|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
import copy |
|
import inspect |
|
import json |
|
import os |
|
import random |
|
import tempfile |
|
import unittest |
|
from importlib import import_module |
|
from math import isnan |
|
from typing import List, Tuple |
|
|
|
from datasets import Dataset |
|
|
|
from transformers import is_tf_available, is_torch_available |
|
from transformers.models.auto import get_values |
|
from transformers.testing_utils import ( |
|
CaptureLogger, |
|
_tf_gpu_memory_limit, |
|
is_pt_tf_cross_test, |
|
require_tf, |
|
require_tf2onnx, |
|
slow, |
|
torch_device, |
|
) |
|
from transformers.utils import CONFIG_NAME, GENERATION_CONFIG_NAME, logging |
|
from transformers.utils.generic import ModelOutput |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
if is_tf_available(): |
|
import numpy as np |
|
import tensorflow as tf |
|
|
|
from transformers import ( |
|
TF_MODEL_FOR_CAUSAL_LM_MAPPING, |
|
TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, |
|
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, |
|
TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, |
|
TF_MODEL_FOR_MASKED_LM_MAPPING, |
|
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, |
|
TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING, |
|
TF_MODEL_FOR_PRETRAINING_MAPPING, |
|
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, |
|
TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING, |
|
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, |
|
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, |
|
TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING, |
|
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, |
|
TFAutoModel, |
|
TFAutoModelForSequenceClassification, |
|
TFSharedEmbeddings, |
|
) |
|
from transformers.generation import ( |
|
TFBeamSampleDecoderOnlyOutput, |
|
TFBeamSampleEncoderDecoderOutput, |
|
TFBeamSearchDecoderOnlyOutput, |
|
TFBeamSearchEncoderDecoderOutput, |
|
TFGreedySearchDecoderOnlyOutput, |
|
TFGreedySearchEncoderDecoderOutput, |
|
TFSampleDecoderOnlyOutput, |
|
TFSampleEncoderDecoderOutput, |
|
) |
|
|
|
tf.config.experimental.enable_tensor_float_32_execution(False) |
|
|
|
if _tf_gpu_memory_limit is not None: |
|
gpus = tf.config.list_physical_devices("GPU") |
|
for gpu in gpus: |
|
|
|
try: |
|
tf.config.set_logical_device_configuration( |
|
gpu, [tf.config.LogicalDeviceConfiguration(memory_limit=_tf_gpu_memory_limit)] |
|
) |
|
logical_gpus = tf.config.list_logical_devices("GPU") |
|
print("Logical GPUs", logical_gpus) |
|
except RuntimeError as e: |
|
|
|
print(e) |
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
|
|
def _config_zero_init(config): |
|
configs_no_init = copy.deepcopy(config) |
|
for key in configs_no_init.__dict__.keys(): |
|
if "_range" in key or "_std" in key: |
|
setattr(configs_no_init, key, 0.0) |
|
return configs_no_init |
|
|
|
|
|
@require_tf |
|
class TFModelTesterMixin: |
|
model_tester = None |
|
all_model_classes = () |
|
all_generative_model_classes = () |
|
test_mismatched_shapes = True |
|
test_resize_embeddings = True |
|
test_head_masking = True |
|
is_encoder_decoder = False |
|
has_attentions = True |
|
|
|
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False) -> dict: |
|
inputs_dict = copy.deepcopy(inputs_dict) |
|
|
|
if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING): |
|
inputs_dict = { |
|
k: tf.tile(tf.expand_dims(v, 1), (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1)) |
|
if isinstance(v, tf.Tensor) and v.ndim > 0 |
|
else v |
|
for k, v in inputs_dict.items() |
|
} |
|
|
|
if return_labels: |
|
if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING): |
|
inputs_dict["labels"] = tf.ones(self.model_tester.batch_size, dtype=tf.int32) |
|
elif model_class in [ |
|
*get_values(TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING), |
|
*get_values(TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING), |
|
]: |
|
inputs_dict["start_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) |
|
inputs_dict["end_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) |
|
elif model_class in [ |
|
*get_values(TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING), |
|
*get_values(TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING), |
|
]: |
|
inputs_dict["labels"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) |
|
elif model_class in get_values(TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING): |
|
inputs_dict["next_sentence_label"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) |
|
elif model_class in [ |
|
*get_values(TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING), |
|
*get_values(TF_MODEL_FOR_CAUSAL_LM_MAPPING), |
|
*get_values(TF_MODEL_FOR_MASKED_LM_MAPPING), |
|
*get_values(TF_MODEL_FOR_PRETRAINING_MAPPING), |
|
*get_values(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING), |
|
*get_values(TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING), |
|
] and "labels" in dict(inspect.signature(model_class.call).parameters): |
|
inputs_dict["labels"] = tf.zeros( |
|
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=tf.int32 |
|
) |
|
elif model_class in get_values(TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING): |
|
num_patches = self.model_tester.image_size // self.model_tester.patch_size |
|
inputs_dict["bool_masked_pos"] = tf.zeros( |
|
(self.model_tester.batch_size, num_patches**2), dtype=tf.int32 |
|
) |
|
elif model_class in get_values(TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING): |
|
batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape |
|
inputs_dict["labels"] = tf.zeros((self.model_tester.batch_size, height, width), dtype=tf.int32) |
|
elif model_class.__name__.endswith("ForCTC"): |
|
|
|
inputs_dict["labels"] = tf.zeros( |
|
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=tf.int32 |
|
) |
|
|
|
return inputs_dict |
|
|
|
def test_initialization(self): |
|
pass |
|
|
|
def test_save_load(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
outputs = model(self._prepare_for_class(inputs_dict, model_class)) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.save_pretrained(tmpdirname, saved_model=False) |
|
|
|
|
|
self.assertTrue(os.path.exists(os.path.join(tmpdirname, CONFIG_NAME))) |
|
self.assertEqual( |
|
model.can_generate(), os.path.exists(os.path.join(tmpdirname, GENERATION_CONFIG_NAME)) |
|
) |
|
|
|
model = model_class.from_pretrained(tmpdirname) |
|
after_outputs = model(self._prepare_for_class(inputs_dict, model_class)) |
|
|
|
self.assert_outputs_same(after_outputs, outputs) |
|
|
|
def test_save_load_config(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
outputs = model(self._prepare_for_class(inputs_dict, model_class)) |
|
model_config = model.get_config() |
|
|
|
json.dumps(model_config) |
|
new_model = model_class.from_config(model.get_config()) |
|
|
|
_ = model_class.from_config(model.config) |
|
_ = new_model(self._prepare_for_class(inputs_dict, model_class)) |
|
new_model.set_weights(model.get_weights()) |
|
after_outputs = new_model(self._prepare_for_class(inputs_dict, model_class)) |
|
|
|
self.assert_outputs_same(after_outputs, outputs) |
|
|
|
@slow |
|
def test_saved_model_creation(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
config.output_hidden_states = False |
|
config.output_attentions = False |
|
|
|
if hasattr(config, "use_cache"): |
|
config.use_cache = False |
|
|
|
model_class = self.all_model_classes[0] |
|
|
|
class_inputs_dict = self._prepare_for_class(inputs_dict, model_class) |
|
model = model_class(config) |
|
|
|
model(class_inputs_dict) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.save_pretrained(tmpdirname, saved_model=True) |
|
saved_model_dir = os.path.join(tmpdirname, "saved_model", "1") |
|
self.assertTrue(os.path.exists(saved_model_dir)) |
|
|
|
def test_prepare_serving_output(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
