|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" This is the exact same script as `examples/question-answering/run_squad.py` (as of 2020, January 8th) with an additional and optional step of distillation.""" |
|
|
|
import argparse |
|
import glob |
|
import logging |
|
import os |
|
import random |
|
import timeit |
|
|
|
import numpy as np |
|
import torch |
|
from torch import nn |
|
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler |
|
from torch.utils.data.distributed import DistributedSampler |
|
from tqdm import tqdm, trange |
|
|
|
import transformers |
|
from transformers import ( |
|
WEIGHTS_NAME, |
|
AdamW, |
|
BertConfig, |
|
BertForQuestionAnswering, |
|
BertTokenizer, |
|
DistilBertConfig, |
|
DistilBertForQuestionAnswering, |
|
DistilBertTokenizer, |
|
RobertaConfig, |
|
RobertaForQuestionAnswering, |
|
RobertaTokenizer, |
|
XLMConfig, |
|
XLMForQuestionAnswering, |
|
XLMTokenizer, |
|
XLNetConfig, |
|
XLNetForQuestionAnswering, |
|
XLNetTokenizer, |
|
get_linear_schedule_with_warmup, |
|
squad_convert_examples_to_features, |
|
) |
|
from transformers.data.metrics.squad_metrics import ( |
|
compute_predictions_log_probs, |
|
compute_predictions_logits, |
|
squad_evaluate, |
|
) |
|
from transformers.data.processors.squad import SquadResult, SquadV1Processor, SquadV2Processor |
|
from transformers.trainer_utils import is_main_process |
|
|
|
|
|
try: |
|
from torch.utils.tensorboard import SummaryWriter |
|
except ImportError: |
|
from tensorboardX import SummaryWriter |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
MODEL_CLASSES = { |
|
"bert": (BertConfig, BertForQuestionAnswering, BertTokenizer), |
|
"xlnet": (XLNetConfig, XLNetForQuestionAnswering, XLNetTokenizer), |
|
"xlm": (XLMConfig, XLMForQuestionAnswering, XLMTokenizer), |
|
"distilbert": (DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer), |
|
"roberta": (RobertaConfig, RobertaForQuestionAnswering, RobertaTokenizer), |
|
} |
|
|
|
|
|
def set_seed(args): |
|
random.seed(args.seed) |
|
np.random.seed(args.seed) |
|
torch.manual_seed(args.seed) |
|
if args.n_gpu > 0: |
|
torch.cuda.manual_seed_all(args.seed) |
|
|
|
|
|
def to_list(tensor): |
|
return tensor.detach().cpu().tolist() |
|
|
|
|
|
def train(args, train_dataset, model, tokenizer, teacher=None): |
|
"""Train the model""" |
|
if args.local_rank in [-1, 0]: |
|
tb_writer = SummaryWriter() |
|
|
|
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) |
|
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) |
|
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) |
|
|
|
if args.max_steps > 0: |
|
t_total = args.max_steps |
|
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 |
|
else: |
|
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs |
|
|
|
|
|
no_decay = ["bias", "LayerNorm.weight"] |
|
optimizer_grouped_parameters = [ |
|
{ |
|
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], |
|
"weight_decay": args.weight_decay, |
|
}, |
|
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, |
|
] |
|
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) |
|
scheduler = get_linear_schedule_with_warmup( |
|
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total |
|
) |
|
|
|
|
|
if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile( |
|
os.path.join(args.model_name_or_path, "scheduler.pt") |
|
): |
|
|
|
optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt"))) |
|
scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt"))) |
|
|
|
if args.fp16: |
|
try: |
|
from apex import amp |
|
except ImportError: |
|
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") |
|
|
|
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) |
|
|
|
|
|
if args.n_gpu > 1: |
|
model = nn.DataParallel(model) |
|
|
|
|
|
if args.local_rank != -1: |
|
model = nn.parallel.DistributedDataParallel( |
|
