|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import os |
|
import sys |
|
from dataclasses import dataclass, field |
|
from typing import Optional |
|
|
|
import evaluate |
|
import numpy as np |
|
import torch |
|
from datasets import load_dataset |
|
from PIL import Image |
|
from torchvision.transforms import ( |
|
CenterCrop, |
|
Compose, |
|
Normalize, |
|
RandomHorizontalFlip, |
|
RandomResizedCrop, |
|
Resize, |
|
ToTensor, |
|
) |
|
|
|
import transformers |
|
from transformers import ( |
|
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, |
|
AutoConfig, |
|
AutoImageProcessor, |
|
AutoModelForImageClassification, |
|
HfArgumentParser, |
|
Trainer, |
|
TrainingArguments, |
|
set_seed, |
|
) |
|
from transformers.trainer_utils import get_last_checkpoint |
|
from transformers.utils import check_min_version, send_example_telemetry |
|
from transformers.utils.versions import require_version |
|
|
|
|
|
""" Fine-tuning a 🤗 Transformers model for image classification""" |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
check_min_version("4.32.0.dev0") |
|
|
|
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt") |
|
|
|
MODEL_CONFIG_CLASSES = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) |
|
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) |
|
|
|
|
|
def pil_loader(path: str): |
|
with open(path, "rb") as f: |
|
im = Image.open(f) |
|
return im.convert("RGB") |
|
|
|
|
|
@dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify |
|
them on the command line. |
|
""" |
|
|
|
dataset_name: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)." |
|
}, |
|
) |
|
dataset_config_name: Optional[str] = field( |
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} |
|
) |
|
train_dir: Optional[str] = field(default=None, metadata={"help": "A folder containing the training data."}) |
|
validation_dir: Optional[str] = field(default=None, metadata={"help": "A folder containing the validation data."}) |
|
train_val_split: Optional[float] = field( |
|
default=0.15, metadata={"help": "Percent to split off of train for validation."} |
|
) |
|
max_train_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of training examples to this " |
|
"value if set." |
|
) |
|
}, |
|
) |
|
max_eval_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of evaluation examples to this " |
|
"value if set." |
|
) |
|
}, |
|
) |
|
|
|
def __post_init__(self): |
|
if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): |
|
raise ValueError( |
|
"You must specify either a dataset name from the hub or a train and/or validation directory." |
|
) |
|
|
|
|
|
@dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. |
|
""" |
|
|
|
model_name_or_path: str = field( |
|
default="google/vit-base-patch16-224-in21k", |
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}, |
|
) |
|
model_type: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, |
|
) |
|
config_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} |
|
) |
|
cache_dir: Optional[str] = field( |
|
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} |
|
) |
|
model_revision: str = field( |
|
default="main", |
|
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, |
|
) |
|
image_processor_name: str = field(default=None, metadata={"help": "Name or path of preprocessor config."}) |
|
use_auth_token: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Will use the token generated when running `huggingface-cli login` (necessary to use this script " |
|
"with private models)." |
|
) |
|
}, |
|
) |
|
ignore_mismatched_sizes: bool = field( |
|
default=False, |
|
metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."}, |
|
) |
|
|
|
|
|
def collate_fn(examples): |
|
pixel_values = torch.stack([example["pixel_values"] for example in examples]) |
|
labels = torch.tensor([example["labels"] for example in examples]) |
|
return {"pixel_values": pixel_values, "labels": labels} |
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) |
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
|
|
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) |
|
else: |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
|
|
|
|
|
send_example_telemetry("run_image_classification", model_args, data_args) |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
handlers=[logging.StreamHandler(sys.stdout)], |
|
) |
|
|
|
if training_args.should_log: |
|
|
|
transformers.utils.logging.set_verbosity_info() |
|
|
|
log_level = training_args.get_process_log_level() |
|
logger.setLevel(log_level) |
|
transformers.utils.logging.set_verbosity(log_level) |
|
transformers.utils.logging.enable_default_handler() |
|
transformers.utils.logging.enable_explicit_format() |
|
|
|
|
|
logger.warning( |
|
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" |
|
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" |
|
) |
|
logger.info(f"Training/evaluation parameters {training_args}") |
|
|
|
|
|
last_checkpoint = None |
|
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: |
|
last_checkpoint = get_last_checkpoint(training_args.output_dir) |
|
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: |
|
raise ValueError( |
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. " |
|
"Use --overwrite_output_dir to overcome." |
|
) |
|
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: |
|
logger.info( |
