|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import shutil |
|
import tempfile |
|
import unittest |
|
|
|
import numpy as np |
|
|
|
from transformers import ( |
|
BertTokenizer, |
|
DataCollatorForLanguageModeling, |
|
DataCollatorForPermutationLanguageModeling, |
|
DataCollatorForTokenClassification, |
|
DataCollatorForWholeWordMask, |
|
DataCollatorWithPadding, |
|
default_data_collator, |
|
is_tf_available, |
|
is_torch_available, |
|
set_seed, |
|
) |
|
from transformers.testing_utils import require_tf, require_torch |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
if is_tf_available(): |
|
import tensorflow as tf |
|
|
|
|
|
@require_torch |
|
class DataCollatorIntegrationTest(unittest.TestCase): |
|
def setUp(self): |
|
self.tmpdirname = tempfile.mkdtemp() |
|
|
|
vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"] |
|
self.vocab_file = os.path.join(self.tmpdirname, "vocab.txt") |
|
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: |
|
vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) |
|
|
|
def tearDown(self): |
|
shutil.rmtree(self.tmpdirname) |
|
|
|
def test_default_with_dict(self): |
|
features = [{"label": i, "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)] |
|
batch = default_data_collator(features) |
|
self.assertTrue(batch["labels"].equal(torch.tensor(list(range(8))))) |
|
self.assertEqual(batch["labels"].dtype, torch.long) |
|
self.assertEqual(batch["inputs"].shape, torch.Size([8, 6])) |
|
|
|
|
|
features = [{"label_ids": [0, 1, 2], "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)] |
|
batch = default_data_collator(features) |
|
self.assertTrue(batch["labels"].equal(torch.tensor([[0, 1, 2]] * 8))) |
|
self.assertEqual(batch["labels"].dtype, torch.long) |
|
self.assertEqual(batch["inputs"].shape, torch.Size([8, 6])) |
|
|
|
|
|
features = [{"label": i, "inputs": np.random.randint(0, 10, [10])} for i in range(8)] |
|
batch = default_data_collator(features) |
|
self.assertTrue(batch["labels"].equal(torch.tensor(list(range(8))))) |
|
self.assertEqual(batch["labels"].dtype, torch.long) |
|
self.assertEqual(batch["inputs"].shape, torch.Size([8, 10])) |
|
|
|
|
|
features = [{"label": torch.tensor(i), "inputs": np.random.randint(0, 10, [10])} for i in range(8)] |
|
batch = default_data_collator(features) |
|
self.assertEqual(batch["labels"].dtype, torch.long) |
|
self.assertTrue(batch["labels"].equal(torch.tensor(list(range(8))))) |
|
self.assertEqual(batch["labels"].dtype, torch.long) |
|
self.assertEqual(batch["inputs"].shape, torch.Size([8, 10])) |
|
|
|
def test_default_classification_and_regression(self): |
|
data_collator = default_data_collator |
|
|
|
features = [{"input_ids": [0, 1, 2, 3, 4], "label": i} for i in range(4)] |
|
batch = data_collator(features) |
|
self.assertEqual(batch["labels"].dtype, torch.long) |
|
|
|
features = [{"input_ids": [0, 1, 2, 3, 4], "label": float(i)} for i in range(4)] |
|
batch = data_collator(features) |
|
self.assertEqual(batch["labels"].dtype, torch.float) |
|
|
|
def test_default_with_no_labels(self): |
|
features = [{"label": None, "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)] |
|
batch = default_data_collator(features) |
|
self.assertTrue("labels" not in batch) |
|
self.assertEqual(batch["inputs"].shape, torch.Size([8, 6])) |
|
|
|
|
|
features = [{"label_ids": None, "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)] |
|
batch = default_data_collator(features) |
|
self.assertTrue("labels" not in batch) |
|
self.assertEqual(batch["inputs"].shape, torch.Size([8, 6])) |
|
|
|
def test_data_collator_with_padding(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
features = [{"input_ids": [0, 1, 2]}, {"input_ids": [0, 1, 2, 3, 4, 5]}] |
|
|
|
data_collator = DataCollatorWithPadding(tokenizer) |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size([2, 6])) |
|
self.assertEqual(batch["input_ids"][0].tolist(), [0, 1, 2] + [tokenizer.pad_token_id] * 3) |
|
|
|
data_collator = DataCollatorWithPadding(tokenizer, padding="max_length", max_length=10) |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size([2, 10])) |
|
|
|
data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8) |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size([2, 8])) |
|
|
|
def test_data_collator_for_token_classification(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
features = [ |
|
{"input_ids": [0, 1, 2], "labels": [0, 1, 2]}, |
|
{"input_ids": [0, 1, 2, 3, 4, 5], "labels": [0, 1, 2, 3, 4, 5]}, |
|
] |
|
|
|
data_collator = DataCollatorForTokenClassification(tokenizer) |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size([2, 6])) |
|
self.assertEqual(batch["input_ids"][0].tolist(), [0, 1, 2] + [tokenizer.pad_token_id] * 3) |
|
self.assertEqual(batch["labels"].shape, torch.Size([2, 6])) |
|
self.assertEqual(batch["labels"][0].tolist(), [0, 1, 2] + [-100] * 3) |
|
|
|
