|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Fine-tuning the library models for sequence classification.""" |
|
|
|
|
|
import logging |
|
import os |
|
from dataclasses import dataclass, field |
|
from typing import Dict, Optional |
|
|
|
import datasets |
|
import numpy as np |
|
import tensorflow as tf |
|
|
|
from transformers import ( |
|
AutoConfig, |
|
AutoTokenizer, |
|
EvalPrediction, |
|
HfArgumentParser, |
|
PreTrainedTokenizer, |
|
TFAutoModelForSequenceClassification, |
|
TFTrainer, |
|
TFTrainingArguments, |
|
) |
|
from transformers.utils import logging as hf_logging |
|
|
|
|
|
hf_logging.set_verbosity_info() |
|
hf_logging.enable_default_handler() |
|
hf_logging.enable_explicit_format() |
|
|
|
|
|
def get_tfds( |
|
train_file: str, |
|
eval_file: str, |
|
test_file: str, |
|
tokenizer: PreTrainedTokenizer, |
|
label_column_id: int, |
|
max_seq_length: Optional[int] = None, |
|
): |
|
files = {} |
|
|
|
if train_file is not None: |
|
files[datasets.Split.TRAIN] = [train_file] |
|
if eval_file is not None: |
|
files[datasets.Split.VALIDATION] = [eval_file] |
|
if test_file is not None: |
|
files[datasets.Split.TEST] = [test_file] |
|
|
|
ds = datasets.load_dataset("csv", data_files=files) |
|
features_name = list(ds[list(files.keys())[0]].features.keys()) |
|
label_name = features_name.pop(label_column_id) |
|
label_list = list(set(ds[list(files.keys())[0]][label_name])) |
|
label2id = {label: i for i, label in enumerate(label_list)} |
|
input_names = tokenizer.model_input_names |
|
transformed_ds = {} |
|
|
|
if len(features_name) == 1: |
|
for k in files.keys(): |
|
transformed_ds[k] = ds[k].map( |
|
lambda example: tokenizer.batch_encode_plus( |
|
example[features_name[0]], truncation=True, max_length=max_seq_length, padding="max_length" |
|
), |
|
batched=True, |
|
) |
|
elif len(features_name) == 2: |
|
for k in files.keys(): |
|
transformed_ds[k] = ds[k].map( |
|
lambda example: tokenizer.batch_encode_plus( |
|
(example[features_name[0]], example[features_name[1]]), |
|
truncation=True, |
|
max_length=max_seq_length, |
|
padding="max_length", |
|
), |
|
batched=True, |
|
) |
|
|
|
def gen_train(): |
|
for ex in transformed_ds[datasets.Split.TRAIN]: |
|
d = {k: v for k, v in ex.items() if k in input_names} |
|
label = label2id[ex[label_name]] |
|
yield (d, label) |
|
|
|
def gen_val(): |
|
for ex in transformed_ds[datasets.Split.VALIDATION]: |
|
d = {k: v for k, v in ex.items() if k in input_names} |
|
label = label2id[ex[label_name]] |
|
yield (d, label) |
|
|
|
def gen_test(): |
|
for ex in transformed_ds[datasets.Split.TEST]: |
|
d = {k: v for k, v in ex.items() if k in input_names} |
|
label = label2id[ex[label_name]] |
|
yield (d, label) |
|
|
|
train_ds = ( |
|
tf.data.Dataset.from_generator( |
|
gen_train, |
|
({k: tf.int32 for k in input_names}, tf.int64), |
|
({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])), |
|
) |
|
if datasets.Split.TRAIN in transformed_ds |
|
else None |
|
) |
|
|
|
if train_ds is not None: |
|
train_ds = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN]))) |
|
|
|
val_ds = ( |
|
tf.data.Dataset.from_generator( |
|
gen_val, |
|
({k: tf.int32 for k in input_names}, tf.int64), |
|
({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])), |
|
) |
|
if datasets.Split.VALIDATION in transformed_ds |
|
else None |
|
) |
|
|
|
if val_ds is not None: |
|
val_ds = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION]))) |
|
|
|
test_ds = ( |
|
tf.data.Dataset.from_generator( |
|
gen_test, |
|
({k: tf.int32 for k in input_names}, tf.int64), |
|
({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])), |
|
) |
|
if datasets.Split.TEST in transformed_ds |
|
else None |
|
) |
|
|
|
if test_ds is not None: |
|
test_ds = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST]))) |
|
|
|
return train_ds, val_ds, test_ds, label2id |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
|
|
Using `HfArgumentParser` we can turn this class |
|
