|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import numpy as np |
|
|
|
from transformers.testing_utils import require_flax, require_tf, require_torch |
|
from transformers.utils import ( |
|
expand_dims, |
|
flatten_dict, |
|
is_flax_available, |
|
is_tf_available, |
|
is_torch_available, |
|
reshape, |
|
squeeze, |
|
transpose, |
|
) |
|
|
|
|
|
if is_flax_available(): |
|
import jax.numpy as jnp |
|
|
|
if is_tf_available(): |
|
import tensorflow as tf |
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
|
|
class GenericTester(unittest.TestCase): |
|
def test_flatten_dict(self): |
|
input_dict = { |
|
"task_specific_params": { |
|
"summarization": {"length_penalty": 1.0, "max_length": 128, "min_length": 12, "num_beams": 4}, |
|
"summarization_cnn": {"length_penalty": 2.0, "max_length": 142, "min_length": 56, "num_beams": 4}, |
|
"summarization_xsum": {"length_penalty": 1.0, "max_length": 62, "min_length": 11, "num_beams": 6}, |
|
} |
|
} |
|
expected_dict = { |
|
"task_specific_params.summarization.length_penalty": 1.0, |
|
"task_specific_params.summarization.max_length": 128, |
|
"task_specific_params.summarization.min_length": 12, |
|
"task_specific_params.summarization.num_beams": 4, |
|
"task_specific_params.summarization_cnn.length_penalty": 2.0, |
|
"task_specific_params.summarization_cnn.max_length": 142, |
|
"task_specific_params.summarization_cnn.min_length": 56, |
|
"task_specific_params.summarization_cnn.num_beams": 4, |
|
"task_specific_params.summarization_xsum.length_penalty": 1.0, |
|
"task_specific_params.summarization_xsum.max_length": 62, |
|
"task_specific_params.summarization_xsum.min_length": 11, |
|
"task_specific_params.summarization_xsum.num_beams": 6, |
|
} |
|
|
|
self.assertEqual(flatten_dict(input_dict), expected_dict) |
|
|
|
def test_transpose_numpy(self): |
|
x = np.random.randn(3, 4) |
|
self.assertTrue(np.allclose(transpose(x), x.transpose())) |
|
|
|
x = np.random.randn(3, 4, 5) |
|
self.assertTrue(np.allclose(transpose(x, axes=(1, 2, 0)), x.transpose((1, 2, 0)))) |
|
|
|
@require_torch |
|
def test_transpose_torch(self): |
|
x = np.random.randn(3, 4) |
|
t = torch.tensor(x) |
|
self.assertTrue(np.allclose(transpose(x), transpose(t).numpy())) |
|
|
|
x = np.random.randn(3, 4, 5) |
|
t = torch.tensor(x) |
|
self.assertTrue(np.allclose(transpose(x, axes=(1, 2, 0)), transpose(t, axes=(1, 2, 0)).numpy())) |
|
|
|
@require_tf |
|
def test_transpose_tf(self): |
|
x = np.random.randn(3, 4) |
|
t = tf.constant(x) |
|
self.assertTrue(np.allclose(transpose(x), transpose(t).numpy())) |
|
|
|
x = np.random.randn(3, 4, 5) |
|
t = tf.constant(x) |
|
self.assertTrue(np.allclose(transpose(x, axes=(1, 2, 0)), transpose(t, axes=(1, 2, 0)).numpy())) |
|
|
|
@require_flax |
|
def test_transpose_flax(self): |
|
x = np.random.randn(3, 4) |
|
t = jnp.array(x) |
|
self.assertTrue(np.allclose(transpose(x), np.asarray(transpose(t)))) |
|
|
|
x = np.random.randn(3, 4, 5) |
|
t = jnp.array(x) |
|
self.assertTrue(np.allclose(transpose(x, axes=(1, 2, 0)), np.asarray(transpose(t, axes=(1, 2, 0))))) |
|
|
|
def test_reshape_numpy(self): |
|
x = np.random.randn(3, 4) |
|
