|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Multiple choice fine-tuning: utilities to work with multiple choice tasks of reading comprehension """ |
|
|
|
|
|
import csv |
|
import glob |
|
import json |
|
import logging |
|
import os |
|
from dataclasses import dataclass |
|
from enum import Enum |
|
from typing import List, Optional |
|
|
|
import tqdm |
|
from filelock import FileLock |
|
|
|
from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@dataclass(frozen=True) |
|
class InputExample: |
|
""" |
|
A single training/test example for multiple choice |
|
|
|
Args: |
|
example_id: Unique id for the example. |
|
question: string. The untokenized text of the second sequence (question). |
|
contexts: list of str. The untokenized text of the first sequence (context of corresponding question). |
|
endings: list of str. multiple choice's options. Its length must be equal to contexts' length. |
|
label: (Optional) string. The label of the example. This should be |
|
specified for train and dev examples, but not for test examples. |
|
""" |
|
|
|
example_id: str |
|
question: str |
|
contexts: List[str] |
|
endings: List[str] |
|
label: Optional[str] |
|
|
|
|
|
@dataclass(frozen=True) |
|
class InputFeatures: |
|
""" |
|
A single set of features of data. |
|
Property names are the same names as the corresponding inputs to a model. |
|
""" |
|
|
|
example_id: str |
|
input_ids: List[List[int]] |
|
attention_mask: Optional[List[List[int]]] |
|
token_type_ids: Optional[List[List[int]]] |
|
label: Optional[int] |
|
|
|
|
|
class Split(Enum): |
|
train = "train" |
|
dev = "dev" |
|
test = "test" |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
from torch.utils.data import Dataset |
|
|
|
class MultipleChoiceDataset(Dataset): |
|
""" |
|
This will be superseded by a framework-agnostic approach |
|
soon. |
|
""" |
|
|
|
features: List[InputFeatures] |
|
|
|
def __init__( |
|
self, |
|
data_dir: str, |
|
tokenizer: PreTrainedTokenizer, |
|
task: str, |
|
max_seq_length: Optional[int] = None, |
|
overwrite_cache=False, |
|
mode: Split = Split.train, |
|
): |
|
processor = processors[task]() |
|
|
|
cached_features_file = os.path.join( |
|
data_dir, |
|
"cached_{}_{}_{}_{}".format( |
|
mode.value, |
|
tokenizer.__class__.__name__, |
|
str(max_seq_length), |
|
task, |
|
), |
|
) |
|
|
|
|
|
|
|
lock_path = cached_features_file + ".lock" |
|
with FileLock(lock_path): |
|
if os.path.exists(cached_features_file) and not overwrite_cache: |
|
logger.info(f"Loading features from cached file {cached_features_file}") |
|
self.features = torch.load(cached_features_file) |
|
else: |
|
logger.info(f"Creating features from dataset file at {data_dir}") |
|
label_list = processor.get_labels() |
|
if mode == Split.dev: |
|
examples = processor.get_dev_examples(data_dir) |
|
elif mode == Split.test: |
|
examples = processor.get_test_examples(data_dir) |
|
else: |
|
examples = processor.get_train_examples(data_dir) |
|
logger.info("Training examples: %s", len(examples)) |
|
self.features = convert_examples_to_features( |
|
examples, |
|
label_list, |
|
max_seq_length, |
|
tokenizer, |
|
) |
|
logger.info("Saving features into cached file %s", cached_features_file) |
|
torch.save(self.features, cached_features_file) |
|
|
|
def __len__(self): |
|