model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True |
|
) |
|
|
|
|
|
logger.info("***** Running training *****") |
|
logger.info(" Num examples = %d", len(train_dataset)) |
|
logger.info(" Num Epochs = %d", args.num_train_epochs) |
|
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) |
|
logger.info( |
|
" Total train batch size (w. parallel, distributed & accumulation) = %d", |
|
args.train_batch_size |
|
* args.gradient_accumulation_steps |
|
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1), |
|
) |
|
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) |
|
logger.info(" Total optimization steps = %d", t_total) |
|
|
|
global_step = 1 |
|
epochs_trained = 0 |
|
steps_trained_in_current_epoch = 0 |
|
|
|
if os.path.exists(args.model_name_or_path): |
|
try: |
|
|
|
checkpoint_suffix = args.model_name_or_path.split("-")[-1].split("/")[0] |
|
global_step = int(checkpoint_suffix) |
|
epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps) |
|
steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps) |
|
|
|
logger.info(" Continuing training from checkpoint, will skip to saved global_step") |
|
logger.info(" Continuing training from epoch %d", epochs_trained) |
|
logger.info(" Continuing training from global step %d", global_step) |
|
logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch) |
|
except ValueError: |
|
logger.info(" Starting fine-tuning.") |
|
|
|
tr_loss, logging_loss = 0.0, 0.0 |
|
model.zero_grad() |
|
train_iterator = trange( |
|
epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0] |
|
) |
|
|
|
set_seed(args) |
|
|
|
for _ in train_iterator: |
|
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) |
|
for step, batch in enumerate(epoch_iterator): |
|
|
|
if steps_trained_in_current_epoch > 0: |
|
steps_trained_in_current_epoch -= 1 |
|
continue |
|
|
|
model.train() |
|
if teacher is not None: |
|
teacher.eval() |
|
batch = tuple(t.to(args.device) for t in batch) |
|
|
|
inputs = { |
|
"input_ids": batch[0], |
|
"attention_mask": batch[1], |
|
"start_positions": batch[3], |
|
"end_positions": batch[4], |
|
} |
|
if args.model_type != "distilbert": |
|
inputs["token_type_ids"] = None if args.model_type == "xlm" else batch[2] |
|
if args.model_type in ["xlnet", "xlm"]: |
|
inputs.update({"cls_index": batch[5], "p_mask": batch[6]}) |
|
if args.version_2_with_negative: |
|
inputs.update({"is_impossible": batch[7]}) |
|
outputs = model(**inputs) |
|
loss, start_logits_stu, end_logits_stu = outputs |
|
|
|
|
|
if teacher is not None: |
|
if "token_type_ids" not in inputs: |
|
inputs["token_type_ids"] = None if args.teacher_type == "xlm" else batch[2] |
|
with torch.no_grad(): |
|
start_logits_tea, end_logits_tea = teacher( |
|
input_ids=inputs["input_ids"], |
|
token_type_ids=inputs["token_type_ids"], |
|
attention_mask=inputs["attention_mask"], |
|
) |
|
assert start_logits_tea.size() == start_logits_stu.size() |
|
assert end_logits_tea.size() == end_logits_stu.size() |
|
|
|
loss_fct = nn.KLDivLoss(reduction="batchmean") |
|
loss_start = loss_fct( |
|
nn.functional.log_softmax(start_logits_stu / args.temperature, dim=-1), |
|
nn.functional.softmax(start_logits_tea / args.temperature, dim=-1), |
|
) * (args.temperature**2) |
|
loss_end = loss_fct( |
|
nn.functional.log_softmax(end_logits_stu / args.temperature, dim=-1), |
|
nn.functional.softmax(end_logits_tea / args.temperature, dim=-1), |
|
) * (args.temperature**2) |
|
loss_ce = (loss_start + loss_end) / 2.0 |
|
|
|
loss = args.alpha_ce * loss_ce + args.alpha_squad * loss |
|
|
|
if args.n_gpu > 1: |
|
loss = loss.mean() |
|
if args.gradient_accumulation_steps > 1: |
|
loss = loss / args.gradient_accumulation_steps |
|
|
|
if args.fp16: |
|
with amp.scale_loss(loss, optimizer) as scaled_loss: |
|
scaled_loss.backward() |
|
else: |
|
loss.backward() |
|
|
|
tr_loss += loss.item() |
|
