|
import functools |
|
import math |
|
import os |
|
from random import choice, randint |
|
from time import time |
|
|
|
import datasets |
|
import faiss |
|
import numpy as np |
|
import pandas as pd |
|
import torch |
|
import torch.utils.checkpoint as checkpoint |
|
from elasticsearch import Elasticsearch |
|
from elasticsearch.helpers import bulk, streaming_bulk |
|
from torch import nn |
|
from torch.utils.data import DataLoader, Dataset, RandomSampler, SequentialSampler |
|
from tqdm import tqdm |
|
|
|
from transformers import AdamW, AutoModel, AutoModelForSeq2SeqLM, AutoTokenizer, get_linear_schedule_with_warmup |
|
|
|
|
|
pd.set_option("display.max_colwidth", None) |
|
|
|
|
|
|
|
|
|
|
|
def make_es_index_snippets(es_client, passages_dset, index_name="english_wiki_kilt_snippets_100w"): |
|
index_config = { |
|
"settings": { |
|
"number_of_shards": 1, |
|
"analysis": {"analyzer": {"stop_standard": {"type": "standard", " stopwords": "_english_"}}}, |
|
}, |
|
"mappings": { |
|
"properties": { |
|
"article_title": {"type": "text", "analyzer": "standard", "similarity": "BM25"}, |
|
"section_title": {"type": "text", "analyzer": "standard", "similarity": "BM25"}, |
|
"passage_text": {"type": "text", "analyzer": "standard", "similarity": "BM25"}, |
|
} |
|
}, |
|
} |
|
es_client.indices.create(index=index_name, body=index_config) |
|
number_of_docs = passages_dset.num_rows |
|
progress = tqdm(unit="docs", total=number_of_docs) |
|
successes = 0 |
|
|
|
def passage_generator(): |
|
for passage in passages_dset: |
|
yield passage |
|
|
|
|
|
for ok, action in streaming_bulk( |
|
client=es_client, |
|
index=index_name, |
|
actions=passage_generator(), |
|
): |
|
progress.update(1) |
|
successes += ok |
|
print("Indexed %d documents" % (successes,)) |
|
|
|
|
|
def query_es_index(question, es_client, index_name="english_wiki_kilt_snippets_100w", n_results=10, min_length=20): |
|
q = question.lower() |
|
banned = ["how", "why", "what", "where", "which", "do", "does", "is", "?", "eli5", "eli5:"] |
|
q = " ".join([w for w in q.split() if w not in banned]) |
|
response = es_client.search( |
|
index=index_name, |
|
body={ |
|
"query": { |
|
"multi_match": { |
|
"query": q, |
|
"fields": ["article_title", "section_title", "passage_text^2"], |
|
"type": "cross_fields", |
|
} |
|
}, |
|
"size": 2 * n_results, |
|
}, |
|
) |
|
hits = response["hits"]["hits"] |
|
support_doc = "<P> " + " <P> ".join([hit["_source"]["passage_text"] for hit in hits]) |
|
res_list = [{k: hit["_source"][k] for k in hit["_source"] if k != "passage_text"} for hit in hits] |
|
for r, hit in zip(res_list, hits): |
|
r["passage_id"] = hit["_id"] |
|
r["score"] = hit["_score"] |
|
r["passage_text"] = hit["_source"]["passage_text"] |
|
res_list = [res for res in res_list if len(res["passage_text"].split()) > min_length][:n_results] |
|
return support_doc, res_list |
|
|
|
|
|
|
|
|
|
|
|
class ELI5DatasetQARetriver(Dataset): |
|
def __init__(self, examples_array, extra_answer_threshold=3, min_answer_length=64, training=True, n_samples=None): |
|
self.data = examples_array |
|
self.answer_thres = extra_answer_threshold |