data_collator = DataCollatorForTokenClassification(tokenizer, padding="max_length", max_length=10) |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size([2, 10])) |
|
self.assertEqual(batch["labels"].shape, torch.Size([2, 10])) |
|
|
|
data_collator = DataCollatorForTokenClassification(tokenizer, pad_to_multiple_of=8) |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size([2, 8])) |
|
self.assertEqual(batch["labels"].shape, torch.Size([2, 8])) |
|
|
|
data_collator = DataCollatorForTokenClassification(tokenizer, label_pad_token_id=-1) |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size([2, 6])) |
|
self.assertEqual(batch["input_ids"][0].tolist(), [0, 1, 2] + [tokenizer.pad_token_id] * 3) |
|
self.assertEqual(batch["labels"].shape, torch.Size([2, 6])) |
|
self.assertEqual(batch["labels"][0].tolist(), [0, 1, 2] + [-1] * 3) |
|
|
|
for feature in features: |
|
feature.pop("labels") |
|
|
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size([2, 6])) |
|
self.assertEqual(batch["input_ids"][0].tolist(), [0, 1, 2] + [tokenizer.pad_token_id] * 3) |
|
|
|
def test_data_collator_for_token_classification_works_with_pt_tensors(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
features = [ |
|
{"input_ids": torch.tensor([0, 1, 2]), "labels": torch.tensor([0, 1, 2])}, |
|
{"input_ids": torch.tensor([0, 1, 2, 3, 4, 5]), "labels": torch.tensor([0, 1, 2, 3, 4, 5])}, |
|
] |
|
|
|
data_collator = DataCollatorForTokenClassification(tokenizer) |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size([2, 6])) |
|
self.assertEqual(batch["input_ids"][0].tolist(), [0, 1, 2] + [tokenizer.pad_token_id] * 3) |
|
self.assertEqual(batch["labels"].shape, torch.Size([2, 6])) |
|
self.assertEqual(batch["labels"][0].tolist(), [0, 1, 2] + [-100] * 3) |
|
|
|
data_collator = DataCollatorForTokenClassification(tokenizer, padding="max_length", max_length=10) |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size([2, 10])) |
|
self.assertEqual(batch["labels"].shape, torch.Size([2, 10])) |
|
|
|
data_collator = DataCollatorForTokenClassification(tokenizer, pad_to_multiple_of=8) |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size([2, 8])) |
|
self.assertEqual(batch["labels"].shape, torch.Size([2, 8])) |
|
|
|
data_collator = DataCollatorForTokenClassification(tokenizer, label_pad_token_id=-1) |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size([2, 6])) |
|
self.assertEqual(batch["input_ids"][0].tolist(), [0, 1, 2] + [tokenizer.pad_token_id] * 3) |
|
self.assertEqual(batch["labels"].shape, torch.Size([2, 6])) |
|
self.assertEqual(batch["labels"][0].tolist(), [0, 1, 2] + [-1] * 3) |
|
|
|
for feature in features: |
|
feature.pop("labels") |
|
|
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size([2, 6])) |
|
self.assertEqual(batch["input_ids"][0].tolist(), [0, 1, 2] + [tokenizer.pad_token_id] * 3) |
|
|
|
def _test_no_pad_and_pad(self, no_pad_features, pad_features): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False) |
|
batch = data_collator(no_pad_features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size((2, 10))) |
|
self.assertEqual(batch["labels"].shape, torch.Size((2, 10))) |
|
|
|
batch = data_collator(pad_features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size((2, 10))) |
|
self.assertEqual(batch["labels"].shape, torch.Size((2, 10))) |
|
|
|
data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False, pad_to_multiple_of=8) |
|
batch = data_collator(no_pad_features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size((2, 16))) |
|
self.assertEqual(batch["labels"].shape, torch.Size((2, 16))) |
|
|
|
batch = data_collator(pad_features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size((2, 16))) |
|
self.assertEqual(batch["labels"].shape, torch.Size((2, 16))) |
|
|
|
tokenizer._pad_token = None |
|
data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False) |
|
with self.assertRaises(ValueError): |
|
|
|
data_collator(pad_features) |
|
|
|
set_seed(42) |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
data_collator = DataCollatorForLanguageModeling(tokenizer) |
|
batch = data_collator(no_pad_features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size((2, 10))) |
|
self.assertEqual(batch["labels"].shape, torch.Size((2, 10))) |
|
|
|
masked_tokens = batch["input_ids"] == tokenizer.mask_token_id |
|
self.assertTrue(torch.any(masked_tokens)) |
|
self.assertTrue(all(x == -100 for x in batch["labels"][~masked_tokens].tolist())) |
|
|
|
batch = data_collator(pad_features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size((2, 10))) |
|
self.assertEqual(batch["labels"].shape, torch.Size((2, 10))) |
|
|
|
masked_tokens = batch["input_ids"] == tokenizer.mask_token_id |
|
self.assertTrue(torch.any(masked_tokens)) |
|
self.assertTrue(all(x == -100 for x in batch["labels"][~masked_tokens].tolist())) |
|
|
|
data_collator = DataCollatorForLanguageModeling(tokenizer, pad_to_multiple_of=8) |