config.output_hidden_states = True |
|
config.output_attentions = self.has_attentions |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
inputs = self._prepare_for_class(inputs_dict, model_class) |
|
outputs = model(inputs) |
|
serving_outputs = model.serving_output(outputs) |
|
|
|
for k, v in serving_outputs.items(): |
|
|
|
if isinstance(v, tuple): |
|
self.assertTrue(all(isinstance(elem, tf.Tensor) for elem in v)) |
|
elif v is not None: |
|
self.assertIsInstance(v, tf.Tensor) |
|
else: |
|
self.assertIsNone(v) |
|
|
|
def test_forward_signature(self): |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
signature = inspect.signature(model.call) |
|
|
|
arg_names = [*signature.parameters.keys()] |
|
|
|
if model.config.is_encoder_decoder: |
|
expected_arg_names = [ |
|
"input_ids", |
|
"attention_mask", |
|
"decoder_input_ids", |
|
"decoder_attention_mask", |
|
] |
|
expected_arg_names.extend(["decoder_position_ids"] if "decoder_position_ids" in arg_names else []) |
|
expected_arg_names.extend( |
|
["head_mask", "decoder_head_mask"] if "head_mask" and "decoder_head_mask" in arg_names else [] |
|
) |
|
expected_arg_names.extend( |
|
["cross_attn_head_mask", "encoder_outputs"] |
|
if "cross_attn_head_mask" in arg_names |
|
else ["encoder_outputs"] |
|
) |
|
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) |
|
|
|
else: |
|
expected_arg_names = ["input_ids"] |
|
self.assertListEqual(arg_names[:1], expected_arg_names) |
|
|
|
def test_onnx_compliancy(self): |
|
if not self.test_onnx: |
|
return |
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
INTERNAL_OPS = [ |
|
"Assert", |
|
"AssignVariableOp", |
|
"EmptyTensorList", |
|
"ReadVariableOp", |
|
"ResourceGather", |
|
"TruncatedNormal", |
|
"VarHandleOp", |
|
"VarIsInitializedOp", |
|
] |
|
onnx_ops = [] |
|
|
|
with open(os.path.join(".", "utils", "tf_ops", "onnx.json")) as f: |
|
onnx_opsets = json.load(f)["opsets"] |
|
|
|
for i in range(1, self.onnx_min_opset + 1): |
|
onnx_ops.extend(onnx_opsets[str(i)]) |
|
|
|
for model_class in self.all_model_classes: |
|
model_op_names = set() |
|
|
|
with tf.Graph().as_default() as g: |
|
model = model_class(config) |
|
model.build() |
|
|
|
for op in g.get_operations(): |
|
model_op_names.add(op.node_def.op) |
|
|
|
model_op_names = sorted(model_op_names) |
|
incompatible_ops = [] |
|
|
|
for op in model_op_names: |
|
if op not in onnx_ops and op not in INTERNAL_OPS: |
|
incompatible_ops.append(op) |
|
|
|
self.assertEqual(len(incompatible_ops), 0, incompatible_ops) |
|
|
|
@require_tf2onnx |
|
@slow |
|
def test_onnx_runtime_optimize(self): |
|
if not self.test_onnx: |
|
return |
|
|
|
import onnxruntime |
|
import tf2onnx |
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes[:2]: |
|
model = model_class(config) |
|
model.build() |
|
|
|
onnx_model_proto, _ = tf2onnx.convert.from_keras(model, opset=self.onnx_min_opset) |
|
|
|
onnxruntime.InferenceSession(onnx_model_proto.SerializeToString()) |
|
|
|
def test_keras_save_load(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
tf_main_layer_classes = { |
|
module_member |
|
for model_class in self.all_model_classes |
|
for module in (import_module(model_class.__module__),) |
|
for module_member_name in dir(module) |
|
if module_member_name.endswith("MainLayer") |
|
|
|
and module_member_name[: -len("MainLayer")] == model_class.__name__[: -len("Model")] |
|
for module_member in (getattr(module, module_member_name),) |
|
if isinstance(module_member, type) |
|
and tf.keras.layers.Layer in module_member.__bases__ |
|
and getattr(module_member, "_keras_serializable", False) |
|
} |
|
for main_layer_class in tf_main_layer_classes: |
|
|
|
if "T5" in main_layer_class.__name__: |
|
|
|
shared = TFSharedEmbeddings(99, 32, name="shared") |
|
config.use_cache = inputs_dict.pop("use_cache", None) |
|
main_layer = main_layer_class(config, embed_tokens=shared) |
|
else: |
|
main_layer = main_layer_class(config) |
|
|
|
symbolic_inputs = { |
|
name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items() |
|
} |
|
|
|
model = tf.keras.Model(symbolic_inputs, outputs=main_layer(symbolic_inputs)) |
|
outputs = model(inputs_dict) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
filepath = os.path.join(tmpdirname, "keras_model.h5") |
|
model.save(filepath) |
|
if "T5" in main_layer_class.__name__: |
|
model = tf.keras.models.load_model( |
|
filepath, |
|
custom_objects={ |
|
main_layer_class.__name__: main_layer_class, |
|
"TFSharedEmbeddings": TFSharedEmbeddings, |
|
}, |
|
) |
|
else: |
|
model = tf.keras.models.load_model( |
|
filepath, custom_objects={main_layer_class.__name__: main_layer_class} |
|
) |
|
assert isinstance(model, tf.keras.Model) |
|
after_outputs = model(inputs_dict) |
|
self.assert_outputs_same(after_outputs, outputs) |
|
|
|
def assert_outputs_same(self, after_outputs, outputs): |
|
|
|
if isinstance(after_outputs, tf.Tensor): |
|
out_1 = after_outputs.numpy() |
|
elif isinstance(after_outputs, dict): |
|
out_1 = after_outputs[list(after_outputs.keys())[0]].numpy() |
|
else: |
|
out_1 = after_outputs[0].numpy() |
|
out_2 = outputs[0].numpy() |
|
self.assertEqual(out_1.shape, out_2.shape) |
|
out_1 = out_1[~np.isnan(out_1)] |
|
out_2 = out_2[~np.isnan(out_2)] |
|
max_diff = np.amax(np.abs(out_1 - out_2)) |
|
self.assertLessEqual(max_diff, 1e-5) |
|
|
|
|
|
|
|
def _make_attention_mask_non_null(self, inputs_dict): |
|
"""Make sure no sequence has all zeros as attention mask""" |
|
|
|
for k in ["attention_mask", "encoder_attention_mask", "decoder_attention_mask"]: |
|
if k in inputs_dict: |
|
attention_mask = inputs_dict[k] |
|
|
|
|
|
|
|
|
|
attention_mask = tf.concat( |
|
[tf.ones_like(attention_mask[:, :1], dtype=attention_mask.dtype), attention_mask[:, 1:]], axis=-1 |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inputs_dict[k] = attention_mask |
|
|
|
|
|
|
|
def _postprocessing_to_ignore_test_cases(self, tf_outputs, pt_outputs, model_class): |
|
"""For temporarily ignoring some failed test cases (issues to be fixed)""" |
|
|
|
tf_keys = {k for k, v in tf_outputs.items() if v is not None} |
|
pt_keys = {k for k, v in pt_outputs.items() if v is not None} |
|
|
|
key_differences = tf_keys.symmetric_difference(pt_keys) |
|
|
|
if model_class.__name__ in [ |
|
"TFFlaubertWithLMHeadModel", |
|
"TFFunnelForPreTraining", |
|
"TFElectraForPreTraining", |
|
"TFXLMWithLMHeadModel", |
|
"TFTransfoXLLMHeadModel", |
|
]: |
|
for k in key_differences: |
|
if k in ["loss", "losses"]: |
|
tf_keys.discard(k) |
|
pt_keys.discard(k) |
|
elif model_class.__name__.startswith("TFGPT2"): |
|
|
|
tf_keys.discard("past_key_values") |
|
pt_keys.discard("past_key_values") |
|
|
|
|
|
new_tf_outputs = type(tf_outputs)(**{k: tf_outputs[k] for k in tf_keys}) |
|
new_pt_outputs = type(pt_outputs)(**{k: pt_outputs[k] for k in pt_keys}) |
|
|
|
return new_tf_outputs, new_pt_outputs |
|
|
|
def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None): |
|
"""Check the outputs from PyTorch and TensorFlow models are close enough. Checks are done in a recursive way. |
|
|
|
Args: |
|
model_class: The class of the model that is currently testing. For example, `TFBertModel`, |
|
TFBertForMaskedLM`, `TFBertForSequenceClassification`, etc. Mainly used for providing more informative |
|
error messages. |
|
name (`str`): The name of the output. For example, `output.hidden_states`, `output.attentions`, etc. |
|
attributes (`Tuple[str]`): The names of the output's element if the output is a tuple/list with each element |
|
being a named field in the output. |
|
""" |
|
|
|
self.assertEqual(type(name), str) |
|
if attributes is not None: |
|
self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`") |
|
|
|
|
|
if isinstance(tf_outputs, ModelOutput): |
|
self.assertTrue( |
|
isinstance(pt_outputs, ModelOutput), |
|
f"{name}: `pt_outputs` should an instance of `ModelOutput` when `tf_outputs` is", |
|
) |
|
|
|
|
|
|
|