|
self.min_length = min_answer_length |
|
self.training = training |
|
self.n_samples = self.data.num_rows if n_samples is None else n_samples |
|
|
|
def __len__(self): |
|
return self.n_samples |
|
|
|
def make_example(self, idx): |
|
example = self.data[idx] |
|
question = example["title"] |
|
if self.training: |
|
answers = [a for i, (a, sc) in enumerate(zip(example["answers"]["text"], example["answers"]["score"]))] |
|
answer_tab = choice(answers).split(" ") |
|
start_idx = randint(0, max(0, len(answer_tab) - self.min_length)) |
|
answer_span = " ".join(answer_tab[start_idx:]) |
|
else: |
|
answer_span = example["answers"]["text"][0] |
|
return (question, answer_span) |
|
|
|
def __getitem__(self, idx): |
|
return self.make_example(idx % self.data.num_rows) |
|
|
|
|
|
class RetrievalQAEmbedder(nn.Module): |
|
def __init__(self, sent_encoder, dim): |
|
super(RetrievalQAEmbedder, self).__init__() |
|
self.sent_encoder = sent_encoder |
|
self.output_dim = 128 |
|
self.project_q = nn.Linear(dim, self.output_dim, bias=False) |
|
self.project_a = nn.Linear(dim, self.output_dim, bias=False) |
|
self.ce_loss = nn.CrossEntropyLoss(reduction="mean") |
|
|
|
def embed_sentences_checkpointed(self, input_ids, attention_mask, checkpoint_batch_size=-1): |
|
|
|
if checkpoint_batch_size < 0 or input_ids.shape[0] < checkpoint_batch_size: |
|
return self.sent_encoder(input_ids, attention_mask=attention_mask)[1] |
|
else: |
|
|
|
device = input_ids.device |
|
input_shape = input_ids.size() |
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) |
|
head_mask = [None] * self.sent_encoder.config.num_hidden_layers |
|
extended_attention_mask: torch.Tensor = self.sent_encoder.get_extended_attention_mask( |
|
attention_mask, input_shape |
|
) |
|
|
|
|
|
def partial_encode(*inputs): |
|
encoder_outputs = self.sent_encoder.encoder( |
|
inputs[0], |
|
attention_mask=inputs[1], |
|
head_mask=head_mask, |
|
) |
|
sequence_output = encoder_outputs[0] |
|
pooled_output = self.sent_encoder.pooler(sequence_output) |
|
return pooled_output |
|
|
|
|
|
embedding_output = self.sent_encoder.embeddings( |
|
input_ids=input_ids, position_ids=None, token_type_ids=token_type_ids, inputs_embeds=None |
|
) |
|
|
|
pooled_output_list = [] |
|
for b in range(math.ceil(input_ids.shape[0] / checkpoint_batch_size)): |
|
b_embedding_output = embedding_output[b * checkpoint_batch_size : (b + 1) * checkpoint_batch_size] |
|
b_attention_mask = extended_attention_mask[b * checkpoint_batch_size : (b + 1) * checkpoint_batch_size] |
|
pooled_output = checkpoint.checkpoint(partial_encode, b_embedding_output, b_attention_mask) |
|
pooled_output_list.append(pooled_output) |
|
return torch.cat(pooled_output_list, dim=0) |
|
|
|
def embed_questions(self, q_ids, q_mask, checkpoint_batch_size=-1): |
|
q_reps = self.embed_sentences_checkpointed(q_ids, q_mask, checkpoint_batch_size) |
|
return self.project_q(q_reps) |
|
|
|
def embed_answers(self, a_ids, a_mask, checkpoint_batch_size=-1): |
|
a_reps = self.embed_sentences_checkpointed(a_ids, a_mask, checkpoint_batch_size) |
|
return self.project_a(a_reps) |