return len(self.features) |
|
|
|
def __getitem__(self, i) -> InputFeatures: |
|
return self.features[i] |
|
|
|
|
|
if is_tf_available(): |
|
import tensorflow as tf |
|
|
|
class TFMultipleChoiceDataset: |
|
""" |
|
This will be superseded by a framework-agnostic approach |
|
soon. |
|
""" |
|
|
|
features: List[InputFeatures] |
|
|
|
def __init__( |
|
self, |
|
data_dir: str, |
|
tokenizer: PreTrainedTokenizer, |
|
task: str, |
|
max_seq_length: Optional[int] = 128, |
|
overwrite_cache=False, |
|
mode: Split = Split.train, |
|
): |
|
processor = processors[task]() |
|
|
|
logger.info(f"Creating features from dataset file at {data_dir}") |
|
label_list = processor.get_labels() |
|
if mode == Split.dev: |
|
examples = processor.get_dev_examples(data_dir) |
|
elif mode == Split.test: |
|
examples = processor.get_test_examples(data_dir) |
|
else: |
|
examples = processor.get_train_examples(data_dir) |
|
logger.info("Training examples: %s", len(examples)) |
|
|
|
self.features = convert_examples_to_features( |
|
examples, |
|
label_list, |
|
max_seq_length, |
|
tokenizer, |
|
) |
|
|
|
def gen(): |
|
for ex_index, ex in tqdm.tqdm(enumerate(self.features), desc="convert examples to features"): |
|
if ex_index % 10000 == 0: |
|
logger.info("Writing example %d of %d" % (ex_index, len(examples))) |
|
|
|
yield ( |
|
{ |
|
"example_id": 0, |
|
"input_ids": ex.input_ids, |
|
"attention_mask": ex.attention_mask, |
|
"token_type_ids": ex.token_type_ids, |
|
}, |
|
ex.label, |
|
) |
|
|
|
self.dataset = tf.data.Dataset.from_generator( |
|
gen, |
|
( |
|
{ |
|
"example_id": tf.int32, |
|
"input_ids": tf.int32, |
|
"attention_mask": tf.int32, |
|
"token_type_ids": tf.int32, |
|
}, |
|
tf.int64, |
|
), |
|
( |
|
{ |
|
"example_id": tf.TensorShape([]), |
|
"input_ids": tf.TensorShape([None, None]), |
|
"attention_mask": tf.TensorShape([None, None]), |
|
"token_type_ids": tf.TensorShape([None, None]), |
|
}, |
|
tf.TensorShape([]), |
|
), |
|
) |
|
|
|
def get_dataset(self): |
|
self.dataset = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features))) |
|
|
|
return self.dataset |
|
|
|
def __len__(self): |
|
return len(self.features) |
|
|
|
def __getitem__(self, i) -> InputFeatures: |
|
return self.features[i] |
|
|
|
|
|
class DataProcessor: |
|
"""Base class for data converters for multiple choice data sets.""" |
|
|
|
def get_train_examples(self, data_dir): |
|
"""Gets a collection of `InputExample`s for the train set.""" |
|
raise NotImplementedError() |
|
|
|
def get_dev_examples(self, data_dir): |
|
"""Gets a collection of `InputExample`s for the dev set.""" |
|
raise NotImplementedError() |
|
|
|
def get_test_examples(self, data_dir): |
|
"""Gets a collection of `InputExample`s for the test set.""" |
|
raise NotImplementedError() |
|
|
|
def get_labels(self): |
|
"""Gets the list of labels for this data set.""" |
|
raise NotImplementedError() |
|
|
|
|
|
class RaceProcessor(DataProcessor): |
|
"""Processor for the RACE data set.""" |
|
|
|
def get_train_examples(self, data_dir): |
|
"""See base class.""" |
|
logger.info("LOOKING AT {} train".format(data_dir)) |
|
high = os.path.join(data_dir, "train/high") |
|
middle = os.path.join(data_dir, "train/middle") |
|
high = self._read_txt(high) |
|
middle = self._read_txt(middle) |
|
return self._create_examples(high + middle, "train") |