tf_outputs, pt_outputs = self._postprocessing_to_ignore_test_cases(tf_outputs, pt_outputs, model_class) |
|
|
|
tf_keys = [k for k, v in tf_outputs.items() if v is not None] |
|
pt_keys = [k for k, v in pt_outputs.items() if v is not None] |
|
|
|
self.assertEqual(tf_keys, pt_keys, f"{name}: Output keys differ between TF and PyTorch") |
|
|
|
|
|
|
|
attributes = tuple([f"{name}.{k}" for k in tf_keys]) |
|
self.check_pt_tf_outputs( |
|
tf_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes |
|
) |
|
|
|
|
|
elif type(tf_outputs) in [tuple, list]: |
|
self.assertEqual(type(tf_outputs), type(pt_outputs), f"{name}: Output types differ between TF and PyTorch") |
|
self.assertEqual(len(tf_outputs), len(pt_outputs), f"{name}: Output lengths differ between TF and PyTorch") |
|
|
|
if attributes is not None: |
|
|
|
self.assertEqual( |
|
len(attributes), |
|
len(tf_outputs), |
|
f"{name}: The tuple `names` should have the same length as `tf_outputs`", |
|
) |
|
else: |
|
|
|
attributes = tuple([f"{name}_{idx}" for idx in range(len(tf_outputs))]) |
|
|
|
for tf_output, pt_output, attr in zip(tf_outputs, pt_outputs, attributes): |
|
self.check_pt_tf_outputs(tf_output, pt_output, model_class, tol=tol, name=attr) |
|
|
|
elif isinstance(tf_outputs, tf.Tensor): |
|
self.assertTrue( |
|
isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `tf_outputs` is" |
|
) |
|
|
|
tf_outputs = tf_outputs.numpy() |
|
pt_outputs = pt_outputs.detach().to("cpu").numpy() |
|
|
|
self.assertEqual( |
|
tf_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between TF and PyTorch" |
|
) |
|
|
|
|
|
if np.isscalar(tf_outputs): |
|
tf_outputs = np.array([tf_outputs]) |
|
pt_outputs = np.array([pt_outputs]) |
|
|
|
tf_nans = np.isnan(tf_outputs) |
|
pt_nans = np.isnan(pt_outputs) |
|
|
|
pt_outputs[tf_nans] = 0 |
|
tf_outputs[tf_nans] = 0 |
|
pt_outputs[pt_nans] = 0 |
|
tf_outputs[pt_nans] = 0 |
|
|
|
max_diff = np.amax(np.abs(tf_outputs - pt_outputs)) |
|
self.assertLessEqual(max_diff, tol, f"{name}: Difference between torch and tf is {max_diff} (>= {tol}).") |
|
else: |
|
raise ValueError( |
|
"`tf_outputs` should be an instance of `tf.Tensor`, a `tuple`, or an instance of `tf.Tensor`. Got" |
|
f" {type(tf_outputs)} instead." |
|
) |
|
|
|
def prepare_pt_inputs_from_tf_inputs(self, tf_inputs_dict): |
|
pt_inputs_dict = {} |
|
for name, key in tf_inputs_dict.items(): |
|
if type(key) == bool: |
|
pt_inputs_dict[name] = key |
|
elif name == "input_values": |
|
pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32) |
|
elif name == "pixel_values": |
|
pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32) |
|
elif name == "input_features": |
|
pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32) |
|
|
|
elif tf_inputs_dict[name].dtype.is_floating: |
|
pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32) |
|
else: |
|
pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.long) |
|
|
|
return pt_inputs_dict |
|
|
|
def check_pt_tf_models(self, tf_model, pt_model, tf_inputs_dict): |
|
pt_inputs_dict = self.prepare_pt_inputs_from_tf_inputs(tf_inputs_dict) |
|
|
|
|
|
pt_inputs_dict = { |
|
k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs_dict.items() |
|
} |
|
|
|
|
|
pt_model.to(torch_device) |
|
|
|
|
|
pt_model.eval() |
|
|
|
with torch.no_grad(): |
|
pt_outputs = pt_model(**pt_inputs_dict) |
|
tf_outputs = tf_model(tf_inputs_dict) |
|
|
|
|
|
|
|
|
|
tf_loss = getattr(tf_outputs, "loss", None) |
|
if tf_loss is not None: |
|
tf_outputs.loss = tf.math.reduce_mean(tf_loss) |
|
|
|
self.check_pt_tf_outputs(tf_outputs, pt_outputs, type(tf_model)) |
|
|
|
@is_pt_tf_cross_test |
|
def test_pt_tf_model_equivalence(self, allow_missing_keys=False): |
|
import transformers |
|
|
|
for model_class in self.all_model_classes: |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
|
|
config.output_hidden_states = True |
|
config.output_attentions = self.has_attentions |
|
|
|
|
|
|
|
|
|
self._make_attention_mask_non_null(inputs_dict) |
|
|
|
pt_model_class_name = model_class.__name__[2:] |
|
pt_model_class = getattr(transformers, pt_model_class_name) |
|
|
|
tf_model = model_class(config) |
|
pt_model = pt_model_class(config) |
|
|
|
tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class) |
|
tf_inputs_dict_with_labels = self._prepare_for_class( |
|
inputs_dict, |
|
model_class, |
|
|
|
return_labels=True if "labels" in inspect.signature(model_class.call).parameters.keys() else False, |
|
) |
|
|
|
|
|
|
|
if not set(tf_inputs_dict_with_labels.keys()).symmetric_difference(tf_inputs_dict.keys()): |
|
tf_inputs_dict_with_labels = None |
|
|
|
|
|
tf_model = transformers.load_pytorch_model_in_tf2_model( |
|
tf_model, pt_model, tf_inputs=tf_inputs_dict, allow_missing_keys=allow_missing_keys |
|
) |
|
pt_model = transformers.load_tf2_model_in_pytorch_model( |
|
pt_model, tf_model, allow_missing_keys=allow_missing_keys |
|
) |
|
|
|
|
|
self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict) |
|
|
|
if tf_inputs_dict_with_labels: |
|
self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict_with_labels) |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin") |
|
torch.save(pt_model.state_dict(), pt_checkpoint_path) |
|
tf_model = transformers.load_pytorch_checkpoint_in_tf2_model( |
|
tf_model, pt_checkpoint_path, allow_missing_keys=allow_missing_keys |
|
) |
|
|
|
tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5") |
|
tf_model.save_weights(tf_checkpoint_path) |
|
pt_model = transformers.load_tf2_checkpoint_in_pytorch_model( |
|
pt_model, tf_checkpoint_path, allow_missing_keys=allow_missing_keys |
|
) |
|
|
|
|
|
self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict) |
|
|
|
if tf_inputs_dict_with_labels: |
|
self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict_with_labels) |
|
|
|
@slow |
|
def test_compile_tf_model(self): |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes[:2]: |
|
|
|
model = model_class(config) |
|
|
|
|
|
functional_inputs = { |
|
key: tf.keras.Input(shape=val.shape[1:], dtype=val.dtype, name=key) |
|
for key, val in model.input_signature.items() |
|
if key in model.dummy_inputs |
|
} |
|
outputs_dict = model(functional_inputs) |
|
|
|
hidden_states = outputs_dict[0] |
|
|
|
|
|
functional_model = tf.keras.Model(inputs=functional_inputs, outputs=hidden_states) |
|
model_out = functional_model.predict(model.dummy_inputs) |
|
self.assertTrue(model_out is not None) |
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
functional_model.save(tmpdirname) |
|
|
|
def test_keyword_and_dict_args(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
inputs = self._prepare_for_class(inputs_dict, model_class) |
|
|
|
outputs_dict = model(inputs) |
|
|
|
inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) |
|
outputs_keywords = model(**inputs_keywords) |
|
output_dict = outputs_dict[0].numpy() |
|
output_keywords = outputs_keywords[0].numpy() |
|
|
|
self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6) |
|
|
|
def test_attention_outputs(self): |
|
if not self.has_attentions: |
|
self.skipTest(reason="Model does not output attentions") |
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
config.return_dict = True |
|
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", self.model_tester.seq_length) |
|
encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length) |
|
decoder_key_length = getattr(self.model_tester, "key_length", decoder_seq_length) |
|
encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) |
|
|
|
def check_decoder_attentions_output(outputs): |
|
out_len = len(outputs) |
|
self.assertEqual(min(out_len % 2, out_len % 5), 0) |
|
decoder_attentions = outputs.decoder_attentions |
|
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) |
|
self.assertListEqual( |
|
list(decoder_attentions[0].shape[-3:]), |
|
[self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length], |
|
) |
|
|
|
def check_encoder_attentions_output(outputs): |