|
|
|
def forward(self, q_ids, q_mask, a_ids, a_mask, checkpoint_batch_size=-1): |
|
device = q_ids.device |
|
q_reps = self.embed_questions(q_ids, q_mask, checkpoint_batch_size) |
|
a_reps = self.embed_answers(a_ids, a_mask, checkpoint_batch_size) |
|
compare_scores = torch.mm(q_reps, a_reps.t()) |
|
loss_qa = self.ce_loss(compare_scores, torch.arange(compare_scores.shape[1]).to(device)) |
|
loss_aq = self.ce_loss(compare_scores.t(), torch.arange(compare_scores.shape[0]).to(device)) |
|
loss = (loss_qa + loss_aq) / 2 |
|
return loss |
|
|
|
|
|
def make_qa_retriever_model(model_name="google/bert_uncased_L-8_H-512_A-8", from_file=None, device="cuda:0"): |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
bert_model = AutoModel.from_pretrained(model_name).to(device) |
|
|
|
d_ids = torch.LongTensor( |
|
[[bert_model.config.bos_token_id if bert_model.config.bos_token_id is not None else 1]] |
|
).to(device) |
|
d_mask = torch.LongTensor([[1]]).to(device) |
|
sent_dim = bert_model(d_ids, attention_mask=d_mask)[1].shape[-1] |
|
qa_embedder = RetrievalQAEmbedder(bert_model, sent_dim).to(device) |
|
if from_file is not None: |
|
param_dict = torch.load(from_file) |
|
qa_embedder.load_state_dict(param_dict["model"]) |
|
return tokenizer, qa_embedder |
|
|
|
|
|
def make_qa_retriever_batch(qa_list, tokenizer, max_len=64, device="cuda:0"): |
|
q_ls = [q for q, a in qa_list] |
|
a_ls = [a for q, a in qa_list] |
|
q_toks = tokenizer(q_ls, max_length=max_len, padding="max_length", truncation=True) |
|
q_ids, q_mask = ( |
|
torch.LongTensor(q_toks["input_ids"]).to(device), |
|
torch.LongTensor(q_toks["attention_mask"]).to(device), |
|
) |
|
a_toks = tokenizer(a_ls, max_length=max_len, padding="max_length", truncation=True) |
|
a_ids, a_mask = ( |
|
torch.LongTensor(a_toks["input_ids"]).to(device), |
|
torch.LongTensor(a_toks["attention_mask"]).to(device), |
|
) |
|
return (q_ids, q_mask, a_ids, a_mask) |
|
|
|
|
|
def train_qa_retriever_epoch(model, dataset, tokenizer, optimizer, scheduler, args, e=0): |
|
model.train() |
|
|
|
train_sampler = RandomSampler(dataset) |
|
model_collate_fn = functools.partial( |
|
make_qa_retriever_batch, tokenizer=tokenizer, max_len=args.max_length, device="cuda:0" |
|
) |
|
data_loader = DataLoader(dataset, batch_size=args.batch_size, sampler=train_sampler, collate_fn=model_collate_fn) |
|
epoch_iterator = tqdm(data_loader, desc="Iteration", disable=True) |
|
|
|
loc_steps = 0 |
|
loc_loss = 0.0 |
|
st_time = time() |
|
for step, batch in enumerate(epoch_iterator): |
|
q_ids, q_mask, a_ids, a_mask = batch |
|
pre_loss = model(q_ids, q_mask, a_ids, a_mask, checkpoint_batch_size=args.checkpoint_batch_size) |
|
loss = pre_loss.sum() |
|
|
|
loss.backward() |
|
optimizer.step() |
|
scheduler.step() |
|
model.zero_grad() |
|
|
|
loc_loss += loss.item() |
|
loc_steps += 1 |
|
if step % args.print_freq == 0 or step == 1: |
|
print( |
|
"{:2d} {:5d} of {:5d} \t L: {:.3f} \t -- {:.3f}".format( |
|
e, |
|
step, |
|
len(dataset) // args.batch_size, |
|
loc_loss / loc_steps, |
|
time() - st_time, |
|
) |
|
) |
|
loc_loss = 0 |
|
loc_steps = 0 |