into argparse arguments to be able to specify them on |
|
the command line. |
|
""" |
|
|
|
label_column_id: int = field(metadata={"help": "Which column contains the label"}) |
|
train_file: str = field(default=None, metadata={"help": "The path of the training file"}) |
|
dev_file: Optional[str] = field(default=None, metadata={"help": "The path of the development file"}) |
|
test_file: Optional[str] = field(default=None, metadata={"help": "The path of the test file"}) |
|
max_seq_length: int = field( |
|
default=128, |
|
metadata={ |
|
"help": ( |
|
"The maximum total input sequence length after tokenization. Sequences longer " |
|
"than this will be truncated, sequences shorter will be padded." |
|
) |
|
}, |
|
) |
|
overwrite_cache: bool = field( |
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} |
|
) |
|
|
|
|
|
@dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. |
|
""" |
|
|
|
model_name_or_path: str = field( |
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} |
|
) |
|
config_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} |
|
) |
|
tokenizer_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} |
|
) |
|
use_fast: bool = field(default=False, metadata={"help": "Set this flag to use fast tokenization."}) |
|
|
|
|
|
cache_dir: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, |
|
) |
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments)) |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
|
if ( |
|
os.path.exists(training_args.output_dir) |
|
and os.listdir(training_args.output_dir) |
|
and training_args.do_train |
|
and not training_args.overwrite_output_dir |
|
): |
|
raise ValueError( |
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" |
|
" --overwrite_output_dir to overcome." |
|
) |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO, |
|
) |
|
logger.info( |
|
f"n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1)}, " |
|
f"16-bits training: {training_args.fp16}" |
|
) |
|
logger.info(f"Training/evaluation parameters {training_args}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, |
|
cache_dir=model_args.cache_dir, |
|
) |
|
|
|
train_dataset, eval_dataset, test_ds, label2id = get_tfds( |
|
train_file=data_args.train_file, |
|
eval_file=data_args.dev_file, |
|
test_file=data_args.test_file, |
|
tokenizer=tokenizer, |
|
label_column_id=data_args.label_column_id, |
|
max_seq_length=data_args.max_seq_length, |
|
) |
|
|
|
config = AutoConfig.from_pretrained( |
|
model_args.config_name if model_args.config_name else model_args.model_name_or_path, |
|
num_labels=len(label2id), |
|
label2id=label2id, |
|
id2label={id: label for label, id in label2id.items()}, |
|
finetuning_task="text-classification", |
|
cache_dir=model_args.cache_dir, |
|
) |
|
|
|
with training_args.strategy.scope(): |
|
model = TFAutoModelForSequenceClassification.from_pretrained( |
|
model_args.model_name_or_path, |
|
from_pt=bool(".bin" in model_args.model_name_or_path), |
|
config=config, |
|
cache_dir=model_args.cache_dir, |
|
) |
|
|
|
def compute_metrics(p: EvalPrediction) -> Dict: |
|
preds = np.argmax(p.predictions, axis=1) |
|
|
|
return {"acc": (preds == p.label_ids).mean()} |
|
|
|
|
|
trainer = TFTrainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=train_dataset, |
|
eval_dataset=eval_dataset, |
|
compute_metrics=compute_metrics, |
|
) |
|
|
|
|
|
if training_args.do_train: |
|
trainer.train() |
|
trainer.save_model() |
|
tokenizer.save_pretrained(training_args.output_dir) |
|
|
|
|
|
results = {} |
|
if training_args.do_eval: |
|
logger.info("*** Evaluate ***") |
|
result = trainer.evaluate() |
|
output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt") |
|
|
|
with open(output_eval_file, "w") as writer: |
|
logger.info("***** Eval results *****") |
|
|
|
for key, value in result.items(): |
|
logger.info(f" {key} = {value}") |
|
writer.write(f"{key} = {value}\n") |
|
|
|
results.update(result) |
|
|
|
return results |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|