|
attentions = [ |
|
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) |
|
] |
|
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) |
|
self.assertListEqual( |
|
list(attentions[0].shape[-3:]), |
|
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], |
|
) |
|
|
|
for model_class in self.all_model_classes: |
|
inputs_dict["output_attentions"] = True |
|
config.output_hidden_states = False |
|
model = model_class(config) |
|
outputs = model(self._prepare_for_class(inputs_dict, model_class)) |
|
out_len = len(outputs) |
|
self.assertEqual(config.output_hidden_states, False) |
|
check_encoder_attentions_output(outputs) |
|
|
|
if self.is_encoder_decoder: |
|
model = model_class(config) |
|
outputs = model(self._prepare_for_class(inputs_dict, model_class)) |
|
self.assertEqual(config.output_hidden_states, False) |
|
check_decoder_attentions_output(outputs) |
|
|
|
|
|
del inputs_dict["output_attentions"] |
|
config.output_attentions = True |
|
model = model_class(config) |
|
outputs = model(self._prepare_for_class(inputs_dict, model_class)) |
|
self.assertEqual(config.output_hidden_states, False) |
|
check_encoder_attentions_output(outputs) |
|
|
|
|
|
inputs_dict["output_attentions"] = True |
|
config.output_hidden_states = True |
|
model = model_class(config) |
|
outputs = model(self._prepare_for_class(inputs_dict, model_class)) |
|
|
|
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs)) |
|
self.assertEqual(model.config.output_hidden_states, True) |
|
check_encoder_attentions_output(outputs) |
|
|
|
def test_headmasking(self): |
|
if not self.test_head_masking: |
|
return |
|
|
|
random.Random().seed(42) |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
random.Random().seed() |
|
|
|
inputs_dict["output_attentions"] = True |
|
config.output_hidden_states = True |
|
configs_no_init = _config_zero_init(config) |
|
for model_class in self.all_model_classes: |
|
model = model_class(config=configs_no_init) |
|
|
|
|
|
def prepare_layer_head_mask(i, attention_heads, num_hidden_layers): |
|
if i == 0: |
|
return tf.concat( |
|
(tf.zeros(1, dtype=tf.float32), tf.ones(attention_heads - 1, dtype=tf.float32)), 0 |
|
) |
|
elif i == num_hidden_layers - 1: |
|
return tf.concat( |
|
(tf.zeros(attention_heads - 1, dtype=tf.float32), tf.ones(1, dtype=tf.float32)), 0 |
|
) |
|
else: |
|
return tf.ones(attention_heads, dtype=tf.float32) |
|
|
|
head_mask = tf.stack( |
|
[ |
|
prepare_layer_head_mask(i, config.num_attention_heads, config.num_hidden_layers) |
|
for i in range(config.num_hidden_layers) |
|
], |
|
0, |
|
) |
|
|
|
inputs = self._prepare_for_class(inputs_dict, model_class).copy() |
|
inputs["head_mask"] = head_mask |
|
if model.config.is_encoder_decoder: |
|
signature = inspect.signature(model.call) |
|
arg_names = [*signature.parameters.keys()] |
|
if "decoder_head_mask" in arg_names: |
|
inputs["decoder_head_mask"] = head_mask |
|
if "cross_attn_head_mask" in arg_names: |
|
inputs["cross_attn_head_mask"] = head_mask |
|
|
|
outputs = model(**inputs, return_dict=True) |
|
|
|
def check_attentions_validity(attentions): |
|
|
|
for t in attentions: |
|
self.assertLess( |
|
(tf.math.reduce_sum(tf.cast(tf.math.is_nan(t), tf.float32))).numpy(), (tf.size(t) / 4).numpy() |
|
) |
|
|
|
attentions = [ |
|
tf.where(tf.math.is_nan(t), 0.0, t) for t in attentions |
|
] |
|
|
|
self.assertAlmostEqual(tf.math.reduce_sum(attentions[0][..., 0, :, :]).numpy(), 0.0) |
|
self.assertNotEqual(tf.math.reduce_sum(attentions[0][..., -1, :, :]).numpy(), 0.0) |
|
if len(attentions) > 2: |
|
self.assertNotEqual(tf.math.reduce_sum(attentions[1][..., 0, :, :]).numpy(), 0.0) |
|
self.assertAlmostEqual(tf.math.reduce_sum(attentions[-1][..., -2, :, :]).numpy(), 0.0) |
|
self.assertNotEqual(tf.math.reduce_sum(attentions[-1][..., -1, :, :]).numpy(), 0.0) |
|
|
|
if model.config.is_encoder_decoder: |
|
check_attentions_validity(outputs.encoder_attentions) |
|
check_attentions_validity(outputs.decoder_attentions) |
|
if "cross_attn_head_mask" in arg_names: |
|
check_attentions_validity(outputs.cross_attentions) |
|
else: |
|
check_attentions_validity(outputs.attentions) |
|
|
|
def test_hidden_states_output(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
def check_hidden_states_output(config, inputs_dict, model_class): |
|
model = model_class(config) |
|
outputs = model(self._prepare_for_class(inputs_dict, model_class)) |
|
expected_num_layers = getattr( |
|
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 |
|
) |
|
|
|
if model.config.is_encoder_decoder: |
|
encoder_hidden_states = outputs.encoder_hidden_states |
|
decoder_hidden_states = outputs.decoder_hidden_states |
|
|
|
self.assertEqual(config.output_attentions, False) |
|
self.assertEqual(len(encoder_hidden_states), expected_num_layers) |
|
self.assertListEqual( |
|
list(encoder_hidden_states[0].shape[-2:]), |
|
[self.model_tester.seq_length, self.model_tester.hidden_size], |
|
) |
|
self.assertEqual(len(decoder_hidden_states), expected_num_layers) |
|
self.assertListEqual( |
|
list(decoder_hidden_states[0].shape[-2:]), |
|
[self.model_tester.seq_length, self.model_tester.hidden_size], |
|
) |
|
else: |
|
hidden_states = outputs.hidden_states |
|
self.assertEqual(config.output_attentions, False) |
|
self.assertEqual(len(hidden_states), expected_num_layers) |
|
self.assertListEqual( |
|
list(hidden_states[0].shape[-2:]), |
|
[self.model_tester.seq_length, self.model_tester.hidden_size], |
|
) |
|
|
|
for model_class in self.all_model_classes: |
|
inputs_dict["output_hidden_states"] = True |
|
check_hidden_states_output(config, inputs_dict, model_class) |
|
|
|
del inputs_dict["output_hidden_states"] |
|
config.output_hidden_states = True |
|
check_hidden_states_output(config, inputs_dict, model_class) |
|
|
|
def test_model_common_attributes(self): |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
text_in_text_out_models = ( |
|
get_values(TF_MODEL_FOR_CAUSAL_LM_MAPPING) |
|
+ get_values(TF_MODEL_FOR_MASKED_LM_MAPPING) |
|
+ get_values(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING) |
|
) |
|
speech_in_text_out_models = get_values(TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING) |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
self.assertIsInstance(model.get_input_embeddings(), tf.keras.layers.Layer) |
|
|
|
legacy_text_in_text_out = model.get_lm_head() is not None |
|
if model_class in text_in_text_out_models or legacy_text_in_text_out: |
|
out_embeddings = model.get_output_embeddings() |
|
self.assertIsInstance(out_embeddings, tf.keras.layers.Layer) |
|
bias = model.get_bias() |
|
if bias is not None: |
|
self.assertIsInstance(bias, dict) |
|
for _, v in bias.items(): |
|
self.assertIsInstance(v, tf.Variable) |
|
elif model_class in speech_in_text_out_models: |
|
out_embeddings = model.get_output_embeddings() |
|
self.assertIsInstance(out_embeddings, tf.keras.layers.Layer) |
|
bias = model.get_bias() |
|
self.assertIsNone(bias) |
|
else: |
|
out_embeddings = model.get_output_embeddings() |
|
assert out_embeddings is None |
|
bias = model.get_bias() |
|
self.assertIsNone(bias) |
|
|
|
def test_determinism(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
first, second = ( |
|
model(self._prepare_for_class(inputs_dict, model_class), training=False)[0], |
|
model(self._prepare_for_class(inputs_dict, model_class), training=False)[0], |
|
) |
|
out_1 = first.numpy() |
|
out_2 = second.numpy() |
|
out_1 = out_1[~np.isnan(out_1)] |
|
out_2 = out_2[~np.isnan(out_2)] |
|
max_diff = np.amax(np.abs(out_1 - out_2)) |
|
self.assertLessEqual(max_diff, 1e-5) |
|
|
|
def test_model_outputs_equivalence(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}): |
|
tuple_output = model(tuple_inputs, return_dict=False, **additional_kwargs) |
|
dict_output = model(dict_inputs, return_dict=True, **additional_kwargs).to_tuple() |
|
|
|
def recursive_check(tuple_object, dict_object): |
|