|
|
|
|
|
def train_qa_retriever_joint_epoch(model, dataset_list, tokenizer, optimizer, scheduler, args, e=0): |
|
model.train() |
|
model_collate_fn = functools.partial( |
|
make_qa_retriever_batch, tokenizer=tokenizer, max_len=args.max_length, device="cuda:0" |
|
) |
|
|
|
train_samplers = [RandomSampler(dataset) for dataset in dataset_list] |
|
data_loaders = [ |
|
DataLoader(dataset, batch_size=args.batch_size, sampler=train_sampler, collate_fn=model_collate_fn) |
|
for dataset, train_sampler in zip(dataset_list, train_samplers) |
|
] |
|
iterators = [iter(dloader) for dloader in data_loaders] |
|
joint_iter = zip(*iterators) |
|
|
|
loc_steps = 0 |
|
loc_loss = 0.0 |
|
st_time = time() |
|
for step, (batches,) in enumerate(zip(joint_iter)): |
|
for batch in batches: |
|
q_ids, q_mask, a_ids, a_mask = batch |
|
loss = model(q_ids, q_mask, a_ids, a_mask, checkpoint_batch_size=args.checkpoint_batch_size) |
|
|
|
loss.backward() |
|
optimizer.step() |
|
scheduler.step() |
|
model.zero_grad() |
|
|
|
loc_loss += loss.item() |
|
loc_steps += 1 |
|
if step % args.print_freq == 0: |
|
print( |
|
"{:2d} {:5d} of {:5d} \t L: {:.3f} \t -- {:.3f}".format( |
|
e, |
|
step, |
|
len(dataset_list[0]) // args.batch_size, |
|
loc_loss / loc_steps, |
|
time() - st_time, |
|
) |
|
) |
|
loc_loss = 0 |
|
loc_steps = 0 |
|
|
|
|
|
def evaluate_qa_retriever(model, dataset, tokenizer, args): |
|
model.eval() |
|
|
|
eval_sampler = SequentialSampler(dataset) |
|
model_collate_fn = functools.partial( |
|
make_qa_retriever_batch, tokenizer=tokenizer, max_len=args.max_length, device="cuda:0" |
|
) |
|
data_loader = DataLoader(dataset, batch_size=args.batch_size, sampler=eval_sampler, collate_fn=model_collate_fn) |
|
epoch_iterator = tqdm(data_loader, desc="Iteration", disable=True) |
|
tot_loss = 0.0 |
|
with torch.no_grad(): |
|
for step, batch in enumerate(epoch_iterator): |
|
q_ids, q_mask, a_ids, a_mask = batch |
|
loss = model(q_ids, q_mask, a_ids, a_mask) |
|
tot_loss += loss.item() |
|
return tot_loss / (step + 1) |
|
|
|
|
|
def train_qa_retriever(qar_model, qar_tokenizer, qar_train_dset, qar_valid_dset, qar_args): |
|
qar_optimizer = AdamW(qar_model.parameters(), lr=qar_args.learning_rate, eps=1e-8) |
|
qar_scheduler = get_linear_schedule_with_warmup( |
|
qar_optimizer, |
|
num_warmup_steps=100, |
|
num_training_steps=(qar_args.num_epochs + 1) * math.ceil(len(qar_train_dset) / qar_args.batch_size), |
|
) |
|
for e in range(qar_args.num_epochs): |
|
train_qa_retriever_epoch(qar_model, qar_train_dset, qar_tokenizer, qar_optimizer, qar_scheduler, qar_args, e) |
|
m_save_dict = { |
|
"model": qar_model.state_dict(), |
|
"optimizer": qar_optimizer.state_dict(), |
|
"scheduler": qar_scheduler.state_dict(), |
|
} |
|
print("Saving model {}".format(qar_args.model_save_name)) |
|
torch.save(m_save_dict, "{}_{}.pth".format(qar_args.model_save_name, e)) |
|
eval_loss = evaluate_qa_retriever(qar_model, qar_valid_dset, qar_tokenizer, qar_args) |
|
print("Evaluation loss epoch {:4d}: {:.3f}".format(e, eval_loss)) |
|
|
|
|
|
|
|
|
|
|
|
class ELI5DatasetS2S(Dataset): |
|
def __init__( |
