
threshold = initial_threshold |
|
elif step > (total_step - final_warmup * warmup_steps): |
|
threshold = final_threshold |
|
else: |
|
spars_warmup_steps = initial_warmup * warmup_steps |
|
spars_schedu_steps = (final_warmup + initial_warmup) * warmup_steps |
|
mul_coeff = 1 - (step - spars_warmup_steps) / (total_step - spars_schedu_steps) |
|
threshold = final_threshold + (initial_threshold - final_threshold) * (mul_coeff**3) |
|
regu_lambda = final_lambda * threshold / final_threshold |
|
return threshold, regu_lambda |
|
|
|
|
|
def regularization(model: nn.Module, mode: str): |
|
regu, counter = 0, 0 |
|
for name, param in model.named_parameters(): |
|
if "mask_scores" in name: |
|
if mode == "l1": |
|
regu += torch.norm(torch.sigmoid(param), p=1) / param.numel() |
|
elif mode == "l0": |
|
regu += torch.sigmoid(param - 2 / 3 * np.log(0.1 / 1.1)).sum() / param.numel() |
|
else: |
|
ValueError("Don't know this mode.") |
|
counter += 1 |
|
return regu / counter |
|
|
|
|
|
def train(args, train_dataset, model, tokenizer, teacher=None): |
|
"""Train the model""" |
|
if args.local_rank in [-1, 0]: |
|
tb_writer = SummaryWriter(log_dir=args.output_dir) |
|
|
|
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) |
|
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) |
|
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) |
|
|
|
if args.max_steps > 0: |
|
t_total = args.max_steps |
|
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 |
|
else: |
|
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs |
|
|
|
|
|
no_decay = ["bias", "LayerNorm.weight"] |
|
optimizer_grouped_parameters = [ |
|
{ |
|
"params": [p for n, p in model.named_parameters() if "mask_score" in n and p.requires_grad], |
|
"lr": args.mask_scores_learning_rate, |
|
}, |
|
{ |
|
"params": [ |
|
p |
|
for n, p in model.named_parameters() |
|
if "mask_score" not in n and p.requires_grad and not any(nd in n for nd in no_decay) |
|
], |
|
"lr": args.learning_rate, |
|
"weight_decay": args.weight_decay, |
|
}, |
|
{ |
|
"params": [ |
|
p |
|
for n, p in model.named_parameters() |
|
if "mask_score" not in n and p.requires_grad and any(nd in n for nd in no_decay) |
|
], |
|
"lr": args.learning_rate, |
|
"weight_decay": 0.0, |
|
}, |
|
] |
|
|
|
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) |
|
scheduler = get_linear_schedule_with_warmup( |
|
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total |
|
) |
|
|
|
|
|
if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile( |
|
os.path.join(args.model_name_or_path, "scheduler.pt") |
|
): |
|
|
|
optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt"))) |
|
scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt"))) |
|
|
|
if args.fp16: |
|
try: |
|
from apex import amp |
|
except ImportError: |
|
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") |
|
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) |
|
|
|
|
|
if args.n_gpu > 1: |
|
model = nn.DataParallel(model) |
|
|
|
|
|
if args.local_rank != -1: |
|
model = nn.parallel.DistributedDataParallel( |
|
model, |
|
device_ids=[args.local_rank], |
|
output_device=args.local_rank, |
|
find_unused_parameters=True, |
|
) |
|
|
|
|
|
logger.info("***** Running training *****") |
|
logger.info(" Num examples = %d", len(train_dataset)) |
|
logger.info(" Num Epochs = %d", args.num_train_epochs) |
|
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) |
|
logger.info( |
|
" Total train batch size (w. parallel, distributed & accumulation) = %d", |
|
args.train_batch_size |
|
* args.gradient_accumulation_steps |
|
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1), |
|
) |
|
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) |
|
logger.info(" Total optimization steps = %d", t_total) |
|
|
|
if teacher is not None: |
|
logger.info(" Training with distillation") |
|
|
|
global_step = 0 |
|
|
|
if args.global_topk: |
|
threshold_mem = None |
|
epochs_trained = 0 |
|
steps_trained_in_current_epoch = 0 |
|
|
|
if os.path.exists(args.model_name_or_path): |
|
|
|
try: |
|
global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0]) |
|