|
|
|
def get_dev_examples(self, data_dir): |
|
"""See base class.""" |
|
logger.info("LOOKING AT {} dev".format(data_dir)) |
|
high = os.path.join(data_dir, "dev/high") |
|
middle = os.path.join(data_dir, "dev/middle") |
|
high = self._read_txt(high) |
|
middle = self._read_txt(middle) |
|
return self._create_examples(high + middle, "dev") |
|
|
|
def get_test_examples(self, data_dir): |
|
"""See base class.""" |
|
logger.info("LOOKING AT {} test".format(data_dir)) |
|
high = os.path.join(data_dir, "test/high") |
|
middle = os.path.join(data_dir, "test/middle") |
|
high = self._read_txt(high) |
|
middle = self._read_txt(middle) |
|
return self._create_examples(high + middle, "test") |
|
|
|
def get_labels(self): |
|
"""See base class.""" |
|
return ["0", "1", "2", "3"] |
|
|
|
def _read_txt(self, input_dir): |
|
lines = [] |
|
files = glob.glob(input_dir + "/*txt") |
|
for file in tqdm.tqdm(files, desc="read files"): |
|
with open(file, "r", encoding="utf-8") as fin: |
|
data_raw = json.load(fin) |
|
data_raw["race_id"] = file |
|
lines.append(data_raw) |
|
return lines |
|
|
|
def _create_examples(self, lines, set_type): |
|
"""Creates examples for the training and dev sets.""" |
|
examples = [] |
|
for _, data_raw in enumerate(lines): |
|
race_id = "%s-%s" % (set_type, data_raw["race_id"]) |
|
article = data_raw["article"] |
|
for i in range(len(data_raw["answers"])): |
|
truth = str(ord(data_raw["answers"][i]) - ord("A")) |
|
question = data_raw["questions"][i] |
|
options = data_raw["options"][i] |
|
|
|
examples.append( |
|
InputExample( |
|
example_id=race_id, |
|
question=question, |
|
contexts=[article, article, article, article], |
|
endings=[options[0], options[1], options[2], options[3]], |
|
label=truth, |
|
) |
|
) |
|
return examples |
|
|
|
|
|
class SynonymProcessor(DataProcessor): |
|
"""Processor for the Synonym data set.""" |
|
|
|
def get_train_examples(self, data_dir): |
|
"""See base class.""" |
|
logger.info("LOOKING AT {} train".format(data_dir)) |
|
return self._create_examples(self._read_csv(os.path.join(data_dir, "mctrain.csv")), "train") |
|
|
|
def get_dev_examples(self, data_dir): |
|
"""See base class.""" |
|
logger.info("LOOKING AT {} dev".format(data_dir)) |
|
return self._create_examples(self._read_csv(os.path.join(data_dir, "mchp.csv")), "dev") |
|
|
|
def get_test_examples(self, data_dir): |
|
"""See base class.""" |
|
logger.info("LOOKING AT {} dev".format(data_dir)) |
|
|
|
return self._create_examples(self._read_csv(os.path.join(data_dir, "mctest.csv")), "test") |
|
|
|
def get_labels(self): |
|
"""See base class.""" |
|
return ["0", "1", "2", "3", "4"] |
|
|
|
def _read_csv(self, input_file): |
|
with open(input_file, "r", encoding="utf-8") as f: |
|
return list(csv.reader(f)) |
|
|
|
def _create_examples(self, lines: List[List[str]], type: str): |
|
"""Creates examples for the training and dev sets.""" |
|
|
|
examples = [ |
|
InputExample( |
|
example_id=line[0], |
|
question="", |
|
|
|
|
|
contexts=[line[1], line[1], line[1], line[1], line[1]], |
|
endings=[line[2], line[3], line[4], line[5], line[6]], |
|
label=line[7], |
|
) |
|
for line in lines |
|
] |
|
|
|
return examples |
|
|
|
|
|
class SwagProcessor(DataProcessor): |
|
"""Processor for the SWAG data set.""" |
|
|
|