|
self, examples_array, make_doc_fun=None, extra_answer_threshold=3, document_cache=None, training=True |
|
): |
|
self.training = training |
|
self.data = examples_array |
|
self.make_doc_function = make_doc_fun |
|
self.document_cache = {} if document_cache is None else document_cache |
|
assert not (make_doc_fun is None and document_cache is None) |
|
|
|
if self.training: |
|
self.qa_id_list = [ |
|
(i, j) |
|
for i, qa in enumerate(self.data) |
|
for j, (a, sc) in enumerate(zip(qa["answers"]["text"], qa["answers"]["score"])) |
|
if j == 0 or sc >= extra_answer_threshold |
|
] |
|
else: |
|
self.qa_id_list = [(i, 0) for i in range(self.data.num_rows)] |
|
|
|
def __len__(self): |
|
return len(self.qa_id_list) |
|
|
|
def make_example(self, idx): |
|
i, j = self.qa_id_list[idx] |
|
example = self.data[i] |
|
question = example["title"] + " " + example["selftext"] |
|
answer = example["answers"]["text"][j] |
|
q_id = example["q_id"] |
|
if self.make_doc_function is not None: |
|
self.document_cache[q_id] = self.document_cache.get(q_id, self.make_doc_function(example["title"])) |
|
document = self.document_cache[q_id] |
|
in_st = "question: {} context: {}".format( |
|
question.lower().replace(" --t--", "").strip(), |
|
document.lower().strip(), |
|
) |
|
out_st = answer |
|
return (in_st, out_st) |
|
|
|
def __getitem__(self, idx): |
|
return self.make_example(idx) |
|
|
|
|
|
def make_qa_s2s_model(model_name="facebook/bart-large", from_file=None, device="cuda:0"): |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device) |
|
if from_file is not None: |
|
param_dict = torch.load(from_file) |
|
model.load_state_dict(param_dict["model"]) |
|
return tokenizer, model |
|
|
|
|
|
def make_qa_s2s_batch(qa_list, tokenizer, max_len=64, max_a_len=360, device="cuda:0"): |
|
q_ls = [q for q, a in qa_list] |
|
a_ls = [a for q, a in qa_list] |
|
q_toks = tokenizer(q_ls, max_length=max_len, padding="max_length", truncation=True) |
|
q_ids, q_mask = ( |
|
torch.LongTensor(q_toks["input_ids"]).to(device), |
|
torch.LongTensor(q_toks["attention_mask"]).to(device), |
|
) |
|
a_toks = tokenizer(a_ls, max_length=min(max_len, max_a_len), padding="max_length", truncation=True) |
|
a_ids, a_mask = ( |
|
torch.LongTensor(a_toks["input_ids"]).to(device), |
|
torch.LongTensor(a_toks["attention_mask"]).to(device), |
|
) |
|
lm_labels = a_ids[:, 1:].contiguous().clone() |
|
lm_labels[a_mask[:, 1:].contiguous() == 0] = -100 |
|
model_inputs = { |
|
"input_ids": q_ids, |
|
"attention_mask": q_mask, |
|
"decoder_input_ids": a_ids[:, :-1].contiguous(), |
|
"lm_labels": lm_labels, |
|
} |
|
return model_inputs |
|
|
|
|
|
def train_qa_s2s_epoch(model, dataset, tokenizer, optimizer, scheduler, args, e=0, curriculum=False): |
|
model.train() |
|
|
|
if curriculum: |
|
train_sampler = SequentialSampler(dataset) |
|
else: |
|
train_sampler = RandomSampler(dataset) |
|
model_collate_fn = functools.partial( |
|
make_qa_s2s_batch, tokenizer=tokenizer, max_len=args.max_length, device="cuda:0" |
|
) |
|
data_loader = DataLoader(dataset, batch_size=args.batch_size, sampler=train_sampler, collate_fn=model_collate_fn) |