except ValueError: |
|
global_step = 0 |
|
epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps) |
|
steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps) |
|
|
|
logger.info(" Continuing training from checkpoint, will skip to saved global_step") |
|
logger.info(" Continuing training from epoch %d", epochs_trained) |
|
logger.info(" Continuing training from global step %d", global_step) |
|
logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch) |
|
|
|
tr_loss, logging_loss = 0.0, 0.0 |
|
model.zero_grad() |
|
train_iterator = trange( |
|
epochs_trained, |
|
int(args.num_train_epochs), |
|
desc="Epoch", |
|
disable=args.local_rank not in [-1, 0], |
|
) |
|
set_seed(args) |
|
for _ in train_iterator: |
|
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) |
|
for step, batch in enumerate(epoch_iterator): |
|
|
|
if steps_trained_in_current_epoch > 0: |
|
steps_trained_in_current_epoch -= 1 |
|
continue |
|
|
|
model.train() |
|
batch = tuple(t.to(args.device) for t in batch) |
|
threshold, regu_lambda = schedule_threshold( |
|
step=global_step, |
|
total_step=t_total, |
|
warmup_steps=args.warmup_steps, |
|
final_threshold=args.final_threshold, |
|
initial_threshold=args.initial_threshold, |
|
final_warmup=args.final_warmup, |
|
initial_warmup=args.initial_warmup, |
|
final_lambda=args.final_lambda, |
|
) |
|
|
|
if args.global_topk: |
|
if threshold == 1.0: |
|
threshold = -1e2 |
|
else: |
|
if (threshold_mem is None) or (global_step % args.global_topk_frequency_compute == 0): |
|
|
|
concat = torch.cat( |
|
[param.view(-1) for name, param in model.named_parameters() if "mask_scores" in name] |
|
) |
|
n = concat.numel() |
|
kth = max(n - (int(n * threshold) + 1), 1) |
|
threshold_mem = concat.kthvalue(kth).values.item() |
|
threshold = threshold_mem |
|
else: |
|
threshold = threshold_mem |
|
inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} |
|
if args.model_type != "distilbert": |
|
inputs["token_type_ids"] = ( |
|
batch[2] if args.model_type in ["bert", "masked_bert", "xlnet", "albert"] else None |
|
) |
|
|
|
if "masked" in args.model_type: |
|
inputs["threshold"] = threshold |
|
|
|
outputs = model(**inputs) |
|
loss, logits_stu = outputs |
|
|
|
|
|
if teacher is not None: |
|
if "token_type_ids" not in inputs: |
|
inputs["token_type_ids"] = None if args.teacher_type == "xlm" else batch[2] |
|
with torch.no_grad(): |
|
(logits_tea,) = teacher( |
|
input_ids=inputs["input_ids"], |
|
token_type_ids=inputs["token_type_ids"], |
|
attention_mask=inputs["attention_mask"], |
|
) |
|
|
|
loss_logits = nn.functional.kl_div( |
|
input=nn.functional.log_softmax(logits_stu / args.temperature, dim=-1), |
|
target=nn.functional.softmax(logits_tea / args.temperature, dim=-1), |
|
reduction="batchmean", |
|
) * (args.temperature**2) |
|
|
|
loss = args.alpha_distil * loss_logits + args.alpha_ce * loss |
|
|
|
|
|
if args.regularization is not None: |
|
regu_ = regularization(model=model, mode=args.regularization) |
|
loss = loss + regu_lambda * regu_ |
|
|
|
if args.n_gpu > 1: |
|
loss = loss.mean() |
|
if args.gradient_accumulation_steps > 1: |
|
loss = loss / args.gradient_accumulation_steps |
|
|
|
if args.fp16: |
|
with amp.scale_loss(loss, optimizer) as scaled_loss: |
|
scaled_loss.backward() |
|
else: |
|
loss.backward() |
|
|
|
tr_loss += loss.item() |
|
if (step + 1) % args.gradient_accumulation_steps == 0 or ( |
|
|
|
len(epoch_iterator) <= args.gradient_accumulation_steps |
|
and (step + 1) == len(epoch_iterator) |
|
): |
|
if args.fp16: |
|
nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) |
|
else: |
|
nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) |
|
|
|
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: |
|
tb_writer.add_scalar("threshold", threshold, global_step) |
|
for name, param in model.named_parameters(): |
|
if not param.requires_grad: |
|
continue |
|
tb_writer.add_scalar("parameter_mean/" + name, param.data.mean(), global_step) |
|
tb_writer.add_scalar("parameter_std/" + name, param.data.std(), global_step) |
|
tb_writer.add_scalar("parameter_min/" + name, param.data.min(), global_step) |