|
batch = data_collator(no_pad_features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size((2, 16))) |
|
self.assertEqual(batch["labels"].shape, torch.Size((2, 16))) |
|
|
|
masked_tokens = batch["input_ids"] == tokenizer.mask_token_id |
|
self.assertTrue(torch.any(masked_tokens)) |
|
self.assertTrue(all(x == -100 for x in batch["labels"][~masked_tokens].tolist())) |
|
|
|
batch = data_collator(pad_features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size((2, 16))) |
|
self.assertEqual(batch["labels"].shape, torch.Size((2, 16))) |
|
|
|
masked_tokens = batch["input_ids"] == tokenizer.mask_token_id |
|
self.assertTrue(torch.any(masked_tokens)) |
|
self.assertTrue(all(x == -100 for x in batch["labels"][~masked_tokens].tolist())) |
|
|
|
def test_data_collator_for_language_modeling(self): |
|
no_pad_features = [{"input_ids": list(range(10))}, {"input_ids": list(range(10))}] |
|
pad_features = [{"input_ids": list(range(5))}, {"input_ids": list(range(10))}] |
|
self._test_no_pad_and_pad(no_pad_features, pad_features) |
|
|
|
no_pad_features = [list(range(10)), list(range(10))] |
|
pad_features = [list(range(5)), list(range(10))] |
|
self._test_no_pad_and_pad(no_pad_features, pad_features) |
|
|
|
def test_data_collator_for_whole_word_mask(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
data_collator = DataCollatorForWholeWordMask(tokenizer, return_tensors="pt") |
|
|
|
features = [{"input_ids": list(range(10))}, {"input_ids": list(range(10))}] |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size((2, 10))) |
|
self.assertEqual(batch["labels"].shape, torch.Size((2, 10))) |
|
|
|
|
|
features = [{"input_ids": np.arange(10)}, {"input_ids": np.arange(10)}] |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size((2, 10))) |
|
self.assertEqual(batch["labels"].shape, torch.Size((2, 10))) |
|
|
|
def test_plm(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
no_pad_features = [{"input_ids": list(range(10))}, {"input_ids": list(range(10))}] |
|
pad_features = [{"input_ids": list(range(5))}, {"input_ids": list(range(10))}] |
|
|
|
data_collator = DataCollatorForPermutationLanguageModeling(tokenizer) |
|
|
|
batch = data_collator(pad_features) |
|
self.assertIsInstance(batch, dict) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size((2, 10))) |
|
self.assertEqual(batch["perm_mask"].shape, torch.Size((2, 10, 10))) |
|
self.assertEqual(batch["target_mapping"].shape, torch.Size((2, 10, 10))) |
|
self.assertEqual(batch["labels"].shape, torch.Size((2, 10))) |
|
|
|
batch = data_collator(no_pad_features) |
|
self.assertIsInstance(batch, dict) |
|
self.assertEqual(batch["input_ids"].shape, torch.Size((2, 10))) |
|
self.assertEqual(batch["perm_mask"].shape, torch.Size((2, 10, 10))) |
|
self.assertEqual(batch["target_mapping"].shape, torch.Size((2, 10, 10))) |
|
self.assertEqual(batch["labels"].shape, torch.Size((2, 10))) |
|
|
|
example = [np.random.randint(0, 5, [5])] |
|
with self.assertRaises(ValueError): |
|
|
|
data_collator(example) |
|
|
|
def test_nsp(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
features = [ |
|
{"input_ids": [0, 1, 2, 3, 4], "token_type_ids": [0, 1, 2, 3, 4], "next_sentence_label": i} |
|
for i in range(2) |
|
] |
|
data_collator = DataCollatorForLanguageModeling(tokenizer) |
|
batch = data_collator(features) |
|
|
|
self.assertEqual(batch["input_ids"].shape, torch.Size((2, 5))) |
|
self.assertEqual(batch["token_type_ids"].shape, torch.Size((2, 5))) |
|
self.assertEqual(batch["labels"].shape, torch.Size((2, 5))) |
|
self.assertEqual(batch["next_sentence_label"].shape, torch.Size((2,))) |
|
|
|
data_collator = DataCollatorForLanguageModeling(tokenizer, pad_to_multiple_of=8) |
|
batch = data_collator(features) |
|
|
|
self.assertEqual(batch["input_ids"].shape, torch.Size((2, 8))) |
|
self.assertEqual(batch["token_type_ids"].shape, torch.Size((2, 8))) |
|
self.assertEqual(batch["labels"].shape, torch.Size((2, 8))) |
|
self.assertEqual(batch["next_sentence_label"].shape, torch.Size((2,))) |
|
|
|
def test_sop(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
features = [ |
|
{ |
|
"input_ids": torch.tensor([0, 1, 2, 3, 4]), |
|
"token_type_ids": torch.tensor([0, 1, 2, 3, 4]), |
|
"sentence_order_label": i, |
|
} |
|
for i in range(2) |
|
] |
|
data_collator = DataCollatorForLanguageModeling(tokenizer) |
|
batch = data_collator(features) |
|
|
|
self.assertEqual(batch["input_ids"].shape, torch.Size((2, 5))) |
|
self.assertEqual(batch["token_type_ids"].shape, torch.Size((2, 5))) |
|
self.assertEqual(batch["labels"].shape, torch.Size((2, 5))) |
|
self.assertEqual(batch["sentence_order_label"].shape, torch.Size((2,))) |
|
|
|
data_collator = DataCollatorForLanguageModeling(tokenizer, pad_to_multiple_of=8) |
|
batch = data_collator(features) |
|
|
|
self.assertEqual(batch["input_ids"].shape, torch.Size((2, 8))) |
|