if (step + 1) % args.gradient_accumulation_steps == 0: |
|
if args.fp16: |
|
nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) |
|
else: |
|
nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) |
|
|
|
optimizer.step() |
|
scheduler.step() |
|
model.zero_grad() |
|
global_step += 1 |
|
|
|
|
|
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: |
|
|
|
if args.local_rank == -1 and args.evaluate_during_training: |
|
results = evaluate(args, model, tokenizer) |
|
for key, value in results.items(): |
|
tb_writer.add_scalar("eval_{}".format(key), value, global_step) |
|
tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step) |
|
tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step) |
|
logging_loss = tr_loss |
|
|
|
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: |
|
|
|
output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step)) |
|
if not os.path.exists(output_dir): |
|
os.makedirs(output_dir) |
|
model_to_save = ( |
|
model.module if hasattr(model, "module") else model |
|
) |
|
model_to_save.save_pretrained(output_dir) |
|
tokenizer.save_pretrained(output_dir) |
|
|
|
torch.save(args, os.path.join(output_dir, "training_args.bin")) |
|
logger.info("Saving model checkpoint to %s", output_dir) |
|
|
|
torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) |
|
torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) |
|
logger.info("Saving optimizer and scheduler states to %s", output_dir) |
|
|
|
if args.max_steps > 0 and global_step > args.max_steps: |
|
epoch_iterator.close() |
|
break |
|
if args.max_steps > 0 and global_step > args.max_steps: |
|
train_iterator.close() |
|
break |
|
|
|
if args.local_rank in [-1, 0]: |
|
tb_writer.close() |
|
|
|
return global_step, tr_loss / global_step |
|
|
|
|
|
def evaluate(args, model, tokenizer, prefix=""): |
|
dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True) |
|
|
|
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: |
|
os.makedirs(args.output_dir) |
|
|
|
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) |
|
|
|
|
|
eval_sampler = SequentialSampler(dataset) |
|
eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) |
|
|
|
|
|
if args.n_gpu > 1 and not isinstance(model, nn.DataParallel): |
|
model = nn.DataParallel(model) |
|
|
|
|
|
logger.info("***** Running evaluation {} *****".format(prefix)) |
|
logger.info(" Num examples = %d", len(dataset)) |
|
logger.info(" Batch size = %d", args.eval_batch_size) |
|
|
|
all_results = [] |
|
start_time = timeit.default_timer() |
|
|
|
for batch in tqdm(eval_dataloader, desc="Evaluating"): |
|
model.eval() |
|
batch = tuple(t.to(args.device) for t in batch) |
|
|
|
with torch.no_grad(): |
|
inputs = {"input_ids": batch[0], "attention_mask": batch[1]} |
|
if args.model_type != "distilbert": |
|
inputs["token_type_ids"] = None if args.model_type == "xlm" else batch[2] |
|
example_indices = batch[3] |
|
if args.model_type in ["xlnet", "xlm"]: |
|
inputs.update({"cls_index": batch[4], "p_mask": batch[5]}) |
|
|
|
outputs = model(**inputs) |
|
|
|
for i, example_index in enumerate(example_indices): |
|
eval_feature = features[example_index.item()] |
|
unique_id = int(eval_feature.unique_id) |
|
|
|
output = [to_list(output[i]) for output in outputs] |
|
|
|
|
|
|
|
if len(output) >= 5: |
|
start_logits = output[0] |
|
start_top_index = output[1] |
|
end_logits = output[2] |
|
end_top_index = output[3] |
|
cls_logits = output[4] |
|
|
|
result = SquadResult( |
|
unique_id, |
|
start_logits, |
|
end_logits, |
|
start_top_index=start_top_index, |
|
end_top_index=end_top_index, |
|
cls_logits=cls_logits, |
|
) |
|
|
|
else: |
|
start_logits, end_logits = output |
|
result = SquadResult(unique_id, start_logits, end_logits) |
|
|
|
all_results.append(result) |
|
|
|
evalTime = timeit.default_timer() - start_time |
|