|
tb_writer.add_scalar("parameter_max/" + name, param.data.max(), global_step) |
|
tb_writer.add_scalar("grad_mean/" + name, param.grad.data.mean(), global_step) |
|
tb_writer.add_scalar("grad_std/" + name, param.grad.data.std(), global_step) |
|
if args.regularization is not None and "mask_scores" in name: |
|
if args.regularization == "l1": |
|
perc = (torch.sigmoid(param) > threshold).sum().item() / param.numel() |
|
elif args.regularization == "l0": |
|
perc = (torch.sigmoid(param - 2 / 3 * np.log(0.1 / 1.1))).sum().item() / param.numel() |
|
tb_writer.add_scalar("retained_weights_perc/" + name, perc, global_step) |
|
|
|
optimizer.step() |
|
scheduler.step() |
|
model.zero_grad() |
|
global_step += 1 |
|
|
|
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: |
|
logs = {} |
|
if ( |
|
args.local_rank == -1 and args.evaluate_during_training |
|
): |
|
results = evaluate(args, model, tokenizer) |
|
for key, value in results.items(): |
|
eval_key = "eval_{}".format(key) |
|
logs[eval_key] = value |
|
|
|
loss_scalar = (tr_loss - logging_loss) / args.logging_steps |
|
learning_rate_scalar = scheduler.get_lr() |
|
logs["learning_rate"] = learning_rate_scalar[0] |
|
if len(learning_rate_scalar) > 1: |
|
for idx, lr in enumerate(learning_rate_scalar[1:]): |
|
logs[f"learning_rate/{idx+1}"] = lr |
|
logs["loss"] = loss_scalar |
|
if teacher is not None: |
|
logs["loss/distil"] = loss_logits.item() |
|
if args.regularization is not None: |
|
logs["loss/regularization"] = regu_.item() |
|
if (teacher is not None) or (args.regularization is not None): |
|
if (teacher is not None) and (args.regularization is not None): |
|
logs["loss/instant_ce"] = ( |
|
loss.item() |
|
- regu_lambda * logs["loss/regularization"] |
|
- args.alpha_distil * logs["loss/distil"] |
|
) / args.alpha_ce |
|
elif teacher is not None: |
|
logs["loss/instant_ce"] = ( |
|
loss.item() - args.alpha_distil * logs["loss/distil"] |
|
) / args.alpha_ce |
|
else: |
|
logs["loss/instant_ce"] = loss.item() - regu_lambda * logs["loss/regularization"] |
|
logging_loss = tr_loss |
|
|
|
for key, value in logs.items(): |
|
tb_writer.add_scalar(key, value, global_step) |
|
print(json.dumps({**logs, **{"step": global_step}})) |
|
|
|
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: |
|
|
|
output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step)) |
|
if not os.path.exists(output_dir): |
|
os.makedirs(output_dir) |
|
model_to_save = ( |
|
model.module if hasattr(model, "module") else model |
|
) |
|
model_to_save.save_pretrained(output_dir) |
|
tokenizer.save_pretrained(output_dir) |
|
|
|
torch.save(args, os.path.join(output_dir, "training_args.bin")) |
|
logger.info("Saving model checkpoint to %s", output_dir) |
|
|
|
torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) |
|
torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) |
|
logger.info("Saving optimizer and scheduler states to %s", output_dir) |
|
|
|
if args.max_steps > 0 and global_step > args.max_steps: |
|
epoch_iterator.close() |
|
break |
|
if args.max_steps > 0 and global_step > args.max_steps: |
|
train_iterator.close() |
|
break |
|
|
|
if args.local_rank in [-1, 0]: |
|
tb_writer.close() |
|
|
|
return global_step, tr_loss / global_step |
|
|
|
|
|
def evaluate(args, model, tokenizer, prefix=""): |
|
|
|
eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,) |
|
eval_outputs_dirs = (args.output_dir, args.output_dir + "/MM") if args.task_name == "mnli" else (args.output_dir,) |
|
|
|
results = {} |
|
for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs): |
|
eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True) |
|
|
|
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]: |
|
os.makedirs(eval_output_dir) |
|
|
|
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) |
|
|
|
eval_sampler = SequentialSampler(eval_dataset) |
|
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) |
|
|
|
|
|
if args.n_gpu > 1 and not isinstance(model, nn.DataParallel): |
|
model = nn.DataParallel(model) |
|
|
|
|
|
logger.info("***** Running evaluation {} *****".format(prefix)) |