|
epoch_iterator = tqdm(data_loader, desc="Iteration", disable=True) |
|
|
|
loc_steps = 0 |
|
loc_loss = 0.0 |
|
st_time = time() |
|
for step, batch_inputs in enumerate(epoch_iterator): |
|
pre_loss = model(**batch_inputs)[0] |
|
loss = pre_loss.sum() / pre_loss.shape[0] |
|
loss.backward() |
|
|
|
if step % args.backward_freq == 0: |
|
optimizer.step() |
|
scheduler.step() |
|
model.zero_grad() |
|
|
|
loc_loss += loss.item() |
|
loc_steps += 1 |
|
if step % args.print_freq == 0 or step == 1: |
|
print( |
|
"{:2d} {:5d} of {:5d} \t L: {:.3f} \t -- {:.3f}".format( |
|
e, |
|
step, |
|
len(dataset) // args.batch_size, |
|
loc_loss / loc_steps, |
|
time() - st_time, |
|
) |
|
) |
|
loc_loss = 0 |
|
loc_steps = 0 |
|
|
|
|
|
def eval_qa_s2s_epoch(model, dataset, tokenizer, args): |
|
model.eval() |
|
|
|
train_sampler = SequentialSampler(dataset) |
|
model_collate_fn = functools.partial( |
|
make_qa_s2s_batch, tokenizer=tokenizer, max_len=args.max_length, device="cuda:0" |
|
) |
|
data_loader = DataLoader(dataset, batch_size=args.batch_size, sampler=train_sampler, collate_fn=model_collate_fn) |
|
epoch_iterator = tqdm(data_loader, desc="Iteration", disable=True) |
|
|
|
loc_steps = 0 |
|
loc_loss = 0.0 |
|
st_time = time() |
|
with torch.no_grad(): |
|
for step, batch_inputs in enumerate(epoch_iterator): |
|
pre_loss = model(**batch_inputs)[0] |
|
loss = pre_loss.sum() / pre_loss.shape[0] |
|
loc_loss += loss.item() |
|
loc_steps += 1 |
|
if step % args.print_freq == 0: |
|
print( |
|
"{:5d} of {:5d} \t L: {:.3f} \t -- {:.3f}".format( |
|
step, |
|
len(dataset) // args.batch_size, |
|
loc_loss / loc_steps, |
|
time() - st_time, |
|
) |
|
) |
|
print( |
|
"Total \t L: {:.3f} \t -- {:.3f}".format( |
|
loc_loss / loc_steps, |
|
time() - st_time, |
|
) |
|
) |
|
|
|
|
|
def train_qa_s2s(qa_s2s_model, qa_s2s_tokenizer, s2s_train_dset, s2s_valid_dset, s2s_args): |
|
s2s_optimizer = AdamW(qa_s2s_model.parameters(), lr=s2s_args.learning_rate, eps=1e-8) |
|
s2s_scheduler = get_linear_schedule_with_warmup( |
|
s2s_optimizer, |
|
num_warmup_steps=400, |
|
num_training_steps=(s2s_args.num_epochs + 1) * math.ceil(len(s2s_train_dset) / s2s_args.batch_size), |
|
) |
|
for e in range(s2s_args.num_epochs): |
|
train_qa_s2s_epoch( |
|
qa_s2s_model, |
|
s2s_train_dset, |
|
qa_s2s_tokenizer, |
|
s2s_optimizer, |
|
s2s_scheduler, |
|
s2s_args, |
|
e, |
|
curriculum=(e == 0), |
|
) |
|
m_save_dict = { |
|
"model": qa_s2s_model.state_dict(), |
|
"optimizer": s2s_optimizer.state_dict(), |
|
"scheduler": s2s_scheduler.state_dict(), |
|
} |
|
print("Saving model {}".format(s2s_args.model_save_name)) |
|
eval_qa_s2s_epoch(qa_s2s_model, s2s_valid_dset, qa_s2s_tokenizer, s2s_args) |
|
torch.save(m_save_dict, "{}_{}.pth".format(s2s_args.model_save_name, e)) |
|
|
|
|
|
|
|
def qa_s2s_generate( |
|
question_doc, |
|
qa_s2s_model, |
|
qa_s2s_tokenizer, |
|
num_answers=1, |
|
num_beams=None, |
|
min_len=64, |
|
max_len=256, |
|
do_sample=False, |
|
temp=1.0, |
|
top_p=None, |
|
top_k=None, |
|
max_input_length=512, |
|
device="cuda:0", |
|
): |
|
model_inputs = make_qa_s2s_batch( |