logger.info(" Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(dataset)) |
|
|
|
|
|
output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix)) |
|
output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix)) |
|
|
|
if args.version_2_with_negative: |
|
output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix)) |
|
else: |
|
output_null_log_odds_file = None |
|
|
|
if args.model_type in ["xlnet", "xlm"]: |
|
|
|
predictions = compute_predictions_log_probs( |
|
examples, |
|
features, |
|
all_results, |
|
args.n_best_size, |
|
args.max_answer_length, |
|
output_prediction_file, |
|
output_nbest_file, |
|
output_null_log_odds_file, |
|
model.config.start_n_top, |
|
model.config.end_n_top, |
|
args.version_2_with_negative, |
|
tokenizer, |
|
args.verbose_logging, |
|
) |
|
else: |
|
predictions = compute_predictions_logits( |
|
examples, |
|
features, |
|
all_results, |
|
args.n_best_size, |
|
args.max_answer_length, |
|
args.do_lower_case, |
|
output_prediction_file, |
|
output_nbest_file, |
|
output_null_log_odds_file, |
|
args.verbose_logging, |
|
args.version_2_with_negative, |
|
args.null_score_diff_threshold, |
|
tokenizer, |
|
) |
|
|
|
|
|
results = squad_evaluate(examples, predictions) |
|
return results |
|
|
|
|
|
def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False): |
|
if args.local_rank not in [-1, 0] and not evaluate: |
|
|
|
torch.distributed.barrier() |
|
|
|
|
|
input_file = args.predict_file if evaluate else args.train_file |
|
cached_features_file = os.path.join( |
|
os.path.dirname(input_file), |
|
"cached_distillation_{}_{}_{}".format( |
|
"dev" if evaluate else "train", |
|
list(filter(None, args.model_name_or_path.split("/"))).pop(), |
|
str(args.max_seq_length), |
|
), |
|
) |
|
if os.path.exists(cached_features_file) and not args.overwrite_cache: |
|
logger.info("Loading features from cached file %s", cached_features_file) |
|
features_and_dataset = torch.load(cached_features_file) |
|
|
|
try: |
|
features, dataset, examples = ( |
|
features_and_dataset["features"], |
|
features_and_dataset["dataset"], |
|
features_and_dataset["examples"], |
|
) |
|
except KeyError: |
|
raise DeprecationWarning( |
|
"You seem to be loading features from an older version of this script please delete the " |
|
"file %s in order for it to be created again" % cached_features_file |
|
) |
|
else: |
|
logger.info("Creating features from dataset file at %s", input_file) |
|
processor = SquadV2Processor() if args.version_2_with_negative else SquadV1Processor() |
|
if evaluate: |
|
examples = processor.get_dev_examples(args.data_dir, filename=args.predict_file) |
|
else: |
|
examples = processor.get_train_examples(args.data_dir, filename=args.train_file) |
|
|
|
features, dataset = squad_convert_examples_to_features( |
|
examples=examples, |
|
tokenizer=tokenizer, |
|
max_seq_length=args.max_seq_length, |
|
doc_stride=args.doc_stride, |
|
max_query_length=args.max_query_length, |
|
is_training=not evaluate, |
|
return_dataset="pt", |
|
threads=args.threads, |
|
) |
|
|
|
if args.local_rank in [-1, 0]: |
|
logger.info("Saving features into cached file %s", cached_features_file) |
|
torch.save({"features": features, "dataset": dataset, "examples": examples}, cached_features_file) |
|
|
|
if args.local_rank == 0 and not evaluate: |
|
|
|
torch.distributed.barrier() |
|
|
|
if output_examples: |
|
return dataset, examples, features |
|
return dataset |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser() |
|
|
|
|
|
parser.add_argument( |
|
"--model_type", |
|
default=None, |
|
type=str, |
|
required=True, |
|
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()), |
|
) |
|
parser.add_argument( |
|
"--model_name_or_path", |
|
default=None, |
|
type=str, |
|
required=True, |
|
help="Path to pretrained model or model identifier from huggingface.co/models", |
|
) |
|
parser.add_argument( |
