|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import os |
|
|
|
from transformers.utils import direct_transformers_import |
|
|
|
|
|
|
|
|
|
TRANSFORMERS_PATH = "src/transformers" |
|
PATH_TO_TASK_GUIDES = "docs/source/en/tasks" |
|
|
|
|
|
def _find_text_in_file(filename, start_prompt, end_prompt): |
|
""" |
|
Find the text in `filename` between a line beginning with `start_prompt` and before `end_prompt`, removing empty |
|
lines. |
|
""" |
|
with open(filename, "r", encoding="utf-8", newline="\n") as f: |
|
lines = f.readlines() |
|
|
|
start_index = 0 |
|
while not lines[start_index].startswith(start_prompt): |
|
start_index += 1 |
|
start_index += 1 |
|
|
|
end_index = start_index |
|
while not lines[end_index].startswith(end_prompt): |
|
end_index += 1 |
|
end_index -= 1 |
|
|
|
while len(lines[start_index]) <= 1: |
|
start_index += 1 |
|
while len(lines[end_index]) <= 1: |
|
end_index -= 1 |
|
end_index += 1 |
|
return "".join(lines[start_index:end_index]), start_index, end_index, lines |
|
|
|
|
|
|
|
transformers_module = direct_transformers_import(TRANSFORMERS_PATH) |
|
|
|
TASK_GUIDE_TO_MODELS = { |
|
"asr.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, |
|
"audio_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, |
|
"language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, |
|
"image_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, |
|
"masked_language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, |
|
"multiple_choice.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, |
|
"object_detection.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, |
|
"question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, |
|
"semantic_segmentation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, |
|
"sequence_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, |
|
"summarization.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, |
|
"token_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, |
|
"translation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, |
|
"video_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, |
|
"document_question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, |
|
"monocular_depth_estimation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, |
|
} |
|
|
|
|
|
|
|
SPECIAL_TASK_GUIDE_TO_MODEL_TYPES = { |
|
"summarization.md": ("nllb",), |
|
"translation.md": ("nllb",), |
|
} |
|
|
|
|
|
def get_model_list_for_task(task_guide): |
|
""" |
|
Return the list of models supporting given task. |
|
""" |
|
model_maping_names = TASK_GUIDE_TO_MODELS[task_guide] |
|
special_model_types = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(task_guide, set()) |
|
model_names = { |
|
code: name |
|
for code, name in transformers_module.MODEL_NAMES_MAPPING.items() |
|
if (code in model_maping_names or code in special_model_types) |
|
} |
|
return ", ".join([f"[{name}](../model_doc/{code})" for code, name in model_names.items()]) + "\n" |
|
|
|
|
|
def check_model_list_for_task(task_guide, overwrite=False): |
|
"""For a given task guide, checks the model list in the generated tip for consistency with the state of the lib and overwrites if needed.""" |
|
|
|
current_list, start_index, end_index, lines = _find_text_in_file( |
|
filename=os.path.join(PATH_TO_TASK_GUIDES, task_guide), |
|
start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->", |
|
end_prompt="<!--End of the generated tip-->", |
|
) |
|
|
|
new_list = get_model_list_for_task(task_guide) |
|
|
|
if current_list != new_list: |
|
if overwrite: |
|
with open(os.path.join(PATH_TO_TASK_GUIDES, task_guide), "w", encoding="utf-8", newline="\n") as f: |
|
f.writelines(lines[:start_index] + [new_list] + lines[end_index:]) |
|
else: |
|
raise ValueError( |
|
f"The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`" |
|
" to fix this." |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") |
|
args = parser.parse_args() |
|
|
|
for task_guide in TASK_GUIDE_TO_MODELS.keys(): |
|
check_model_list_for_task(task_guide, args.fix_and_overwrite) |
|
|