|
[(question_doc, "A")], |
|
qa_s2s_tokenizer, |
|
max_input_length, |
|
device=device, |
|
) |
|
n_beams = num_answers if num_beams is None else max(num_beams, num_answers) |
|
generated_ids = qa_s2s_model.generate( |
|
input_ids=model_inputs["input_ids"], |
|
attention_mask=model_inputs["attention_mask"], |
|
min_length=min_len, |
|
max_length=max_len, |
|
do_sample=do_sample, |
|
early_stopping=True, |
|
num_beams=1 if do_sample else n_beams, |
|
temperature=temp, |
|
top_k=top_k, |
|
top_p=top_p, |
|
eos_token_id=qa_s2s_tokenizer.eos_token_id, |
|
no_repeat_ngram_size=3, |
|
num_return_sequences=num_answers, |
|
decoder_start_token_id=qa_s2s_tokenizer.bos_token_id, |
|
) |
|
return [qa_s2s_tokenizer.decode(ans_ids, skip_special_tokens=True).strip() for ans_ids in generated_ids] |
|
|
|
|
|
|
|
|
|
|
|
def embed_passages_for_retrieval(passages, tokenizer, qa_embedder, max_length=128, device="cuda:0"): |
|
a_toks = tokenizer(passages, max_length=max_length, padding="max_length", truncation=True) |
|
a_ids, a_mask = ( |
|
torch.LongTensor(a_toks["input_ids"]).to(device), |
|
torch.LongTensor(a_toks["attention_mask"]).to(device), |
|
) |
|
with torch.no_grad(): |
|
a_reps = qa_embedder.embed_answers(a_ids, a_mask).cpu().type(torch.float) |
|
return a_reps.numpy() |
|
|
|
|
|
def embed_questions_for_retrieval(q_ls, tokenizer, qa_embedder, device="cuda:0"): |
|
q_toks = tokenizer(q_ls, max_length=128, padding="max_length", truncation=True) |
|
q_ids, q_mask = ( |
|
torch.LongTensor(q_toks["input_ids"]).to(device), |
|
torch.LongTensor(q_toks["attention_mask"]).to(device), |
|
) |
|
with torch.no_grad(): |
|
q_reps = qa_embedder.embed_questions(q_ids, q_mask).cpu().type(torch.float) |
|
return q_reps.numpy() |
|
|
|
|
|
def make_qa_dense_index( |
|
qa_embedder, |
|
tokenizer, |
|
passages_dset, |
|
batch_size=512, |
|
max_length=128, |
|
index_name="kilt_passages_reps.dat", |
|
dtype="float32", |
|
device="cuda:0", |
|
): |
|
st_time = time() |
|
fp = np.memmap(index_name, dtype=dtype, mode="w+", shape=(passages_dset.num_rows, 128)) |
|
n_batches = math.ceil(passages_dset.num_rows / batch_size) |
|
for i in range(n_batches): |
|
passages = list(passages_dset[i * batch_size : (i + 1) * batch_size]["passage_text"]) |
|
reps = embed_passages_for_retrieval(passages, tokenizer, qa_embedder, max_length, device) |
|
fp[i * batch_size : (i + 1) * batch_size] = reps |
|
if i % 50 == 0: |
|
print(i, time() - st_time) |
|
|
|
|
|
def evaluate_retriever(qa_list, retriever_func, scoring_func, n_ret=10, verbose=False): |
|
total_retriever_time = 0.0 |
|
total_retriever_score = 0.0 |
|
st_time = time() |
|
for i, (question, answer) in enumerate(qa_list): |
|
r_time = time() |
|
retrieved_passages = retriever_func(question, n_ret) |
|
total_retriever_time += time() - r_time |
|
total_retriever_score += scoring_func(retrieved_passages, answer) |
|
if verbose and ((i + 1) % 500 == 0 or i <= 1): |
|
print( |
|
"{:03d}: S-{:.4f} T-{:.4f} | {:.2f}".format( |
|
i + 1, total_retriever_score / (i + 1), total_retriever_time / (i + 1), time() - st_time |
|
) |
|
) |
|