self.assertEqual(batch["token_type_ids"].shape, torch.Size((2, 8))) |
|
self.assertEqual(batch["labels"].shape, torch.Size((2, 8))) |
|
self.assertEqual(batch["sentence_order_label"].shape, torch.Size((2,))) |
|
|
|
|
|
@require_tf |
|
class TFDataCollatorIntegrationTest(unittest.TestCase): |
|
def setUp(self): |
|
super().setUp() |
|
self.tmpdirname = tempfile.mkdtemp() |
|
|
|
vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"] |
|
self.vocab_file = os.path.join(self.tmpdirname, "vocab.txt") |
|
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: |
|
vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) |
|
|
|
def tearDown(self): |
|
shutil.rmtree(self.tmpdirname) |
|
|
|
def test_default_with_dict(self): |
|
features = [{"label": i, "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)] |
|
batch = default_data_collator(features, return_tensors="tf") |
|
self.assertEqual(batch["labels"].numpy().tolist(), list(range(8))) |
|
self.assertEqual(batch["labels"].dtype, tf.int64) |
|
self.assertEqual(batch["inputs"].shape.as_list(), [8, 6]) |
|
|
|
|
|
features = [{"label_ids": [0, 1, 2], "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)] |
|
batch = default_data_collator(features, return_tensors="tf") |
|
self.assertEqual(batch["labels"].numpy().tolist(), ([[0, 1, 2]] * 8)) |
|
self.assertEqual(batch["labels"].dtype, tf.int64) |
|
self.assertEqual(batch["inputs"].shape.as_list(), [8, 6]) |
|
|
|
|
|
features = [{"label": i, "inputs": np.random.randint(0, 10, [10])} for i in range(8)] |
|
batch = default_data_collator(features, return_tensors="tf") |
|
self.assertEqual(batch["labels"].numpy().tolist(), (list(range(8)))) |
|
self.assertEqual(batch["labels"].dtype, tf.int64) |
|
self.assertEqual(batch["inputs"].shape.as_list(), [8, 10]) |
|
|
|
|
|
features = [{"label": np.array(i), "inputs": np.random.randint(0, 10, [10])} for i in range(8)] |
|
batch = default_data_collator(features, return_tensors="tf") |
|
self.assertEqual(batch["labels"].dtype, tf.int64) |
|
self.assertEqual(batch["labels"].numpy().tolist(), list(range(8))) |
|
self.assertEqual(batch["labels"].dtype, tf.int64) |
|
self.assertEqual(batch["inputs"].shape.as_list(), [8, 10]) |
|
|
|
def test_numpy_dtype_preservation(self): |
|
data_collator = default_data_collator |
|
|
|
|
|
features = [{"input_ids": np.array([0, 1, 2, 3, 4]), "label": np.int64(i)} for i in range(4)] |
|
batch = data_collator(features, return_tensors="tf") |
|
self.assertEqual(batch["labels"].dtype, tf.int64) |
|
|
|
def test_default_classification_and_regression(self): |
|
data_collator = default_data_collator |
|
|
|
features = [{"input_ids": [0, 1, 2, 3, 4], "label": i} for i in range(4)] |
|
batch = data_collator(features, return_tensors="tf") |
|
self.assertEqual(batch["labels"].dtype, tf.int64) |
|
|
|
features = [{"input_ids": [0, 1, 2, 3, 4], "label": float(i)} for i in range(4)] |
|
batch = data_collator(features, return_tensors="tf") |
|
self.assertEqual(batch["labels"].dtype, tf.float32) |
|
|
|
def test_default_with_no_labels(self): |
|
features = [{"label": None, "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)] |
|
batch = default_data_collator(features, return_tensors="tf") |
|
self.assertTrue("labels" not in batch) |
|
self.assertEqual(batch["inputs"].shape.as_list(), [8, 6]) |
|
|
|
|
|
features = [{"label_ids": None, "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)] |
|
batch = default_data_collator(features, return_tensors="tf") |
|
self.assertTrue("labels" not in batch) |
|
self.assertEqual(batch["inputs"].shape.as_list(), [8, 6]) |
|
|
|
def test_data_collator_with_padding(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
features = [{"input_ids": [0, 1, 2]}, {"input_ids": [0, 1, 2, 3, 4, 5]}] |
|
|
|
data_collator = DataCollatorWithPadding(tokenizer, return_tensors="tf") |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 6]) |
|
self.assertEqual(batch["input_ids"][0].numpy().tolist(), [0, 1, 2] + [tokenizer.pad_token_id] * 3) |
|
|
|
data_collator = DataCollatorWithPadding(tokenizer, padding="max_length", max_length=10, return_tensors="tf") |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 10]) |
|
|
|
data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8, return_tensors="tf") |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, [2, 8]) |
|
|
|
def test_data_collator_for_token_classification(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
features = [ |
|
{"input_ids": [0, 1, 2], "labels": [0, 1, 2]}, |
|
{"input_ids": [0, 1, 2, 3, 4, 5], "labels": [0, 1, 2, 3, 4, 5]}, |
|
] |
|
|
|
data_collator = DataCollatorForTokenClassification(tokenizer, return_tensors="tf") |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 6]) |
|
self.assertEqual(batch["input_ids"][0].numpy().tolist(), [0, 1, 2] + [tokenizer.pad_token_id] * 3) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 6]) |
|
self.assertEqual(batch["labels"][0].numpy().tolist(), [0, 1, 2] + [-100] * 3) |