def get_train_examples(self, data_dir): |
|
"""See base class.""" |
|
logger.info("LOOKING AT {} train".format(data_dir)) |
|
return self._create_examples(self._read_csv(os.path.join(data_dir, "train.csv")), "train") |
|
|
|
def get_dev_examples(self, data_dir): |
|
"""See base class.""" |
|
logger.info("LOOKING AT {} dev".format(data_dir)) |
|
return self._create_examples(self._read_csv(os.path.join(data_dir, "val.csv")), "dev") |
|
|
|
def get_test_examples(self, data_dir): |
|
"""See base class.""" |
|
logger.info("LOOKING AT {} dev".format(data_dir)) |
|
raise ValueError( |
|
"For swag testing, the input file does not contain a label column. It can not be tested in current code" |
|
"setting!" |
|
) |
|
return self._create_examples(self._read_csv(os.path.join(data_dir, "test.csv")), "test") |
|
|
|
def get_labels(self): |
|
"""See base class.""" |
|
return ["0", "1", "2", "3"] |
|
|
|
def _read_csv(self, input_file): |
|
with open(input_file, "r", encoding="utf-8") as f: |
|
return list(csv.reader(f)) |
|
|
|
def _create_examples(self, lines: List[List[str]], type: str): |
|
"""Creates examples for the training and dev sets.""" |
|
if type == "train" and lines[0][-1] != "label": |
|
raise ValueError("For training, the input file must contain a label column.") |
|
|
|
examples = [ |
|
InputExample( |
|
example_id=line[2], |
|
question=line[5], |
|
|
|
|
|
contexts=[line[4], line[4], line[4], line[4]], |
|
endings=[line[7], line[8], line[9], line[10]], |
|
label=line[11], |
|
) |
|
for line in lines[1:] |
|
] |
|
|
|
return examples |
|
|
|
|
|
class ArcProcessor(DataProcessor): |
|
"""Processor for the ARC data set (request from allennlp).""" |
|
|
|
def get_train_examples(self, data_dir): |
|
"""See base class.""" |
|
logger.info("LOOKING AT {} train".format(data_dir)) |
|
return self._create_examples(self._read_json(os.path.join(data_dir, "train.jsonl")), "train") |
|
|
|
def get_dev_examples(self, data_dir): |
|
"""See base class.""" |
|
logger.info("LOOKING AT {} dev".format(data_dir)) |
|
return self._create_examples(self._read_json(os.path.join(data_dir, "dev.jsonl")), "dev") |
|
|
|
def get_test_examples(self, data_dir): |
|
logger.info("LOOKING AT {} test".format(data_dir)) |
|
return self._create_examples(self._read_json(os.path.join(data_dir, "test.jsonl")), "test") |
|
|
|
def get_labels(self): |
|
"""See base class.""" |
|
return ["0", "1", "2", "3"] |
|
|
|
def _read_json(self, input_file): |
|
with open(input_file, "r", encoding="utf-8") as fin: |
|
lines = fin.readlines() |
|
return lines |
|
|
|
def _create_examples(self, lines, type): |
|
"""Creates examples for the training and dev sets.""" |
|
|
|
|
|
def normalize(truth): |
|
if truth in "ABCD": |
|
return ord(truth) - ord("A") |
|
elif truth in "1234": |
|
return int(truth) - 1 |
|
else: |
|
logger.info("truth ERROR! %s", str(truth)) |
|
return None |
|
|
|
examples = [] |
|
three_choice = 0 |
|
four_choice = 0 |
|
five_choice = 0 |
|
other_choices = 0 |
|
|
|
for line in tqdm.tqdm(lines, desc="read arc data"): |
|
data_raw = json.loads(line.strip("\n")) |
|
if len(data_raw["question"]["choices"]) == 3: |
|
three_choice += 1 |
|
continue |
|
elif len(data_raw["question"]["choices"]) == 5: |
|
five_choice += 1 |
|
continue |
|
elif len(data_raw["question"]["choices"]) != 4: |
|
other_choices += 1 |