if isinstance(tuple_object, (List, Tuple)): |
|
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object): |
|
recursive_check(tuple_iterable_value, dict_iterable_value) |
|
elif tuple_object is None: |
|
return |
|
else: |
|
self.assertTrue( |
|
all(tf.equal(tuple_object, dict_object)), |
|
msg=( |
|
"Tuple and dict output are not equal. Difference:" |
|
f" {tf.math.reduce_max(tf.abs(tuple_object - dict_object))}" |
|
), |
|
) |
|
|
|
recursive_check(tuple_output, dict_output) |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class) |
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class) |
|
check_equivalence(model, tuple_inputs, dict_inputs) |
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class) |
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class) |
|
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) |
|
|
|
if self.has_attentions: |
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class) |
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class) |
|
check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True}) |
|
|
|
|
|
if "labels" in inspect.signature(model.call).parameters.keys(): |
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) |
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) |
|
check_equivalence(model, tuple_inputs, dict_inputs) |
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) |
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) |
|
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) |
|
|
|
if self.has_attentions: |
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) |
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) |
|
check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True}) |
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) |
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) |
|
check_equivalence( |
|
model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True} |
|
) |
|
|
|
def test_inputs_embeds(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
|
|
inputs = copy.deepcopy(inputs_dict) |
|
|
|
if not self.is_encoder_decoder: |
|
input_ids = inputs["input_ids"] |
|
del inputs["input_ids"] |
|
else: |
|
encoder_input_ids = inputs["input_ids"] |
|
decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids) |
|
del inputs["input_ids"] |
|
inputs.pop("decoder_input_ids", None) |
|
|
|
if not self.is_encoder_decoder: |
|
inputs["inputs_embeds"] = model.get_input_embeddings()(input_ids) |
|
else: |
|
inputs["inputs_embeds"] = model.get_input_embeddings()(encoder_input_ids) |
|
inputs["decoder_inputs_embeds"] = model.get_input_embeddings()(decoder_input_ids) |
|
|
|
inputs = self._prepare_for_class(inputs, model_class) |
|
|
|
model(inputs) |
|
|
|
def test_numpy_arrays_inputs(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
def prepare_numpy_arrays(inputs_dict): |
|
inputs_np_dict = {} |
|
for k, v in inputs_dict.items(): |
|
if tf.is_tensor(v): |
|
inputs_np_dict[k] = v.numpy() |
|
else: |
|
inputs_np_dict[k] = np.array(k) |
|
|
|
return inputs_np_dict |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
|
|
inputs = self._prepare_for_class(inputs_dict, model_class) |
|
inputs_np = prepare_numpy_arrays(inputs) |
|
|
|
output_for_dict_input = model(inputs_np) |
|
output_for_kw_input = model(**inputs_np) |
|
self.assert_outputs_same(output_for_dict_input, output_for_kw_input) |
|
|
|
def test_valid_input_signature_and_dummies(self): |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
call_args = inspect.signature(model.call).parameters |
|
for key in model.input_signature: |
|
self.assertIn(key, call_args) |
|
for key in model.dummy_inputs: |
|
self.assertIn(key, call_args) |
|
|
|
def test_resize_token_embeddings(self): |
|
|
|
|
|
|
|
if not self.test_resize_embeddings: |
|
return |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
def _get_word_embedding_weight(model, embedding_layer): |
|
if isinstance(embedding_layer, tf.keras.layers.Embedding): |
|
|
|
model.build() |
|
return embedding_layer.embeddings |
|
else: |
|
return model._get_word_embedding_weight(embedding_layer) |
|
|
|
for model_class in self.all_model_classes: |
|
for size in [config.vocab_size - 10, config.vocab_size + 10, None]: |
|
|
|
model = model_class(config=copy.deepcopy(config)) |
|
old_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings()) |
|
old_bias = model.get_bias() |
|
old_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings()) |
|
|
|
model.resize_token_embeddings(size) |
|
new_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings()) |
|
new_bias = model.get_bias() |
|
new_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings()) |
|
|
|
|
|
assert_size = size if size is not None else config.vocab_size |
|
self.assertEqual(new_input_embeddings.shape[0], assert_size) |
|
|
|
|
|
models_equal = True |
|
for p1, p2 in zip(old_input_embeddings.value(), new_input_embeddings.value()): |
|
if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0: |
|
models_equal = False |
|
self.assertTrue(models_equal) |
|
|
|
if old_bias is not None and new_bias is not None: |
|
for old_weight, new_weight in zip(old_bias.values(), new_bias.values()): |
|
self.assertEqual(new_weight.shape[-1], assert_size) |
|
|
|
models_equal = True |
|
for p1, p2 in zip(tf.squeeze(old_weight), tf.squeeze(new_weight)): |
|
if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0: |
|
models_equal = False |
|
self.assertTrue(models_equal) |
|
|
|
if old_output_embeddings is not None and new_output_embeddings is not None: |
|
self.assertEqual(new_output_embeddings.shape[0], assert_size) |
|
self.assertEqual(new_output_embeddings.shape[1], old_output_embeddings.shape[1]) |
|
|
|
models_equal = True |
|
for p1, p2 in zip(old_output_embeddings.value(), new_output_embeddings.value()): |
|
if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0: |
|
models_equal = False |
|
self.assertTrue(models_equal) |
|
|
|
|
|
|
|
@slow |
|
def test_save_load_after_resize_token_embeddings(self): |
|
if not self.test_resize_embeddings: |
|
return |
|
config, original_inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
|
|
new_tokens_size = 10 |
|
old_total_size = config.vocab_size |
|
new_total_size = old_total_size + new_tokens_size |
|
model = model_class(config=copy.deepcopy(config)) |
|
model.build() |
|
model.resize_token_embeddings(new_total_size) |
|
|
|
|
|
inputs_dict = copy.deepcopy(original_inputs_dict) |
|
ids_feat_name = None |
|
if "input_ids" in inputs_dict: |
|
ids_feat_name = "input_ids" |
|
elif "decoder_input_ids" in inputs_dict: |
|
ids_feat_name = "decoder_input_ids" |
|
else: |
|
assert False, "No input ids feature found in the inputs dict" |
|
|
|
new_vocab_input_ids = ids_tensor(inputs_dict[ids_feat_name].shape, new_tokens_size) |
|
new_vocab_input_ids += old_total_size |
|
inputs_dict[ids_feat_name] = new_vocab_input_ids |
|
if "input_ids" in inputs_dict: |
|
inputs_dict["input_ids"] = new_vocab_input_ids |
|
if "decoder_input_ids" in inputs_dict: |
|
inputs_dict["decoder_input_ids"] = new_vocab_input_ids |
|
prepared_inputs = self._prepare_for_class(inputs_dict, model_class) |
|
outputs = model(**prepared_inputs) |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.save_pretrained(tmpdirname, saved_model=False) |
|
model = model_class.from_pretrained(tmpdirname) |
|
restored_model_outputs = model(**prepared_inputs) |
|
|
|
|
|
self.assert_outputs_same(restored_model_outputs, outputs) |
|
|
|
@unittest.skipIf( |
|
not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0, |
|
reason="This test always passes on CPU.", |
|
) |
|
def test_embeddings_out_of_bounds_raise_exception(self): |
|
|
|
|
|
if not self.test_resize_embeddings: |
|
return |
|
config, original_inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config=config) |
|
inputs_dict = copy.deepcopy(original_inputs_dict) |
|
if "input_ids" in inputs_dict: |
|
inputs_dict["input_ids"] = inputs_dict["input_ids"] * int(1e9) |