|
logger.info(" Num examples = %d", len(eval_dataset)) |
|
logger.info(" Batch size = %d", args.eval_batch_size) |
|
eval_loss = 0.0 |
|
nb_eval_steps = 0 |
|
preds = None |
|
out_label_ids = None |
|
|
|
|
|
if args.global_topk: |
|
threshold_mem = None |
|
|
|
for batch in tqdm(eval_dataloader, desc="Evaluating"): |
|
model.eval() |
|
batch = tuple(t.to(args.device) for t in batch) |
|
|
|
with torch.no_grad(): |
|
inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} |
|
if args.model_type != "distilbert": |
|
inputs["token_type_ids"] = ( |
|
batch[2] if args.model_type in ["bert", "masked_bert", "xlnet", "albert"] else None |
|
) |
|
if "masked" in args.model_type: |
|
inputs["threshold"] = args.final_threshold |
|
if args.global_topk: |
|
if threshold_mem is None: |
|
concat = torch.cat( |
|
[param.view(-1) for name, param in model.named_parameters() if "mask_scores" in name] |
|
) |
|
n = concat.numel() |
|
kth = max(n - (int(n * args.final_threshold) + 1), 1) |
|
threshold_mem = concat.kthvalue(kth).values.item() |
|
inputs["threshold"] = threshold_mem |
|
outputs = model(**inputs) |
|
tmp_eval_loss, logits = outputs[:2] |
|
|
|
eval_loss += tmp_eval_loss.mean().item() |
|
nb_eval_steps += 1 |
|
if preds is None: |
|
preds = logits.detach().cpu().numpy() |
|
out_label_ids = inputs["labels"].detach().cpu().numpy() |
|
else: |
|
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) |
|
out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0) |
|
|
|
eval_loss = eval_loss / nb_eval_steps |
|
if args.output_mode == "classification": |
|
from scipy.special import softmax |
|
|
|
probs = softmax(preds, axis=-1) |
|
entropy = np.exp((-probs * np.log(probs)).sum(axis=-1).mean()) |
|
preds = np.argmax(preds, axis=1) |
|
elif args.output_mode == "regression": |
|
preds = np.squeeze(preds) |
|
result = compute_metrics(eval_task, preds, out_label_ids) |
|
results.update(result) |
|
if entropy is not None: |
|
result["eval_avg_entropy"] = entropy |
|
|
|
output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt") |
|
with open(output_eval_file, "w") as writer: |
|
logger.info("***** Eval results {} *****".format(prefix)) |
|
for key in sorted(result.keys()): |
|
logger.info(" %s = %s", key, str(result[key])) |
|
writer.write("%s = %s\n" % (key, str(result[key]))) |
|
|
|
return results |
|
|
|
|
|
def load_and_cache_examples(args, task, tokenizer, evaluate=False): |
|
if args.local_rank not in [-1, 0] and not evaluate: |
|
torch.distributed.barrier() |
|
|
|
processor = processors[task]() |
|
output_mode = output_modes[task] |
|
|
|
cached_features_file = os.path.join( |
|
args.data_dir, |
|
"cached_{}_{}_{}_{}".format( |
|
"dev" if evaluate else "train", |
|
list(filter(None, args.model_name_or_path.split("/"))).pop(), |
|
str(args.max_seq_length), |
|
str(task), |
|
), |
|
) |
|
if os.path.exists(cached_features_file) and not args.overwrite_cache: |
|
logger.info("Loading features from cached file %s", cached_features_file) |
|
features = torch.load(cached_features_file) |
|
else: |
|
logger.info("Creating features from dataset file at %s", args.data_dir) |
|
label_list = processor.get_labels() |
|
if task in ["mnli", "mnli-mm"] and args.model_type in ["roberta", "xlmroberta"]: |
|
|
|
label_list[1], label_list[2] = label_list[2], label_list[1] |
|
examples = ( |
|
processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir) |
|
) |
|
features = convert_examples_to_features( |
|
examples, |
|
tokenizer, |
|
max_length=args.max_seq_length, |
|
label_list=label_list, |
|
output_mode=output_mode, |
|
) |
|
if args.local_rank in [-1, 0]: |
|
logger.info("Saving features into cached file %s", cached_features_file) |
|
torch.save(features, cached_features_file) |
|
|
|
if args.local_rank == 0 and not evaluate: |
|
torch.distributed.barrier() |
|
|
|
|
|
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) |
|
all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long) |
|
all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long) |
|
if output_mode == "classification": |
|
all_labels = torch.tensor([f.label for f in features], dtype=torch.long) |