|
continue |
|
four_choice += 1 |
|
truth = str(normalize(data_raw["answerKey"])) |
|
assert truth != "None" |
|
question_choices = data_raw["question"] |
|
question = question_choices["stem"] |
|
id = data_raw["id"] |
|
options = question_choices["choices"] |
|
if len(options) == 4: |
|
examples.append( |
|
InputExample( |
|
example_id=id, |
|
question=question, |
|
contexts=[ |
|
options[0]["para"].replace("_", ""), |
|
options[1]["para"].replace("_", ""), |
|
options[2]["para"].replace("_", ""), |
|
options[3]["para"].replace("_", ""), |
|
], |
|
endings=[options[0]["text"], options[1]["text"], options[2]["text"], options[3]["text"]], |
|
label=truth, |
|
) |
|
) |
|
|
|
if type == "train": |
|
assert len(examples) > 1 |
|
assert examples[0].label is not None |
|
logger.info("len examples: %s}", str(len(examples))) |
|
logger.info("Three choices: %s", str(three_choice)) |
|
logger.info("Five choices: %s", str(five_choice)) |
|
logger.info("Other choices: %s", str(other_choices)) |
|
logger.info("four choices: %s", str(four_choice)) |
|
|
|
return examples |
|
|
|
|
|
def convert_examples_to_features( |
|
examples: List[InputExample], |
|
label_list: List[str], |
|
max_length: int, |
|
tokenizer: PreTrainedTokenizer, |
|
) -> List[InputFeatures]: |
|
""" |
|
Loads a data file into a list of `InputFeatures` |
|
""" |
|
|
|
label_map = {label: i for i, label in enumerate(label_list)} |
|
|
|
features = [] |
|
for ex_index, example in tqdm.tqdm(enumerate(examples), desc="convert examples to features"): |
|
if ex_index % 10000 == 0: |
|
logger.info("Writing example %d of %d" % (ex_index, len(examples))) |
|
choices_inputs = [] |
|
for ending_idx, (context, ending) in enumerate(zip(example.contexts, example.endings)): |
|
text_a = context |
|
if example.question.find("_") != -1: |
|
|
|
text_b = example.question.replace("_", ending) |
|
else: |
|
text_b = example.question + " " + ending |
|
|
|
inputs = tokenizer( |
|
text_a, |
|
text_b, |
|
add_special_tokens=True, |
|
max_length=max_length, |
|
padding="max_length", |
|
truncation=True, |
|
return_overflowing_tokens=True, |
|
) |
|
if "num_truncated_tokens" in inputs and inputs["num_truncated_tokens"] > 0: |
|
logger.info( |
|
"Attention! you are cropping tokens (swag task is ok). " |
|
"If you are training ARC and RACE and you are poping question + options," |
|
"you need to try to use a bigger max seq length!" |
|
) |
|
|
|
choices_inputs.append(inputs) |
|
|
|
label = label_map[example.label] |
|
|
|
input_ids = [x["input_ids"] for x in choices_inputs] |
|
attention_mask = ( |
|
[x["attention_mask"] for x in choices_inputs] if "attention_mask" in choices_inputs[0] else None |
|
) |
|
token_type_ids = ( |
|
[x["token_type_ids"] for x in choices_inputs] if "token_type_ids" in choices_inputs[0] else None |
|
) |
|
|
|
features.append( |
|
InputFeatures( |
|
example_id=example.example_id, |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
label=label, |
|
) |
|
) |
|
|
|
for f in features[:2]: |
|
logger.info("*** Example ***") |
|
logger.info("feature: %s" % f) |
|
|
|
return features |
|
|
|
|
|
processors = {"race": RaceProcessor, "swag": SwagProcessor, "arc": ArcProcessor, "syn": SynonymProcessor} |
|
MULTIPLE_CHOICE_TASKS_NUM_LABELS = {"race", 4, "swag", 4, "arc", 4, "syn", 5} |
|
|