self.assertTrue(np.allclose(reshape(x, (4, 3)), np.reshape(x, (4, 3)))) |
|
|
|
x = np.random.randn(3, 4, 5) |
|
self.assertTrue(np.allclose(reshape(x, (12, 5)), np.reshape(x, (12, 5)))) |
|
|
|
@require_torch |
|
def test_reshape_torch(self): |
|
x = np.random.randn(3, 4) |
|
t = torch.tensor(x) |
|
self.assertTrue(np.allclose(reshape(x, (4, 3)), reshape(t, (4, 3)).numpy())) |
|
|
|
x = np.random.randn(3, 4, 5) |
|
t = torch.tensor(x) |
|
self.assertTrue(np.allclose(reshape(x, (12, 5)), reshape(t, (12, 5)).numpy())) |
|
|
|
@require_tf |
|
def test_reshape_tf(self): |
|
x = np.random.randn(3, 4) |
|
t = tf.constant(x) |
|
self.assertTrue(np.allclose(reshape(x, (4, 3)), reshape(t, (4, 3)).numpy())) |
|
|
|
x = np.random.randn(3, 4, 5) |
|
t = tf.constant(x) |
|
self.assertTrue(np.allclose(reshape(x, (12, 5)), reshape(t, (12, 5)).numpy())) |
|
|
|
@require_flax |
|
def test_reshape_flax(self): |
|
x = np.random.randn(3, 4) |
|
t = jnp.array(x) |
|
self.assertTrue(np.allclose(reshape(x, (4, 3)), np.asarray(reshape(t, (4, 3))))) |
|
|
|
x = np.random.randn(3, 4, 5) |
|
t = jnp.array(x) |
|
self.assertTrue(np.allclose(reshape(x, (12, 5)), np.asarray(reshape(t, (12, 5))))) |
|
|
|
def test_squeeze_numpy(self): |
|
x = np.random.randn(1, 3, 4) |
|
self.assertTrue(np.allclose(squeeze(x), np.squeeze(x))) |
|
|
|
x = np.random.randn(1, 4, 1, 5) |
|
self.assertTrue(np.allclose(squeeze(x, axis=2), np.squeeze(x, axis=2))) |
|
|
|
@require_torch |
|
def test_squeeze_torch(self): |
|
x = np.random.randn(1, 3, 4) |
|
t = torch.tensor(x) |
|
self.assertTrue(np.allclose(squeeze(x), squeeze(t).numpy())) |
|
|
|
x = np.random.randn(1, 4, 1, 5) |
|
t = torch.tensor(x) |
|
self.assertTrue(np.allclose(squeeze(x, axis=2), squeeze(t, axis=2).numpy())) |
|
|
|
@require_tf |
|
def test_squeeze_tf(self): |
|
x = np.random.randn(1, 3, 4) |
|
t = tf.constant(x) |
|
self.assertTrue(np.allclose(squeeze(x), squeeze(t).numpy())) |
|
|
|
x = np.random.randn(1, 4, 1, 5) |
|
t = tf.constant(x) |
|
self.assertTrue(np.allclose(squeeze(x, axis=2), squeeze(t, axis=2).numpy())) |
|
|
|
@require_flax |
|
def test_squeeze_flax(self): |
|
x = np.random.randn(1, 3, 4) |
|
t = jnp.array(x) |
|
self.assertTrue(np.allclose(squeeze(x), np.asarray(squeeze(t)))) |
|
|
|
x = np.random.randn(1, 4, 1, 5) |
|
t = jnp.array(x) |
|
self.assertTrue(np.allclose(squeeze(x, axis=2), np.asarray(squeeze(t, axis=2)))) |
|
|
|
def test_expand_dims_numpy(self): |
|
x = np.random.randn(3, 4) |
|
self.assertTrue(np.allclose(expand_dims(x, axis=1), np.expand_dims(x, axis=1))) |
|
|
|
@require_torch |
|
def test_expand_dims_torch(self): |
|
x = np.random.randn(3, 4) |
|
t = torch.tensor(x) |
|
self.assertTrue(np.allclose(expand_dims(x, axis=1), expand_dims(t, axis=1).numpy())) |
|
|
|
@require_tf |
|
def test_expand_dims_tf(self): |
|
x = np.random.randn(3, 4) |
|
t = tf.constant(x) |
|
self.assertTrue(np.allclose(expand_dims(x, axis=1), expand_dims(t, axis=1).numpy())) |
|
|
|
@require_flax |
|
def test_expand_dims_flax(self): |
|
x = np.random.randn(3, 4) |
|
t = jnp.array(x) |
|
self.assertTrue(np.allclose(expand_dims(x, axis=1), np.asarray(expand_dims(t, axis=1)))) |
|
|