|
elif output_mode == "regression": |
|
all_labels = torch.tensor([f.label for f in features], dtype=torch.float) |
|
|
|
dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels) |
|
return dataset |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser() |
|
|
|
|
|
parser.add_argument( |
|
"--data_dir", |
|
default=None, |
|
type=str, |
|
required=True, |
|
help="The input data dir. Should contain the .tsv files (or other data files) for the task.", |
|
) |
|
parser.add_argument( |
|
"--model_type", |
|
default=None, |
|
type=str, |
|
required=True, |
|
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()), |
|
) |
|
parser.add_argument( |
|
"--model_name_or_path", |
|
default=None, |
|
type=str, |
|
required=True, |
|
help="Path to pretrained model or model identifier from huggingface.co/models", |
|
) |
|
parser.add_argument( |
|
"--task_name", |
|
default=None, |
|
type=str, |
|
required=True, |
|
help="The name of the task to train selected in the list: " + ", ".join(processors.keys()), |
|
) |
|
parser.add_argument( |
|
"--output_dir", |
|
default=None, |
|
type=str, |
|
required=True, |
|
help="The output directory where the model predictions and checkpoints will be written.", |
|
) |
|
|
|
parser.add_argument( |
|
"--config_name", |
|
default="", |
|
type=str, |
|
help="Pretrained config name or path if not the same as model_name", |
|
) |
|
parser.add_argument( |
|
"--tokenizer_name", |
|
default="", |
|
type=str, |
|
help="Pretrained tokenizer name or path if not the same as model_name", |
|
) |
|
parser.add_argument( |
|
"--cache_dir", |
|
default="", |
|
type=str, |
|
help="Where do you want to store the pre-trained models downloaded from huggingface.co", |
|
) |
|
parser.add_argument( |
|
"--max_seq_length", |
|
default=128, |
|
type=int, |
|
help=( |
|
"The maximum total input sequence length after tokenization. Sequences longer " |
|
"than this will be truncated, sequences shorter will be padded." |
|
), |
|
) |
|
parser.add_argument("--do_train", action="store_true", help="Whether to run training.") |
|
parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.") |
|
parser.add_argument( |
|
"--evaluate_during_training", |
|
action="store_true", |
|
help="Run evaluation during training at each logging step.", |
|
) |
|
parser.add_argument( |
|
"--do_lower_case", |
|
action="store_true", |
|
help="Set this flag if you are using an uncased model.", |
|
) |
|
|
|
parser.add_argument( |
|
"--per_gpu_train_batch_size", |
|
default=8, |
|
type=int, |
|
help="Batch size per GPU/CPU for training.", |
|
) |
|
parser.add_argument( |
|
"--per_gpu_eval_batch_size", |
|
default=8, |
|
type=int, |
|
help="Batch size per GPU/CPU for evaluation.", |
|
) |
|
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") |
|
|
|
|
|
parser.add_argument( |
|
"--mask_scores_learning_rate", |
|
default=1e-2, |
|
type=float, |
|
help="The Adam initial learning rate of the mask scores.", |
|
) |
|
parser.add_argument( |
|
"--initial_threshold", default=1.0, type=float, help="Initial value of the threshold (for scheduling)." |
|
) |
|
parser.add_argument( |
|
"--final_threshold", default=0.7, type=float, help="Final value of the threshold (for scheduling)." |
|
) |
|
parser.add_argument( |
|
"--initial_warmup", |
|
default=1, |
|
type=int, |
|
help=( |
|
"Run `initial_warmup` * `warmup_steps` steps of threshold warmup during which threshold stays" |
|
"at its `initial_threshold` value (sparsity schedule)." |
|
), |
|
) |
|
parser.add_argument( |
|
"--final_warmup", |
|
default=2, |
|
type=int, |
|
help=( |
|
"Run `final_warmup` * `warmup_steps` steps of threshold cool-down during which threshold stays" |
|
"at its final_threshold value (sparsity schedule)." |
|
), |
|
) |
|
|
|
parser.add_argument( |
|
"--pruning_method", |
|
default="topK", |
|
type=str, |
|
help=( |
|
"Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning," |
|
" sigmoied_threshold = Soft movement pruning)." |
|
), |
|
) |
|
parser.add_argument( |
|
"--mask_init", |
|
default="constant", |
|
type=str, |
|