|
|
|
data_collator = DataCollatorForTokenClassification( |
|
tokenizer, padding="max_length", max_length=10, return_tensors="tf" |
|
) |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 10]) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 10]) |
|
|
|
data_collator = DataCollatorForTokenClassification(tokenizer, pad_to_multiple_of=8, return_tensors="tf") |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 8]) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 8]) |
|
|
|
data_collator = DataCollatorForTokenClassification(tokenizer, label_pad_token_id=-1, return_tensors="tf") |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 6]) |
|
self.assertEqual(batch["input_ids"][0].numpy().tolist(), [0, 1, 2] + [tokenizer.pad_token_id] * 3) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 6]) |
|
self.assertEqual(batch["labels"][0].numpy().tolist(), [0, 1, 2] + [-1] * 3) |
|
|
|
def _test_no_pad_and_pad(self, no_pad_features, pad_features): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False, return_tensors="tf") |
|
batch = data_collator(no_pad_features) |
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 10]) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 10]) |
|
|
|
batch = data_collator(pad_features) |
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 10]) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 10]) |
|
|
|
data_collator = DataCollatorForLanguageModeling( |
|
tokenizer, mlm=False, pad_to_multiple_of=8, return_tensors="tf" |
|
) |
|
batch = data_collator(no_pad_features) |
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 16]) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 16]) |
|
|
|
batch = data_collator(pad_features) |
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 16]) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 16]) |
|
|
|
tokenizer._pad_token = None |
|
data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False, return_tensors="tf") |
|
with self.assertRaises(ValueError): |
|
|
|
data_collator(pad_features) |
|
|
|
set_seed(42) |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
data_collator = DataCollatorForLanguageModeling(tokenizer, return_tensors="tf") |
|
batch = data_collator(no_pad_features) |
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 10]) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 10]) |
|
|
|
masked_tokens = batch["input_ids"] == tokenizer.mask_token_id |
|
self.assertTrue(tf.reduce_any(masked_tokens)) |
|
|
|
|
|
batch = data_collator(pad_features, return_tensors="tf") |
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 10]) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 10]) |
|
|
|
masked_tokens = batch["input_ids"] == tokenizer.mask_token_id |
|
self.assertTrue(tf.reduce_any(masked_tokens)) |
|
|
|
|
|
data_collator = DataCollatorForLanguageModeling(tokenizer, pad_to_multiple_of=8, return_tensors="tf") |
|
batch = data_collator(no_pad_features) |
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 16]) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 16]) |
|
|
|
masked_tokens = batch["input_ids"] == tokenizer.mask_token_id |
|
self.assertTrue(tf.reduce_any(masked_tokens)) |
|
|
|
|
|
batch = data_collator(pad_features, return_tensors="tf") |
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 16]) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 16]) |
|
|
|
masked_tokens = batch["input_ids"] == tokenizer.mask_token_id |
|
self.assertTrue(tf.reduce_any(masked_tokens)) |
|
|
|
|
|
def test_data_collator_for_language_modeling(self): |
|
no_pad_features = [{"input_ids": list(range(10))}, {"input_ids": list(range(10))}] |
|
pad_features = [{"input_ids": list(range(5))}, {"input_ids": list(range(10))}] |
|
self._test_no_pad_and_pad(no_pad_features, pad_features) |
|
|
|
no_pad_features = [list(range(10)), list(range(10))] |
|
pad_features = [list(range(5)), list(range(10))] |
|
self._test_no_pad_and_pad(no_pad_features, pad_features) |
|
|
|
def test_data_collator_for_whole_word_mask(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
data_collator = DataCollatorForWholeWordMask(tokenizer, return_tensors="tf") |
|
|
|
features = [{"input_ids": list(range(10))}, {"input_ids": list(range(10))}] |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 10]) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 10]) |
|
|
|
|
|
features = [{"input_ids": np.arange(10)}, {"input_ids": np.arange(10)}] |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 10]) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 10]) |
|
|
|
def test_plm(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
no_pad_features = [{"input_ids": list(range(10))}, {"input_ids": list(range(10))}] |
|
pad_features = [{"input_ids": list(range(5))}, {"input_ids": list(range(10))}] |
|
|
|
data_collator = DataCollatorForPermutationLanguageModeling(tokenizer, return_tensors="tf") |