|
if "decoder_input_ids" in inputs_dict: |
|
inputs_dict["decoder_input_ids"] = inputs_dict["decoder_input_ids"] * int(1e9) |
|
prepared_inputs = self._prepare_for_class(inputs_dict, model_class) |
|
with self.assertRaises(tf.errors.InvalidArgumentError): |
|
model(**prepared_inputs) |
|
|
|
def test_lm_head_model_random_no_beam_search_generate(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
input_ids = inputs_dict.get("input_ids", None) |
|
|
|
|
|
for model_class in self.all_generative_model_classes: |
|
model = model_class(config) |
|
|
|
if config.bos_token_id is None: |
|
|
|
with self.assertRaises(ValueError): |
|
model.generate(do_sample=True, max_length=5) |
|
|
|
self._check_generated_ids(model.generate(input_ids, do_sample=True)) |
|
elif model_class.__name__ not in ["TFSpeech2TextForConditionalGeneration"]: |
|
|
|
self._check_generated_ids(model.generate(do_sample=True, max_length=5)) |
|
|
|
with self.assertRaises(ValueError): |
|
|
|
|
|
model.generate(input_ids, do_sample=False, num_return_sequences=2) |
|
|
|
|
|
self._check_generated_ids(model.generate(input_ids, do_sample=True, num_return_sequences=2)) |
|
|
|
|
|
|
|
bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)] |
|
output_tokens = model.generate( |
|
input_ids, do_sample=True, bad_words_ids=bad_words_ids, num_return_sequences=2 |
|
) |
|
|
|
generated_ids = output_tokens[:, input_ids.shape[-1] :] |
|
self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids)) |
|
|
|
def test_lm_head_model_no_beam_search_generate_dict_outputs(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
input_ids = inputs_dict.get("input_ids", None) |
|
if input_ids is None: |
|
input_ids = inputs_dict.get("input_features", None) |
|
|
|
|
|
for model_class in self.all_generative_model_classes: |
|
model = model_class(config) |
|
output_greedy = model.generate( |
|
input_ids, |
|
do_sample=False, |
|
output_scores=True, |
|
output_hidden_states=True, |
|
output_attentions=True, |
|
return_dict_in_generate=True, |
|
) |
|
output_sample = model.generate( |
|
input_ids, |
|
do_sample=True, |
|
output_scores=True, |
|
output_hidden_states=True, |
|
output_attentions=True, |
|
return_dict_in_generate=True, |
|
) |
|
|
|
if model.config.is_encoder_decoder: |
|
self.assertIsInstance(output_greedy, TFGreedySearchEncoderDecoderOutput) |
|
self.assertIsInstance(output_sample, TFSampleEncoderDecoderOutput) |
|
else: |
|
self.assertIsInstance(output_greedy, TFGreedySearchDecoderOnlyOutput) |
|
self.assertIsInstance(output_sample, TFSampleDecoderOnlyOutput) |
|
|
|
def test_lm_head_model_random_beam_search_generate(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
input_ids = inputs_dict.get("input_ids", None) |
|
|
|
for model_class in self.all_generative_model_classes: |
|
model = model_class(config) |
|
|
|
if config.bos_token_id is None: |
|
|
|
self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=2)) |
|
else: |
|
|
|
self._check_generated_ids(model.generate(do_sample=True, max_length=5, num_beams=2)) |
|
|
|
with self.assertRaises(ValueError): |
|
|
|
model.generate(input_ids, do_sample=False, num_return_sequences=3, num_beams=2) |
|
|
|
|
|
self._check_generated_ids( |
|
model.generate( |
|
input_ids, |
|
do_sample=True, |
|
num_beams=2, |
|
num_return_sequences=2, |
|
) |
|
) |
|
|
|
self._check_generated_ids(model.generate(input_ids, do_sample=False, num_beams=2, num_return_sequences=2)) |
|
|
|
|
|
|
|
bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)] |
|
output_tokens = model.generate( |
|
input_ids, do_sample=False, bad_words_ids=bad_words_ids, num_beams=2, num_return_sequences=2 |
|
) |
|
|
|
generated_ids = output_tokens[:, input_ids.shape[-1] :] |
|
self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids)) |
|
|
|
def test_lm_head_model_beam_search_generate_dict_outputs(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
input_ids = inputs_dict.get("input_ids", None) |
|
if input_ids is None: |
|
input_ids = inputs_dict.get("input_features", None) |
|
|
|
|
|
for model_class in self.all_generative_model_classes: |
|
model = model_class(config) |
|
output_beam_search = model.generate( |
|
input_ids, |
|
num_beams=2, |
|
do_sample=False, |
|
output_scores=True, |
|
output_hidden_states=True, |
|
output_attentions=True, |
|
return_dict_in_generate=True, |
|
) |
|
output_beam_sample = model.generate( |
|
input_ids, |
|
num_beams=2, |
|
do_sample=True, |
|
output_scores=True, |
|
output_hidden_states=True, |
|
output_attentions=True, |
|
return_dict_in_generate=True, |
|
) |
|
|
|
if model.config.is_encoder_decoder: |
|
self.assertIsInstance(output_beam_search, TFBeamSearchEncoderDecoderOutput) |
|
self.assertIsInstance(output_beam_sample, TFBeamSampleEncoderDecoderOutput) |
|
else: |
|
self.assertIsInstance(output_beam_search, TFBeamSearchDecoderOnlyOutput) |
|
self.assertIsInstance(output_beam_sample, TFBeamSampleDecoderOnlyOutput) |
|
|
|
def test_loss_computation(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
|
|
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) |
|
added_label_names = sorted(prepared_for_class.keys() - inputs_dict.keys(), reverse=True) |
|
if not added_label_names: |
|
continue |
|
added_label = prepared_for_class[added_label_names[0]] |
|
expected_loss_size = added_label.shape.as_list()[:1] |
|
|
|
|
|
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) |
|
possible_input_names = {"input_ids", "pixel_values", "input_features", "input_values"} |
|
input_name = possible_input_names.intersection(set(prepared_for_class)).pop() |
|
model_input = prepared_for_class.pop(input_name) |
|
|
|
outputs = model(model_input, **prepared_for_class) |
|
if not isinstance(outputs, ModelOutput) or not hasattr(outputs, "loss"): |
|
continue |
|
|
|
loss = outputs.loss |
|
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) |
|
|
|
|
|
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) |
|
possible_input_names = {"input_ids", "pixel_values", "input_features", "input_values"} |
|
input_name = possible_input_names.intersection(set(prepared_for_class)).pop() |
|
model_input = prepared_for_class.pop(input_name) |
|
if "labels" in prepared_for_class: |
|
labels = prepared_for_class["labels"].numpy() |
|
if len(labels.shape) > 1 and labels.shape[1] != 1: |
|
labels[0] = -100 |
|
prepared_for_class["labels"] = tf.convert_to_tensor(labels) |
|
loss = model(model_input, **prepared_for_class)[0] |
|
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) |
|
self.assertTrue(not np.any(np.isnan(loss.numpy()))) |
|
|
|
|
|
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) |
|
loss = model(prepared_for_class)[0] |
|
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) |
|
|
|
|
|
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) |
|
|
|
|
|
label_keys = prepared_for_class.keys() - inputs_dict.keys() |
|
signature = inspect.signature(model.call).parameters |
|
signature_names = list(signature.keys()) |
|
|
|
|
|
tuple_index_mapping = {0: input_name} |
|
for label_key in label_keys: |
|
label_key_index = signature_names.index(label_key) |
|
tuple_index_mapping[label_key_index] = label_key |
|
sorted_tuple_index_mapping = sorted(tuple_index_mapping.items()) |
|
|
|
list_input = [] |
|
|
|
for name in signature_names: |
|
if name != "kwargs": |
|
list_input.append(signature[name].default) |
|
|
|
for index, value in sorted_tuple_index_mapping: |
|
list_input[index] = prepared_for_class[value] |
|
|
|
tuple_input = tuple(list_input) |
|
|
|
|
|
loss = model(tuple_input[:-1])[0] |
|
|
|
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) |
|
|
|
def check_keras_fit_results(self, val_loss1, val_loss2, atol=1e-2, rtol=1e-3): |
|
self.assertTrue(np.allclose(val_loss1, val_loss2, atol=atol, rtol=rtol)) |
|
|
|
@slow |
|
def test_keras_fit(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
|
|
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) |
|
|