help="Initialization method for the mask scores. Choices: constant, uniform, kaiming.", |
|
) |
|
parser.add_argument( |
|
"--mask_scale", default=0.0, type=float, help="Initialization parameter for the chosen initialization method." |
|
) |
|
|
|
parser.add_argument("--regularization", default=None, help="Add L0 or L1 regularization to the mask scores.") |
|
parser.add_argument( |
|
"--final_lambda", |
|
default=0.0, |
|
type=float, |
|
help="Regularization intensity (used in conjunction with `regularization`.", |
|
) |
|
|
|
parser.add_argument("--global_topk", action="store_true", help="Global TopK on the Scores.") |
|
parser.add_argument( |
|
"--global_topk_frequency_compute", |
|
default=25, |
|
type=int, |
|
help="Frequency at which we compute the TopK global threshold.", |
|
) |
|
|
|
|
|
parser.add_argument( |
|
"--teacher_type", |
|
default=None, |
|
type=str, |
|
help=( |
|
"Teacher type. Teacher tokenizer and student (model) tokenizer must output the same tokenization. Only for" |
|
" distillation." |
|
), |
|
) |
|
parser.add_argument( |
|
"--teacher_name_or_path", |
|
default=None, |
|
type=str, |
|
help="Path to the already fine-tuned teacher model. Only for distillation.", |
|
) |
|
parser.add_argument( |
|
"--alpha_ce", default=0.5, type=float, help="Cross entropy loss linear weight. Only for distillation." |
|
) |
|
parser.add_argument( |
|
"--alpha_distil", default=0.5, type=float, help="Distillation loss linear weight. Only for distillation." |
|
) |
|
parser.add_argument( |
|
"--temperature", default=2.0, type=float, help="Distillation temperature. Only for distillation." |
|
) |
|
|
|
parser.add_argument( |
|
"--gradient_accumulation_steps", |
|
type=int, |
|
default=1, |
|
help="Number of updates steps to accumulate before performing a backward/update pass.", |
|
) |
|
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") |
|
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") |
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") |
|
parser.add_argument( |
|
"--num_train_epochs", |
|
default=3.0, |
|
type=float, |
|
help="Total number of training epochs to perform.", |
|
) |
|
parser.add_argument( |
|
"--max_steps", |
|
default=-1, |
|
type=int, |
|
help="If > 0: set total number of training steps to perform. Override num_train_epochs.", |
|
) |
|
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") |
|
|
|
parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.") |
|
parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.") |
|
parser.add_argument( |
|
"--eval_all_checkpoints", |
|
action="store_true", |
|
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", |
|
) |
|
parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available") |
|
parser.add_argument( |
|
"--overwrite_output_dir", |
|
action="store_true", |
|
help="Overwrite the content of the output directory", |
|
) |
|
parser.add_argument( |
|
"--overwrite_cache", |
|
action="store_true", |
|
help="Overwrite the cached training and evaluation sets", |
|
) |
|
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") |
|
|
|
parser.add_argument( |
|
"--fp16", |
|
action="store_true", |
|
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", |
|
) |
|
parser.add_argument( |
|
"--fp16_opt_level", |
|
type=str, |
|
default="O1", |
|
help=( |
|
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." |
|
"See details at https://nvidia.github.io/apex/amp.html" |
|
), |
|
) |
|
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") |
|
|
|
args = parser.parse_args() |
|
|
|
|
|
if args.regularization == "null": |
|
args.regularization = None |
|
|
|
if ( |
|
os.path.exists(args.output_dir) |
|
and os.listdir(args.output_dir) |
|
and args.do_train |
|
and not args.overwrite_output_dir |
|
): |
|
raise ValueError( |
|
f"Output directory ({args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to" |
|
" overcome." |
|
) |
|
|
|
|
|
if args.local_rank == -1 or args.no_cuda: |
|
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") |
|
args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count() |
|
else: |
|
torch.cuda.set_device(args.local_rank) |
|