|
|
|
batch = data_collator(pad_features) |
|
self.assertIsInstance(batch, dict) |
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 10]) |
|
self.assertEqual(batch["perm_mask"].shape.as_list(), [2, 10, 10]) |
|
self.assertEqual(batch["target_mapping"].shape.as_list(), [2, 10, 10]) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 10]) |
|
|
|
batch = data_collator(no_pad_features) |
|
self.assertIsInstance(batch, dict) |
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 10]) |
|
self.assertEqual(batch["perm_mask"].shape.as_list(), [2, 10, 10]) |
|
self.assertEqual(batch["target_mapping"].shape.as_list(), [2, 10, 10]) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 10]) |
|
|
|
example = [np.random.randint(0, 5, [5])] |
|
with self.assertRaises(ValueError): |
|
|
|
data_collator(example) |
|
|
|
def test_nsp(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
features = [ |
|
{"input_ids": [0, 1, 2, 3, 4], "token_type_ids": [0, 1, 2, 3, 4], "next_sentence_label": i} |
|
for i in range(2) |
|
] |
|
data_collator = DataCollatorForLanguageModeling(tokenizer, return_tensors="tf") |
|
batch = data_collator(features) |
|
|
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 5]) |
|
self.assertEqual(batch["token_type_ids"].shape.as_list(), [2, 5]) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 5]) |
|
self.assertEqual(batch["next_sentence_label"].shape.as_list(), [2]) |
|
|
|
data_collator = DataCollatorForLanguageModeling(tokenizer, pad_to_multiple_of=8, return_tensors="tf") |
|
batch = data_collator(features) |
|
|
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 8]) |
|
self.assertEqual(batch["token_type_ids"].shape.as_list(), [2, 8]) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 8]) |
|
self.assertEqual(batch["next_sentence_label"].shape.as_list(), [2]) |
|
|
|
def test_sop(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
features = [ |
|
{ |
|
"input_ids": tf.convert_to_tensor([0, 1, 2, 3, 4]), |
|
"token_type_ids": tf.convert_to_tensor([0, 1, 2, 3, 4]), |
|
"sentence_order_label": i, |
|
} |
|
for i in range(2) |
|
] |
|
data_collator = DataCollatorForLanguageModeling(tokenizer, return_tensors="tf") |
|
batch = data_collator(features) |
|
|
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 5]) |
|
self.assertEqual(batch["token_type_ids"].shape.as_list(), [2, 5]) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 5]) |
|
self.assertEqual(batch["sentence_order_label"].shape.as_list(), [2]) |
|
|
|
data_collator = DataCollatorForLanguageModeling(tokenizer, pad_to_multiple_of=8, return_tensors="tf") |
|
batch = data_collator(features) |
|
|
|
self.assertEqual(batch["input_ids"].shape.as_list(), [2, 8]) |
|
self.assertEqual(batch["token_type_ids"].shape.as_list(), [2, 8]) |
|
self.assertEqual(batch["labels"].shape.as_list(), [2, 8]) |
|
self.assertEqual(batch["sentence_order_label"].shape.as_list(), [2]) |
|
|
|
|
|
class NumpyDataCollatorIntegrationTest(unittest.TestCase): |
|
def setUp(self): |
|
self.tmpdirname = tempfile.mkdtemp() |
|
|
|
vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"] |
|
self.vocab_file = os.path.join(self.tmpdirname, "vocab.txt") |
|
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: |
|
vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) |
|
|
|
def tearDown(self): |
|
shutil.rmtree(self.tmpdirname) |
|
|
|
def test_default_with_dict(self): |
|
features = [{"label": i, "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)] |
|
batch = default_data_collator(features, return_tensors="np") |
|
self.assertEqual(batch["labels"].tolist(), list(range(8))) |
|
self.assertEqual(batch["labels"].dtype, np.int64) |
|
self.assertEqual(batch["inputs"].shape, (8, 6)) |
|
|
|
|
|
features = [{"label_ids": [0, 1, 2], "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)] |
|
batch = default_data_collator(features, return_tensors="np") |
|
self.assertEqual(batch["labels"].tolist(), [[0, 1, 2]] * 8) |
|
self.assertEqual(batch["labels"].dtype, np.int64) |
|
self.assertEqual(batch["inputs"].shape, (8, 6)) |
|
|
|
|
|
features = [{"label": i, "inputs": np.random.randint(0, 10, [10])} for i in range(8)] |
|
batch = default_data_collator(features, return_tensors="np") |
|
self.assertEqual(batch["labels"].tolist(), list(range(8))) |
|
self.assertEqual(batch["labels"].dtype, np.int64) |
|
self.assertEqual(batch["inputs"].shape, (8, 10)) |
|
|
|
|
|
features = [{"label": np.array(i), "inputs": np.random.randint(0, 10, [10])} for i in range(8)] |
|
batch = default_data_collator(features, return_tensors="np") |
|
self.assertEqual(batch["labels"].dtype, np.int64) |
|
self.assertEqual(batch["labels"].tolist(), (list(range(8)))) |
|
self.assertEqual(batch["labels"].dtype, np.int64) |
|
self.assertEqual(batch["inputs"].shape, (8, 10)) |
|
|
|
def test_default_classification_and_regression(self): |
|
data_collator = default_data_collator |
|