|
"--output_dir", |
|
default=None, |
|
type=str, |
|
required=True, |
|
help="The output directory where the model checkpoints and predictions will be written.", |
|
) |
|
|
|
|
|
parser.add_argument( |
|
"--teacher_type", |
|
default=None, |
|
type=str, |
|
help=( |
|
"Teacher type. Teacher tokenizer and student (model) tokenizer must output the same tokenization. Only for" |
|
" distillation." |
|
), |
|
) |
|
parser.add_argument( |
|
"--teacher_name_or_path", |
|
default=None, |
|
type=str, |
|
help="Path to the already SQuAD fine-tuned teacher model. Only for distillation.", |
|
) |
|
parser.add_argument( |
|
"--alpha_ce", default=0.5, type=float, help="Distillation loss linear weight. Only for distillation." |
|
) |
|
parser.add_argument( |
|
"--alpha_squad", default=0.5, type=float, help="True SQuAD loss linear weight. Only for distillation." |
|
) |
|
parser.add_argument( |
|
"--temperature", default=2.0, type=float, help="Distillation temperature. Only for distillation." |
|
) |
|
|
|
|
|
parser.add_argument( |
|
"--data_dir", |
|
default=None, |
|
type=str, |
|
help="The input data dir. Should contain the .json files for the task." |
|
+ "If no data dir or train/predict files are specified, will run with tensorflow_datasets.", |
|
) |
|
parser.add_argument( |
|
"--train_file", |
|
default=None, |
|
type=str, |
|
help="The input training file. If a data dir is specified, will look for the file there" |
|
+ "If no data dir or train/predict files are specified, will run with tensorflow_datasets.", |
|
) |
|
parser.add_argument( |
|
"--predict_file", |
|
default=None, |
|
type=str, |
|
help="The input evaluation file. If a data dir is specified, will look for the file there" |
|
+ "If no data dir or train/predict files are specified, will run with tensorflow_datasets.", |
|
) |
|
parser.add_argument( |
|
"--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name" |
|
) |
|
parser.add_argument( |
|
"--tokenizer_name", |
|
default="", |
|
type=str, |
|
help="Pretrained tokenizer name or path if not the same as model_name", |
|
) |
|
parser.add_argument( |
|
"--cache_dir", |
|
default="", |
|
type=str, |
|
help="Where do you want to store the pre-trained models downloaded from huggingface.co", |
|
) |
|
|
|
parser.add_argument( |
|
"--version_2_with_negative", |
|
action="store_true", |
|
help="If true, the SQuAD examples contain some that do not have an answer.", |
|
) |
|
parser.add_argument( |
|
"--null_score_diff_threshold", |
|
type=float, |
|
default=0.0, |
|
help="If null_score - best_non_null is greater than the threshold predict null.", |
|
) |
|
|
|
parser.add_argument( |
|
"--max_seq_length", |
|
default=384, |
|
type=int, |
|
help=( |
|
"The maximum total input sequence length after WordPiece tokenization. Sequences " |
|
"longer than this will be truncated, and sequences shorter than this will be padded." |
|
), |
|
) |
|
parser.add_argument( |
|
"--doc_stride", |
|
default=128, |
|
type=int, |
|
help="When splitting up a long document into chunks, how much stride to take between chunks.", |
|
) |
|
parser.add_argument( |
|
"--max_query_length", |
|
default=64, |
|
type=int, |
|
help=( |
|
"The maximum number of tokens for the question. Questions longer than this will " |
|
"be truncated to this length." |
|
), |
|
) |
|
parser.add_argument("--do_train", action="store_true", help="Whether to run training.") |
|
parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.") |
|
parser.add_argument( |
|
"--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step." |
|
) |
|
parser.add_argument( |
|
"--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model." |
|
) |
|
|
|
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") |
|
parser.add_argument( |
|
"--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation." |
|
) |
|