device = torch.device("cuda", args.local_rank) |
|
torch.distributed.init_process_group(backend="nccl") |
|
args.n_gpu = 1 |
|
args.device = device |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, |
|
) |
|
logger.warning( |
|
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", |
|
args.local_rank, |
|
device, |
|
args.n_gpu, |
|
bool(args.local_rank != -1), |
|
args.fp16, |
|
) |
|
|
|
|
|
set_seed(args) |
|
|
|
|
|
args.task_name = args.task_name.lower() |
|
if args.task_name not in processors: |
|
raise ValueError("Task not found: %s" % (args.task_name)) |
|
processor = processors[args.task_name]() |
|
args.output_mode = output_modes[args.task_name] |
|
label_list = processor.get_labels() |
|
num_labels = len(label_list) |
|
|
|
|
|
if args.local_rank not in [-1, 0]: |
|
torch.distributed.barrier() |
|
|
|
args.model_type = args.model_type.lower() |
|
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] |
|
config = config_class.from_pretrained( |
|
args.config_name if args.config_name else args.model_name_or_path, |
|
num_labels=num_labels, |
|
finetuning_task=args.task_name, |
|
cache_dir=args.cache_dir if args.cache_dir else None, |
|
pruning_method=args.pruning_method, |
|
mask_init=args.mask_init, |
|
mask_scale=args.mask_scale, |
|
) |
|
tokenizer = tokenizer_class.from_pretrained( |
|
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, |
|
cache_dir=args.cache_dir if args.cache_dir else None, |
|
do_lower_case=args.do_lower_case, |
|
) |
|
model = model_class.from_pretrained( |
|
args.model_name_or_path, |
|
from_tf=bool(".ckpt" in args.model_name_or_path), |
|
config=config, |
|
cache_dir=args.cache_dir if args.cache_dir else None, |
|
) |
|
|
|
if args.teacher_type is not None: |
|
assert args.teacher_name_or_path is not None |
|
assert args.alpha_distil > 0.0 |
|
assert args.alpha_distil + args.alpha_ce > 0.0 |
|
teacher_config_class, teacher_model_class, _ = MODEL_CLASSES[args.teacher_type] |
|
teacher_config = teacher_config_class.from_pretrained(args.teacher_name_or_path) |
|
teacher = teacher_model_class.from_pretrained( |
|
args.teacher_name_or_path, |
|
from_tf=False, |
|
config=teacher_config, |
|
cache_dir=args.cache_dir if args.cache_dir else None, |
|
) |
|
teacher.to(args.device) |
|
else: |
|
teacher = None |
|
|
|
if args.local_rank == 0: |
|
torch.distributed.barrier() |
|
|
|
model.to(args.device) |
|
|
|
logger.info("Training/evaluation parameters %s", args) |
|
|
|
|
|
if args.do_train: |
|
train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False) |
|
global_step, tr_loss = train(args, train_dataset, model, tokenizer, teacher=teacher) |
|
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) |
|
|
|
|
|
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): |
|
logger.info("Saving model checkpoint to %s", args.output_dir) |
|
|
|
|
|
model_to_save = ( |
|
model.module if hasattr(model, "module") else model |
|
) |
|
model_to_save.save_pretrained(args.output_dir) |
|
tokenizer.save_pretrained(args.output_dir) |
|
|
|
|
|
torch.save(args, os.path.join(args.output_dir, "training_args.bin")) |
|
|
|
|
|
model = model_class.from_pretrained(args.output_dir) |
|
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case) |
|
model.to(args.device) |
|
|
|
|
|
results = {} |
|
if args.do_eval and args.local_rank in [-1, 0]: |
|
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case) |
|
checkpoints = [args.output_dir] |
|
if args.eval_all_checkpoints: |
|
checkpoints = [ |
|
os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True)) |
|
] |
|
|
|
logger.info("Evaluate the following checkpoints: %s", checkpoints) |
|
for checkpoint in checkpoints: |
|
global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else "" |
|
prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else "" |
|
|
|
model = model_class.from_pretrained(checkpoint) |
|
model.to(args.device) |
|
result = evaluate(args, model, tokenizer, prefix=prefix) |
|
result = {k + "_{}".format(global_step): v for k, v in result.items()} |
|
results.update(result) |
|
|
|
return results |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|