|
|
features = [{"input_ids": [0, 1, 2, 3, 4], "label": i} for i in range(4)] |
|
batch = data_collator(features, return_tensors="np") |
|
self.assertEqual(batch["labels"].dtype, np.int64) |
|
|
|
features = [{"input_ids": [0, 1, 2, 3, 4], "label": float(i)} for i in range(4)] |
|
batch = data_collator(features, return_tensors="np") |
|
self.assertEqual(batch["labels"].dtype, np.float32) |
|
|
|
def test_default_with_no_labels(self): |
|
features = [{"label": None, "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)] |
|
batch = default_data_collator(features, return_tensors="np") |
|
self.assertTrue("labels" not in batch) |
|
self.assertEqual(batch["inputs"].shape, (8, 6)) |
|
|
|
|
|
features = [{"label_ids": None, "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)] |
|
batch = default_data_collator(features, return_tensors="np") |
|
self.assertTrue("labels" not in batch) |
|
self.assertEqual(batch["inputs"].shape, (8, 6)) |
|
|
|
def test_data_collator_with_padding(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
features = [{"input_ids": [0, 1, 2]}, {"input_ids": [0, 1, 2, 3, 4, 5]}] |
|
|
|
data_collator = DataCollatorWithPadding(tokenizer, return_tensors="np") |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, (2, 6)) |
|
self.assertEqual(batch["input_ids"][0].tolist(), [0, 1, 2] + [tokenizer.pad_token_id] * 3) |
|
|
|
data_collator = DataCollatorWithPadding(tokenizer, padding="max_length", max_length=10, return_tensors="np") |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, (2, 10)) |
|
|
|
data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8, return_tensors="np") |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, (2, 8)) |
|
|
|
def test_data_collator_for_token_classification(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
features = [ |
|
{"input_ids": [0, 1, 2], "labels": [0, 1, 2]}, |
|
{"input_ids": [0, 1, 2, 3, 4, 5], "labels": [0, 1, 2, 3, 4, 5]}, |
|
] |
|
|
|
data_collator = DataCollatorForTokenClassification(tokenizer, return_tensors="np") |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, (2, 6)) |
|
self.assertEqual(batch["input_ids"][0].tolist(), [0, 1, 2] + [tokenizer.pad_token_id] * 3) |
|
self.assertEqual(batch["labels"].shape, (2, 6)) |
|
self.assertEqual(batch["labels"][0].tolist(), [0, 1, 2] + [-100] * 3) |
|
|
|
data_collator = DataCollatorForTokenClassification( |
|
tokenizer, padding="max_length", max_length=10, return_tensors="np" |
|
) |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, (2, 10)) |
|
self.assertEqual(batch["labels"].shape, (2, 10)) |
|
|
|
data_collator = DataCollatorForTokenClassification(tokenizer, pad_to_multiple_of=8, return_tensors="np") |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, (2, 8)) |
|
self.assertEqual(batch["labels"].shape, (2, 8)) |
|
|
|
data_collator = DataCollatorForTokenClassification(tokenizer, label_pad_token_id=-1, return_tensors="np") |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, (2, 6)) |
|
self.assertEqual(batch["input_ids"][0].tolist(), [0, 1, 2] + [tokenizer.pad_token_id] * 3) |
|
self.assertEqual(batch["labels"].shape, (2, 6)) |
|
self.assertEqual(batch["labels"][0].tolist(), [0, 1, 2] + [-1] * 3) |
|
|
|
def _test_no_pad_and_pad(self, no_pad_features, pad_features): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False, return_tensors="np") |
|
batch = data_collator(no_pad_features) |
|
self.assertEqual(batch["input_ids"].shape, (2, 10)) |
|
self.assertEqual(batch["labels"].shape, (2, 10)) |
|
|
|
batch = data_collator(pad_features, return_tensors="np") |
|
self.assertEqual(batch["input_ids"].shape, (2, 10)) |
|
self.assertEqual(batch["labels"].shape, (2, 10)) |
|
|
|
data_collator = DataCollatorForLanguageModeling( |
|
tokenizer, mlm=False, pad_to_multiple_of=8, return_tensors="np" |
|
) |
|
batch = data_collator(no_pad_features) |
|
self.assertEqual(batch["input_ids"].shape, (2, 16)) |
|
self.assertEqual(batch["labels"].shape, (2, 16)) |
|
|
|
batch = data_collator(pad_features, return_tensors="np") |
|
self.assertEqual(batch["input_ids"].shape, (2, 16)) |
|
self.assertEqual(batch["labels"].shape, (2, 16)) |
|
|
|
tokenizer._pad_token = None |
|
data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False, return_tensors="np") |
|
with self.assertRaises(ValueError): |
|
|
|
data_collator(pad_features) |
|
|
|
set_seed(42) |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
data_collator = DataCollatorForLanguageModeling(tokenizer, return_tensors="np") |
|
batch = data_collator(no_pad_features) |
|
self.assertEqual(batch["input_ids"].shape, (2, 10)) |
|
self.assertEqual(batch["labels"].shape, (2, 10)) |
|
|
|
masked_tokens = batch["input_ids"] == tokenizer.mask_token_id |
|
self.assertTrue(np.any(masked_tokens)) |
|
|
|
|
|
batch = data_collator(pad_features) |
|
self.assertEqual(batch["input_ids"].shape, (2, 10)) |
|
self.assertEqual(batch["labels"].shape, (2, 10)) |