|
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " |
|
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." |
|
) |
|
|
|
|
|
set_seed(training_args.seed) |
|
|
|
|
|
if data_args.dataset_name is not None: |
|
dataset = load_dataset( |
|
data_args.dataset_name, |
|
data_args.dataset_config_name, |
|
cache_dir=model_args.cache_dir, |
|
task="image-classification", |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
else: |
|
data_files = {} |
|
if data_args.train_dir is not None: |
|
data_files["train"] = os.path.join(data_args.train_dir, "**") |
|
if data_args.validation_dir is not None: |
|
data_files["validation"] = os.path.join(data_args.validation_dir, "**") |
|
dataset = load_dataset( |
|
"imagefolder", |
|
data_files=data_files, |
|
cache_dir=model_args.cache_dir, |
|
task="image-classification", |
|
) |
|
|
|
|
|
data_args.train_val_split = None if "validation" in dataset.keys() else data_args.train_val_split |
|
if isinstance(data_args.train_val_split, float) and data_args.train_val_split > 0.0: |
|
split = dataset["train"].train_test_split(data_args.train_val_split) |
|
dataset["train"] = split["train"] |
|
dataset["validation"] = split["test"] |
|
|
|
|
|
|
|
labels = dataset["train"].features["labels"].names |
|
label2id, id2label = {}, {} |
|
for i, label in enumerate(labels): |
|
label2id[label] = str(i) |
|
id2label[str(i)] = label |
|
|
|
|
|
metric = evaluate.load("accuracy") |
|
|
|
|
|
|
|
def compute_metrics(p): |
|
"""Computes accuracy on a batch of predictions""" |
|
return metric.compute(predictions=np.argmax(p.predictions, axis=1), references=p.label_ids) |
|
|
|
config = AutoConfig.from_pretrained( |
|
model_args.config_name or model_args.model_name_or_path, |
|
num_labels=len(labels), |
|
label2id=label2id, |
|
id2label=id2label, |
|
finetuning_task="image-classification", |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
model = AutoModelForImageClassification.from_pretrained( |
|
model_args.model_name_or_path, |
|
from_tf=bool(".ckpt" in model_args.model_name_or_path), |
|
config=config, |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, |
|
) |
|
image_processor = AutoImageProcessor.from_pretrained( |
|
model_args.image_processor_name or model_args.model_name_or_path, |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
|
|
|
|
if "shortest_edge" in image_processor.size: |
|
size = image_processor.size["shortest_edge"] |
|
else: |
|
size = (image_processor.size["height"], image_processor.size["width"]) |
|
normalize = Normalize(mean=image_processor.image_mean, std=image_processor.image_std) |
|
_train_transforms = Compose( |
|
[ |
|
RandomResizedCrop(size), |
|
RandomHorizontalFlip(), |
|
ToTensor(), |
|
normalize, |
|
] |
|
) |
|
_val_transforms = Compose( |
|
[ |
|
Resize(size), |
|
CenterCrop(size), |
|
ToTensor(), |
|
normalize, |
|
] |
|
) |
|
|
|
def train_transforms(example_batch): |
|
"""Apply _train_transforms across a batch.""" |
|
example_batch["pixel_values"] = [ |
|
_train_transforms(pil_img.convert("RGB")) for pil_img in example_batch["image"] |
|
] |
|
return example_batch |
|
|
|
def val_transforms(example_batch): |
|
"""Apply _val_transforms across a batch.""" |
|
example_batch["pixel_values"] = [_val_transforms(pil_img.convert("RGB")) for pil_img in example_batch["image"]] |
|
return example_batch |
|
|
|
if training_args.do_train: |
|
if "train" not in dataset: |
|
raise ValueError("--do_train requires a train dataset") |
|
if data_args.max_train_samples is not None: |
|
dataset["train"] = ( |
|
dataset["train"].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples)) |
|
) |
|
|
|
dataset["train"].set_transform(train_transforms) |
|
|
|
if training_args.do_eval: |
|
if "validation" not in dataset: |
|
raise ValueError("--do_eval requires a validation dataset") |
|
if data_args.max_eval_samples is not None: |
|
dataset["validation"] = ( |
|
dataset["validation"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples)) |
|
) |
|
|
|
dataset["validation"].set_transform(val_transforms) |
|
|
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=dataset["train"] if training_args.do_train else None, |
|
eval_dataset=dataset["validation"] if training_args.do_eval else None, |
|
compute_metrics=compute_metrics, |
|
tokenizer=image_processor, |
|
data_collator=collate_fn, |
|
) |
|
|
|
|
|
if training_args.do_train: |
|
checkpoint = None |
|
if training_args.resume_from_checkpoint is not None: |
|
checkpoint = training_args.resume_from_checkpoint |
|
elif last_checkpoint is not None: |
|
checkpoint = last_checkpoint |
|
train_result = trainer.train(resume_from_checkpoint=checkpoint) |
|
trainer.save_model() |
|
trainer.log_metrics("train", train_result.metrics) |
|
trainer.save_metrics("train", train_result.metrics) |
|
trainer.save_state() |
|
|
|
|
|
if training_args.do_eval: |
|
metrics = trainer.evaluate() |
|
trainer.log_metrics("eval", metrics) |
|
trainer.save_metrics("eval", metrics) |
|
|
|
|
|
kwargs = { |
|
"finetuned_from": model_args.model_name_or_path, |
|
"tasks": "image-classification", |
|
"dataset": data_args.dataset_name, |
|
"tags": ["image-classification", "vision"], |
|
} |
|
if training_args.push_to_hub: |
|
trainer.push_to_hub(**kwargs) |
|
else: |
|
trainer.create_model_card(**kwargs) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|