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") |
|
parser.add_argument( |
|
"--gradient_accumulation_steps", |
|
type=int, |
|
default=1, |
|
help="Number of updates steps to accumulate before performing a backward/update pass.", |
|
) |
|
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") |
|
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") |
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") |
|
parser.add_argument( |
|
"--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform." |
|
) |
|
parser.add_argument( |
|
"--max_steps", |
|
default=-1, |
|
type=int, |
|
help="If > 0: set total number of training steps to perform. Override num_train_epochs.", |
|
) |
|
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") |
|
parser.add_argument( |
|
"--n_best_size", |
|
default=20, |
|
type=int, |
|
help="The total number of n-best predictions to generate in the nbest_predictions.json output file.", |
|
) |
|
parser.add_argument( |
|
"--max_answer_length", |
|
default=30, |
|
type=int, |
|
help=( |
|
"The maximum length of an answer that can be generated. This is needed because the start " |
|
"and end predictions are not conditioned on one another." |
|
), |
|
) |
|
parser.add_argument( |
|
"--verbose_logging", |
|
action="store_true", |
|
help=( |
|
"If true, all of the warnings related to data processing will be printed. " |
|
"A number of warnings are expected for a normal SQuAD evaluation." |
|
), |
|
) |
|
|
|
parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.") |
|
parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.") |
|
parser.add_argument( |
|
"--eval_all_checkpoints", |
|
action="store_true", |
|
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", |
|
) |
|
parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available") |
|
parser.add_argument( |
|
"--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory" |
|
) |
|
parser.add_argument( |
|
"--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets" |
|
) |
|
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") |
|
|
|
parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") |
|
parser.add_argument( |
|
"--fp16", |
|
action="store_true", |
|
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", |
|
) |
|
parser.add_argument( |
|
"--fp16_opt_level", |
|
type=str, |
|
default="O1", |
|
help=( |
|
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." |
|
"See details at https://nvidia.github.io/apex/amp.html" |
|
), |
|
) |
|
parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.") |
|
parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.") |
|
|
|
parser.add_argument("--threads", type=int, default=1, help="multiple threads for converting example to features") |
|
args = parser.parse_args() |
|
|
|
if ( |
|
os.path.exists(args.output_dir) |
|
and os.listdir(args.output_dir) |
|
and args.do_train |
|
and not args.overwrite_output_dir |
|
): |
|
raise ValueError( |
|
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format( |
|
args.output_dir |
|
) |
|
) |
|
|
|
|
|
if args.server_ip and args.server_port: |
|
|
|
import ptvsd |
|
|
|
print("Waiting for debugger attach") |
|
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) |
|
ptvsd.wait_for_attach() |
|
|
|
|
|
if args.local_rank == -1 or args.no_cuda: |
|
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") |
|
args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count() |
|
else: |
|
torch.cuda.set_device(args.local_rank) |
|
device = torch.device("cuda", args.local_rank) |
|
torch.distributed.init_process_group(backend="nccl") |
|
args.n_gpu = 1 |
|
args.device = device |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, |
|
) |
|
logger.warning( |
|
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", |
|
args.local_rank, |
|
device, |
|
args.n_gpu, |
|
bool(args.local_rank != -1), |
|
args.fp16, |
|
) |
|