|
|
|
masked_tokens = batch["input_ids"] == tokenizer.mask_token_id |
|
self.assertTrue(np.any(masked_tokens)) |
|
|
|
|
|
data_collator = DataCollatorForLanguageModeling(tokenizer, pad_to_multiple_of=8, return_tensors="np") |
|
batch = data_collator(no_pad_features) |
|
self.assertEqual(batch["input_ids"].shape, (2, 16)) |
|
self.assertEqual(batch["labels"].shape, (2, 16)) |
|
|
|
masked_tokens = batch["input_ids"] == tokenizer.mask_token_id |
|
self.assertTrue(np.any(masked_tokens)) |
|
|
|
|
|
batch = data_collator(pad_features) |
|
self.assertEqual(batch["input_ids"].shape, (2, 16)) |
|
self.assertEqual(batch["labels"].shape, (2, 16)) |
|
|
|
masked_tokens = batch["input_ids"] == tokenizer.mask_token_id |
|
self.assertTrue(np.any(masked_tokens)) |
|
|
|
|
|
def test_data_collator_for_language_modeling(self): |
|
no_pad_features = [{"input_ids": list(range(10))}, {"input_ids": list(range(10))}] |
|
pad_features = [{"input_ids": list(range(5))}, {"input_ids": list(range(10))}] |
|
self._test_no_pad_and_pad(no_pad_features, pad_features) |
|
|
|
no_pad_features = [list(range(10)), list(range(10))] |
|
pad_features = [list(range(5)), list(range(10))] |
|
self._test_no_pad_and_pad(no_pad_features, pad_features) |
|
|
|
def test_data_collator_for_whole_word_mask(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
data_collator = DataCollatorForWholeWordMask(tokenizer, return_tensors="np") |
|
|
|
features = [{"input_ids": list(range(10))}, {"input_ids": list(range(10))}] |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, (2, 10)) |
|
self.assertEqual(batch["labels"].shape, (2, 10)) |
|
|
|
|
|
features = [{"input_ids": np.arange(10)}, {"input_ids": np.arange(10)}] |
|
batch = data_collator(features) |
|
self.assertEqual(batch["input_ids"].shape, (2, 10)) |
|
self.assertEqual(batch["labels"].shape, (2, 10)) |
|
|
|
def test_plm(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
no_pad_features = [{"input_ids": list(range(10))}, {"input_ids": list(range(10))}] |
|
pad_features = [{"input_ids": list(range(5))}, {"input_ids": list(range(10))}] |
|
|
|
data_collator = DataCollatorForPermutationLanguageModeling(tokenizer, return_tensors="np") |
|
|
|
batch = data_collator(pad_features) |
|
self.assertIsInstance(batch, dict) |
|
self.assertEqual(batch["input_ids"].shape, (2, 10)) |
|
self.assertEqual(batch["perm_mask"].shape, (2, 10, 10)) |
|
self.assertEqual(batch["target_mapping"].shape, (2, 10, 10)) |
|
self.assertEqual(batch["labels"].shape, (2, 10)) |
|
|
|
batch = data_collator(no_pad_features) |
|
self.assertIsInstance(batch, dict) |
|
self.assertEqual(batch["input_ids"].shape, (2, 10)) |
|
self.assertEqual(batch["perm_mask"].shape, (2, 10, 10)) |
|
self.assertEqual(batch["target_mapping"].shape, (2, 10, 10)) |
|
self.assertEqual(batch["labels"].shape, (2, 10)) |
|
|
|
example = [np.random.randint(0, 5, [5])] |
|
with self.assertRaises(ValueError): |
|
|
|
data_collator(example) |
|
|
|
def test_nsp(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
features = [ |
|
{"input_ids": [0, 1, 2, 3, 4], "token_type_ids": [0, 1, 2, 3, 4], "next_sentence_label": i} |
|
for i in range(2) |
|
] |
|
data_collator = DataCollatorForLanguageModeling(tokenizer, return_tensors="np") |
|
batch = data_collator(features) |
|
|
|
self.assertEqual(batch["input_ids"].shape, (2, 5)) |
|
self.assertEqual(batch["token_type_ids"].shape, (2, 5)) |
|
self.assertEqual(batch["labels"].shape, (2, 5)) |
|
self.assertEqual(batch["next_sentence_label"].shape, (2,)) |
|
|
|
data_collator = DataCollatorForLanguageModeling(tokenizer, pad_to_multiple_of=8, return_tensors="np") |
|
batch = data_collator(features) |
|
|
|
self.assertEqual(batch["input_ids"].shape, (2, 8)) |
|
self.assertEqual(batch["token_type_ids"].shape, (2, 8)) |
|
self.assertEqual(batch["labels"].shape, (2, 8)) |
|
self.assertEqual(batch["next_sentence_label"].shape, (2,)) |
|
|
|
def test_sop(self): |
|
tokenizer = BertTokenizer(self.vocab_file) |
|
features = [ |
|
{ |
|
"input_ids": np.array([0, 1, 2, 3, 4]), |
|
"token_type_ids": np.array([0, 1, 2, 3, 4]), |
|
"sentence_order_label": i, |
|
} |
|
for i in range(2) |
|
] |
|
data_collator = DataCollatorForLanguageModeling(tokenizer, return_tensors="np") |
|
batch = data_collator(features) |
|
|
|
self.assertEqual(batch["input_ids"].shape, (2, 5)) |
|
self.assertEqual(batch["token_type_ids"].shape, (2, 5)) |
|
self.assertEqual(batch["labels"].shape, (2, 5)) |
|
self.assertEqual(batch["sentence_order_label"].shape, (2,)) |
|
|
|
data_collator = DataCollatorForLanguageModeling(tokenizer, pad_to_multiple_of=8, return_tensors="np") |
|
batch = data_collator(features) |
|
|
|
self.assertEqual(batch["input_ids"].shape, (2, 8)) |
|
self.assertEqual(batch["token_type_ids"].shape, (2, 8)) |
|
self.assertEqual(batch["labels"].shape, (2, 8)) |
|
self.assertEqual(batch["sentence_order_label"].shape, (2,)) |
|
|