|
prepared_for_class = { |
|
key: val |
|
for key, val in prepared_for_class.items() |
|
if key not in ("head_mask", "decoder_head_mask", "cross_attn_head_mask", "return_loss") |
|
} |
|
if "labels" in prepared_for_class and "decoder_input_ids" in prepared_for_class: |
|
del prepared_for_class["decoder_input_ids"] |
|
|
|
accuracy_classes = [ |
|
"ForPreTraining", |
|
"ForCausalLM", |
|
"ForMaskedLM", |
|
"ForQuestionAnswering", |
|
"ForMultipleChoice", |
|
"ForSequenceClassification", |
|
"ForTokenClassification", |
|
"ForNextSentencePrediction", |
|
"LMHeadModel", |
|
] |
|
for accuracy_class in accuracy_classes: |
|
if model.__class__.__name__.endswith(accuracy_class): |
|
metrics = [tf.keras.metrics.SparseCategoricalAccuracy()] |
|
break |
|
else: |
|
metrics = [] |
|
|
|
if hasattr(self.model_tester, "batch_size"): |
|
sample_weight = tf.convert_to_tensor([0.5] * self.model_tester.batch_size, dtype=tf.float32) |
|
else: |
|
sample_weight = None |
|
|
|
outputs = model(prepared_for_class) |
|
if getattr(outputs, "loss", None) is None: |
|
continue |
|
model_weights = model.get_weights() |
|
|
|
|
|
model.compile(optimizer=tf.keras.optimizers.SGD(0.0), run_eagerly=True, metrics=metrics) |
|
|
|
history1 = model.fit( |
|
prepared_for_class, |
|
validation_data=prepared_for_class, |
|
sample_weight=sample_weight, |
|
steps_per_epoch=1, |
|
validation_steps=1, |
|
shuffle=False, |
|
) |
|
val_loss1 = history1.history["val_loss"][0] |
|
self.assertTrue(not isnan(val_loss1)) |
|
accuracy1 = {key: val[0] for key, val in history1.history.items() if key.endswith("accuracy")} |
|
|
|
possible_label_cols = { |
|
"labels", |
|
"label", |
|
"label_ids", |
|
"start_positions", |
|
"start_position", |
|
"end_positions", |
|
"end_position", |
|
"next_sentence_label", |
|
} |
|
label_names = possible_label_cols.intersection(set(prepared_for_class)) |
|
if len(label_names) == 0: |
|
|
|
|
|
return |
|
labels = {key: val for key, val in prepared_for_class.items() if key in label_names} |
|
inputs_minus_labels = {key: val for key, val in prepared_for_class.items() if key not in label_names} |
|
self.assertGreater(len(inputs_minus_labels), 0) |
|
|
|
|
|
|
|
model.set_weights(model_weights) |
|
|
|
history2 = model.fit( |
|
inputs_minus_labels, |
|
labels, |
|
validation_data=(inputs_minus_labels, labels), |
|
sample_weight=sample_weight, |
|
steps_per_epoch=1, |
|
validation_steps=1, |
|
shuffle=False, |
|
) |
|
val_loss2 = history2.history["val_loss"][0] |
|
self.assertTrue(not isnan(val_loss2)) |
|
accuracy2 = {key: val[0] for key, val in history2.history.items() if key.endswith("accuracy")} |
|
self.check_keras_fit_results(val_loss1, val_loss2) |
|
self.assertEqual(history1.history.keys(), history2.history.keys()) |
|
for key in history1.history.keys(): |
|
if not key.startswith("val_"): |
|
self.assertTrue("val_" + key in history1.history.keys(), "Outputs differ in train/test step!") |
|
if metrics: |
|
self.assertTrue(len(accuracy1) == len(accuracy2) > 0, "Missing metrics!") |
|
|
|
def test_int_support(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
for model_class in self.all_model_classes: |
|
prepared_for_class = self._prepare_for_class( |
|
inputs_dict.copy(), |
|
model_class, |
|
return_labels=True if "labels" in inspect.signature(model_class.call).parameters.keys() else False, |
|
) |
|
if not any( |
|
tensor.dtype.is_integer for tensor in prepared_for_class.values() if isinstance(tensor, tf.Tensor) |
|
): |
|
return |
|
|
|
prepared_for_class = { |
|
key: tf.cast(tensor, tf.int64) if isinstance(tensor, tf.Tensor) and tensor.dtype.is_integer else tensor |
|
for key, tensor in prepared_for_class.items() |
|
} |
|
model = model_class(config) |
|
model(**prepared_for_class) |
|
int32_prepared_for_class = { |
|
key: tf.cast(tensor, tf.int32) if isinstance(tensor, tf.Tensor) and tensor.dtype.is_integer else tensor |
|
for key, tensor in prepared_for_class.items() |
|
} |
|
model(**int32_prepared_for_class) |
|
|
|
|
|
for key, tensor in model.dummy_inputs.items(): |
|
self.assertTrue( |
|
isinstance(tensor, tf.Tensor) or tf.keras.backend.is_keras_tensor(tensor), |
|
"Dummy inputs should be tf.Tensor!", |
|
) |
|
if tensor.dtype.is_integer: |
|
self.assertTrue(tensor.dtype == tf.int32, "Integer dummy inputs should be tf.int32!") |
|
|
|
|
|
for key, tensor_spec in model.input_signature.items(): |
|
if tensor_spec.dtype.is_integer: |
|
self.assertTrue(tensor_spec.dtype == tf.int32, "Input signatures should use tf.int32 for ints!") |
|
|
|
def test_generate_with_headmasking(self): |
|
attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"] |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_generative_model_classes: |
|
model = model_class(config) |
|
|
|
|
|
if not config.is_encoder_decoder: |
|
continue |
|
|
|
head_masking = { |
|
"head_mask": tf.zeros((config.encoder_layers, config.encoder_attention_heads)), |
|
"decoder_head_mask": tf.zeros((config.decoder_layers, config.decoder_attention_heads)), |
|
"cross_attn_head_mask": tf.zeros((config.decoder_layers, config.decoder_attention_heads)), |
|
} |
|
|
|
signature = inspect.signature(model.call) |
|
if set(head_masking.keys()) < {*signature.parameters.keys()}: |
|
continue |
|
|
|
for attn_name, (name, mask) in zip(attention_names, head_masking.items()): |
|
out = model.generate( |
|
inputs_dict["input_ids"], |
|
num_beams=1, |
|
max_length=inputs_dict["input_ids"] + 5, |
|
output_attentions=True, |
|
return_dict_in_generate=True, |
|
**{name: mask}, |
|
) |
|
|
|
attn_weights = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] |
|
self.assertEqual(sum([tf.reduce_sum(w).numpy() for w in attn_weights]), 0.0) |
|
|
|
def test_load_with_mismatched_shapes(self): |
|
if not self.test_mismatched_shapes: |
|
return |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
if model_class not in get_values(TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING): |
|
continue |
|
|
|
with self.subTest(msg=f"Testing {model_class}"): |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
model = model_class(config) |
|
inputs = self._prepare_for_class(inputs_dict, model_class) |
|
_ = model(**inputs) |
|
model.save_pretrained(tmp_dir) |
|
|
|
|
|
with self.assertRaises(ValueError): |
|
new_model = TFAutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42) |
|
with self.assertRaises(ValueError): |
|
new_model_without_prefix = TFAutoModel.from_pretrained(tmp_dir, vocab_size=10) |
|
|
|
logger = logging.get_logger("transformers.modeling_tf_utils") |
|
with CaptureLogger(logger) as cl: |
|
new_model = TFAutoModelForSequenceClassification.from_pretrained( |
|
tmp_dir, num_labels=42, ignore_mismatched_sizes=True |
|
) |
|
self.assertIn("the shapes did not match", cl.out) |
|
|
|
logits = new_model(**inputs).logits |
|
self.assertEqual(logits.shape[1], 42) |
|
|
|
with CaptureLogger(logger) as cl: |
|
new_model_without_prefix = TFAutoModel.from_pretrained( |
|
tmp_dir, vocab_size=10, ignore_mismatched_sizes=True |
|
) |
|
self.assertIn("the shapes did not match", cl.out) |
|
|
|
|
|
|
|
input_ids = ids_tensor((2, 8), 10) |
|
if self.is_encoder_decoder: |
|
new_model_without_prefix(input_ids, decoder_input_ids=input_ids) |
|
else: |
|
new_model_without_prefix(input_ids) |
|
|
|
def test_model_main_input_name(self): |
|
for model_class in self.all_model_classes: |
|
model_signature = inspect.signature(getattr(model_class, "call")) |
|
|
|
observed_main_input_name = list(model_signature.parameters.keys())[1] |
|
self.assertEqual(model_class.main_input_name, observed_main_input_name) |
|
|
|
def test_dataset_conversion(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class, return_labels=False) |
|
if "labels" in tf_inputs_dict: |
|
return |
|
tf_inputs_dict = { |
|
key: val |
|
for key, val in tf_inputs_dict.items() |
|
if "head_mask" not in key and isinstance(val, tf.Tensor) |
|
} |
|
tf_inputs_dict["extra_unwanted_column"] = list(tf_inputs_dict.values())[0] |