|
|
if is_main_process(args.local_rank): |
|
transformers.utils.logging.set_verbosity_info() |
|
transformers.utils.logging.enable_default_handler() |
|
transformers.utils.logging.enable_explicit_format() |
|
|
|
set_seed(args) |
|
|
|
|
|
if args.local_rank not in [-1, 0]: |
|
|
|
torch.distributed.barrier() |
|
|
|
args.model_type = args.model_type.lower() |
|
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] |
|
config = config_class.from_pretrained( |
|
args.config_name if args.config_name else args.model_name_or_path, |
|
cache_dir=args.cache_dir if args.cache_dir else None, |
|
) |
|
tokenizer = tokenizer_class.from_pretrained( |
|
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, |
|
do_lower_case=args.do_lower_case, |
|
cache_dir=args.cache_dir if args.cache_dir else None, |
|
) |
|
model = model_class.from_pretrained( |
|
args.model_name_or_path, |
|
from_tf=bool(".ckpt" in args.model_name_or_path), |
|
config=config, |
|
cache_dir=args.cache_dir if args.cache_dir else None, |
|
) |
|
|
|
if args.teacher_type is not None: |
|
assert args.teacher_name_or_path is not None |
|
assert args.alpha_ce > 0.0 |
|
assert args.alpha_ce + args.alpha_squad > 0.0 |
|
assert args.teacher_type != "distilbert", "We constraint teachers not to be of type DistilBERT." |
|
teacher_config_class, teacher_model_class, _ = MODEL_CLASSES[args.teacher_type] |
|
teacher_config = teacher_config_class.from_pretrained( |
|
args.teacher_name_or_path, cache_dir=args.cache_dir if args.cache_dir else None |
|
) |
|
teacher = teacher_model_class.from_pretrained( |
|
args.teacher_name_or_path, config=teacher_config, cache_dir=args.cache_dir if args.cache_dir else None |
|
) |
|
teacher.to(args.device) |
|
else: |
|
teacher = None |
|
|
|
if args.local_rank == 0: |
|
|
|
torch.distributed.barrier() |
|
|
|
model.to(args.device) |
|
|
|
logger.info("Training/evaluation parameters %s", args) |
|
|
|
|
|
|
|
|
|
if args.fp16: |
|
try: |
|
import apex |
|
|
|
apex.amp.register_half_function(torch, "einsum") |
|
except ImportError: |
|
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") |
|
|
|
|
|
if args.do_train: |
|
train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False) |
|
global_step, tr_loss = train(args, train_dataset, model, tokenizer, teacher=teacher) |
|
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) |
|
|
|
|
|
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): |
|
logger.info("Saving model checkpoint to %s", args.output_dir) |
|
|
|
|
|
model_to_save = ( |
|
model.module if hasattr(model, "module") else model |
|
) |
|
model_to_save.save_pretrained(args.output_dir) |
|
tokenizer.save_pretrained(args.output_dir) |
|
|
|
|
|
torch.save(args, os.path.join(args.output_dir, "training_args.bin")) |
|
|
|
|
|
model = model_class.from_pretrained(args.output_dir) |
|
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case) |
|
model.to(args.device) |
|
|
|
|
|
results = {} |
|
if args.do_eval and args.local_rank in [-1, 0]: |
|
if args.do_train: |
|
logger.info("Loading checkpoints saved during training for evaluation") |
|
checkpoints = [args.output_dir] |
|
if args.eval_all_checkpoints: |
|
checkpoints = [ |
|
os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True)) |
|
] |
|
|
|
logger.info("Evaluate the following checkpoints: %s", checkpoints) |
|
|
|
for checkpoint in checkpoints: |
|
|
|
global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else "" |
|
model = model_class.from_pretrained(checkpoint) |
|
model.to(args.device) |
|
|
|
|
|
result = evaluate(args, model, tokenizer, prefix=global_step) |
|
|
|
result = {k + ("_{}".format(global_step) if global_step else ""): v for k, v in result.items()} |
|
results.update(result) |
|
|
|
logger.info("Results: {}".format(results)) |
|
|
|
return results |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|