return {"idf_recall": total_retriever_score / (i + 1), "retrieval_time": total_retriever_time / (i + 1)} |
|
|
|
|
|
|
|
def query_qa_dense_index( |
|
question, qa_embedder, tokenizer, wiki_passages, wiki_index, n_results=10, min_length=20, device="cuda:0" |
|
): |
|
q_rep = embed_questions_for_retrieval([question], tokenizer, qa_embedder, device=device) |
|
D, I = wiki_index.search(q_rep, 2 * n_results) |
|
res_passages = [wiki_passages[int(i)] for i in I[0]] |
|
support_doc = "<P> " + " <P> ".join([p["passage_text"] for p in res_passages]) |
|
res_list = [{k: p[k] for k in wiki_passages.column_names} for p in res_passages] |
|
res_list = [res for res in res_list if len(res["passage_text"].split()) > min_length][:n_results] |
|
for r, sc in zip(res_list, D[0]): |
|
r["score"] = float(sc) |
|
return support_doc, res_list |
|
|
|
|
|
def batch_query_qa_dense_index(questions, qa_embedder, tokenizer, wiki_passages, wiki_index, n_results=10): |
|
q_rep = embed_questions_for_retrieval(questions, tokenizer, qa_embedder) |
|
D, I = wiki_index.search(q_rep, n_results) |
|
res_passages_lst = [[wiki_passages[int(i)] for i in i_lst] for i_lst in I] |
|
support_doc_lst = [ |
|
"<P> " + " <P> ".join([p["passage_text"] for p in res_passages]) for res_passages in res_passages_lst |
|
] |
|
all_res_lists = [] |
|
for res_passages, dl in zip(res_passages_lst, D): |
|
res_list = [{k: p[k] for k in wiki_passages.column_names} for p in res_passages] |
|
for r, sc in zip(res_list, dl): |
|
r["score"] = float(sc) |
|
all_res_lists += [res_list[:]] |
|
return support_doc_lst, all_res_lists |
|
|
|
|
|
|
|
def query_qa_dense_index_nn(passage, qa_embedder, tokenizer, wiki_passages, wiki_index, n_results=10, min_length=20): |
|
a_rep = embed_passages_for_retrieval([passage], tokenizer, qa_embedder) |
|
D, I = wiki_index.search(a_rep, 2 * n_results) |
|
res_passages = [wiki_passages[int(i)] for i in I[0]] |
|
support_doc = "<P> " + " <P> ".join([p["passage_text"] for p in res_passages]) |
|
res_list = [{k: p[k] for k in wiki_passages.column_names} for p in res_passages] |
|
res_list = [res for res in res_list if len(res["passage_text"].split()) > min_length][:n_results] |
|
for r, sc, i in zip(res_list, D[0], I[0]): |
|
r["passage_id"] = int(i) |
|
r["score"] = float(sc) |
|
return support_doc, res_list |
|
|
|
|
|
def batch_query_qa_dense_index_nn(passages, qa_embedder, tokenizer, wiki_passages, wiki_index, n_results=10): |
|
a_reps = embed_passages_for_retrieval(passages, tokenizer, qa_embedder) |
|
D, I = wiki_index.search(a_reps, n_results) |
|
res_passages_lst = [[wiki_passages[int(i)] for i in i_lst] for i_lst in I] |
|
support_doc_lst = [ |
|
"<P> " + " <P> ".join([p["passage_text"] for p in res_passages]) for res_passages in res_passages_lst |
|
] |
|
all_res_lists = [] |
|
for res_passages, dl, il in zip(res_passages_lst, D, I): |
|
res_list = [{k: p[k] for k in wiki_passages.column_names} for p in res_passages] |
|
for r, sc, i in zip(res_list, dl, il): |
|
r["passage_id"] = int(i) |
|
r["score"] = float(sc) |
|
all_res_lists += [res_list[:]] |
|
return support_doc_lst, all_res_lists |
|
|