|
input_dataset = Dataset.from_dict(tf_inputs_dict) |
|
tf_dataset = model.prepare_tf_dataset( |
|
input_dataset, batch_size=len(input_dataset), drop_remainder=False, shuffle=False |
|
) |
|
test_batch = next(iter(tf_dataset)) |
|
if isinstance(test_batch, tf.Tensor): |
|
self.assertEqual(len(test_batch), len(input_dataset)) |
|
elif isinstance(test_batch, dict): |
|
|
|
self.assertEqual(len(test_batch), len(input_dataset.features) - 1) |
|
self.assertNotIn("extra_unwanted_column", test_batch) |
|
for tensor in test_batch.values(): |
|
self.assertTrue(isinstance(tensor, tf.Tensor)) |
|
self.assertEqual(len(tensor), len(input_dataset)) |
|
model(test_batch, training=False) |
|
|
|
if "labels" in inspect.signature(model_class.call).parameters.keys(): |
|
tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class, return_labels=True) |
|
if "labels" not in tf_inputs_dict: |
|
return |
|
tf_inputs_dict = {key: val for key, val in tf_inputs_dict.items() if "head_mask" not in key} |
|
tf_inputs_dict["extra_unwanted_column"] = list(tf_inputs_dict.values())[0] |
|
input_dataset = Dataset.from_dict(tf_inputs_dict) |
|
tf_dataset = model.prepare_tf_dataset( |
|
input_dataset, batch_size=len(input_dataset), drop_remainder=False, shuffle=False |
|
) |
|
test_batch, test_batch_labels = next(iter(tf_dataset)) |
|
self.assertGreater(len(test_batch_labels), 0) |
|
feature_columns = 1 if isinstance(test_batch, tf.Tensor) else len(test_batch) |
|
label_columns = 1 if isinstance(test_batch_labels, tf.Tensor) else len(test_batch_labels) |
|
|
|
self.assertEqual(feature_columns + label_columns, len(input_dataset.features) - 1) |
|
if isinstance(test_batch, dict): |
|
self.assertNotIn("extra_unwanted_column", test_batch) |
|
if isinstance(test_batch_labels, dict): |
|
self.assertNotIn("extra_unwanted_column", test_batch_labels) |
|
model.compile(optimizer="sgd", run_eagerly=True) |
|
model.train_on_batch(test_batch, test_batch_labels) |
|
|
|
def _test_xla_generate(self, **generate_kwargs): |
|
def _generate_and_check_results(model, inputs_dict): |
|
if "input_ids" in inputs_dict: |
|
inputs = inputs_dict["input_ids"] |
|
|
|
if model.generation_config.pad_token_id is not None: |
|
if config.pad_token_id == 0: |
|
new_pad_token = model.generation_config.pad_token_id + 1 |
|
else: |
|
new_pad_token = model.generation_config.pad_token_id - 1 |
|
else: |
|
new_pad_token = None |
|
inputs = tf.where(inputs != model.generation_config.pad_token_id, inputs, new_pad_token) |
|
elif "input_features" in inputs_dict: |
|
inputs = inputs_dict["input_features"] |
|
else: |
|
raise ValueError("No valid generate input found in inputs_dict") |
|
|
|
generated = model.generate(inputs, **generate_kwargs).numpy() |
|
generate_xla = tf.function(model.generate, jit_compile=True) |
|
generated_xla = generate_xla(inputs, **generate_kwargs).numpy() |
|
|
|
|
|
|
|
|
|
diff = [[], []] |
|
for _generated, _generated_xla in zip(generated.tolist(), generated_xla.tolist()): |
|
if _generated != _generated_xla: |
|
diff[0].append(_generated) |
|
diff[1].append(_generated_xla) |
|
ratio = len(diff[0]) / len(generated) |
|
if ratio > 0.1 or (len(diff[0]) > 0 and len(generated) < 10): |
|
self.assertListEqual(diff[0], diff[1]) |
|
|
|
for model_class in self.all_generative_model_classes: |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
config.eos_token_id = None |
|
config.do_sample = False |
|
|
|
|
|
for var_name in ["max_position_embeddings", "max_target_positions"]: |
|
attr = getattr(config, var_name, None) |
|
if attr is not None and attr < generate_kwargs["max_new_tokens"]: |
|
try: |
|
setattr(config, var_name, generate_kwargs["max_new_tokens"]) |
|
except NotImplementedError: |
|
|
|
|
|
pass |
|
|
|
model = model_class(config) |
|
|
|
if model.supports_xla_generation: |
|
_generate_and_check_results(model, inputs_dict) |
|
else: |
|
with self.assertRaises(ValueError): |
|
_generate_and_check_results(model, inputs_dict) |
|
|
|
def test_xla_generate_fast(self): |
|
""" |
|
Basic quick test for generate-compatible classes that confirms that XLA-generated tokens are the same as their |
|
non XLA counterparts. |
|
|
|
Either the model supports XLA generation and passes the inner test, or it raises an appropriate exception |
|
""" |
|
self._test_xla_generate(num_beams=1, num_return_sequences=1, max_new_tokens=3) |
|
|
|
@slow |
|
def test_xla_generate_contrastive(self): |
|
""" |
|
Slow and challenging version of `test_xla_generate_fast` for contrastive search -- contrastive search directly |
|
manipulates the model cache and other outputs, and this test ensures that they are in a valid format that is |
|
also supported by XLA. |
|
|
|
Either the model supports XLA generation and passes the inner test, or it raises an appropriate exception |
|
""" |
|
self._test_xla_generate(num_beams=1, num_return_sequences=1, max_new_tokens=16, penalty_alpha=0.5, top_k=4) |
|
|
|
@slow |
|
def test_xla_generate_slow(self): |
|
""" |
|
Slow and challenging version of `test_xla_generate_fast` -- this test asks for several long sequences using |
|
beam search, with and without XLA. The two outputs should match, and a failure in this test indicates that the |
|
model may need further analysis if it is to be used for XLA generation. |
|
|
|
Either the model supports XLA generation and passes the inner test, or it raises an appropriate exception |
|
""" |
|
self._test_xla_generate(num_beams=8, num_return_sequences=2, max_new_tokens=128) |
|
|
|
def _generate_random_bad_tokens(self, num_bad_tokens, model): |
|
|
|
special_tokens = [] |
|
if model.config.bos_token_id is not None: |
|
special_tokens.append(model.config.bos_token_id) |
|
if model.config.pad_token_id is not None: |
|
special_tokens.append(model.config.pad_token_id) |
|
if model.config.eos_token_id is not None: |
|
special_tokens.append(model.config.eos_token_id) |
|
|
|
|
|
bad_tokens = [] |
|
while len(bad_tokens) < num_bad_tokens: |
|
token = tf.squeeze(ids_tensor((1, 1), self.model_tester.vocab_size), 0).numpy()[0] |
|
if token not in special_tokens: |
|
bad_tokens.append(token) |
|
return bad_tokens |
|
|
|
def _check_generated_ids(self, output_ids): |
|
for token_id in output_ids[0].numpy().tolist(): |
|
self.assertGreaterEqual(token_id, 0) |
|
self.assertLess(token_id, self.model_tester.vocab_size) |
|
|
|
def _check_match_tokens(self, generated_ids, bad_words_ids): |
|
|
|
for bad_word_ids in bad_words_ids: |
|
|
|
for generated_ids_slice in generated_ids: |
|
|
|
for i in range(len(bad_word_ids), len(generated_ids_slice)): |
|
|
|
if generated_ids_slice[i - len(bad_word_ids) : i] == bad_word_ids: |
|
return True |
|
return False |
|
|
|
|
|
def ids_tensor(shape, vocab_size, rng=None, name=None, dtype=None): |
|
"""Creates a random int32 tensor of the shape within the vocab size.""" |
|
if rng is None: |
|
rng = random.Random() |
|
|
|
total_dims = 1 |
|
for dim in shape: |
|
total_dims *= dim |
|
|
|
values = [] |
|
for _ in range(total_dims): |
|
values.append(rng.randint(0, vocab_size - 1)) |
|
|
|
output = tf.constant(values, shape=shape, dtype=dtype if dtype is not None else tf.int32) |
|
|
|
return output |
|
|
|
|
|
def random_attention_mask(shape, rng=None, name=None, dtype=None): |
|
attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None, dtype=dtype) |
|
|
|
attn_mask = tf.concat([attn_mask[:, :-1], tf.ones_like(attn_mask[:, -1:], dtype=dtype)], axis=-1) |
|
return attn_mask |
|
|
|
|
|
def floats_tensor(shape, scale=1.0, rng=None, name=None, dtype=None): |
|
"""Creates a random float32 tensor""" |
|
if rng is None: |
|
rng = random.Random() |
|
|
|
total_dims = 1 |
|
for dim in shape: |
|
total_dims *= dim |
|
|
|
values = [] |
|
for _ in range(total_dims): |
|
values.append(rng.random() * scale) |
|
|
|
return tf.reshape(tf.constant(values, dtype=dtype if dtype is not None else tf.float32), shape=shape) |
|
|