|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy |
|
import inspect |
|
import json |
|
import random |
|
import tempfile |
|
from typing import List, Tuple |
|
|
|
import numpy as np |
|
|
|
import transformers |
|
from transformers import is_flax_available, is_torch_available |
|
from transformers.models.auto import get_values |
|
from transformers.testing_utils import CaptureLogger, is_pt_flax_cross_test, require_flax, torch_device |
|
from transformers.utils import CONFIG_NAME, GENERATION_CONFIG_NAME, logging |
|
from transformers.utils.generic import ModelOutput |
|
|
|
|
|
if is_flax_available(): |
|
import os |
|
|
|
import jax |
|
import jax.numpy as jnp |
|
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze |
|
from flax.serialization import from_bytes |
|
from flax.traverse_util import flatten_dict, unflatten_dict |
|
|
|
from transformers import ( |
|
FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING, |
|
FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, |
|
FLAX_MODEL_MAPPING, |
|
FlaxAutoModel, |
|
FlaxAutoModelForSequenceClassification, |
|
FlaxBertModel, |
|
) |
|
from transformers.modeling_flax_pytorch_utils import ( |
|
convert_pytorch_state_dict_to_flax, |
|
load_flax_weights_in_pytorch_model, |
|
) |
|
from transformers.modeling_flax_utils import FLAX_WEIGHTS_INDEX_NAME, FLAX_WEIGHTS_NAME |
|
|
|
os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = "0.12" |
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
|
|
def ids_tensor(shape, vocab_size, rng=None): |
|
"""Creates a random int32 tensor of the shape within the vocab size.""" |
|
if rng is None: |
|
rng = random.Random() |
|
|
|
total_dims = 1 |
|
for dim in shape: |
|
total_dims *= dim |
|
|
|
values = [] |
|
for _ in range(total_dims): |
|
values.append(rng.randint(0, vocab_size - 1)) |
|
|
|
output = np.array(values, dtype=jnp.int32).reshape(shape) |
|
|
|
return output |
|
|
|
|
|
def floats_tensor(shape, scale=1.0, rng=None, name=None): |
|
"""Creates a random float32 tensor""" |
|
if rng is None: |
|
rng = random.Random() |
|
|
|
total_dims = 1 |
|
for dim in shape: |
|
total_dims *= dim |
|
|
|
values = [] |
|
for _ in range(total_dims): |
|
values.append(rng.random() * scale) |
|
|
|
return np.array(values, dtype=jnp.float32).reshape(shape) |
|
|
|
|
|
def random_attention_mask(shape, rng=None): |
|
attn_mask = ids_tensor(shape, vocab_size=2, rng=rng) |
|
|
|
attn_mask[:, -1] = 1 |
|
return attn_mask |
|
|
|
|
|
def get_params(params, from_head_prefix=None): |
|
"""Function extracts relevant parameters into flatten dict from model params, |
|
appends batch normalization statistics if present""" |
|
|
|
|
|
if "batch_stats" in params: |
|
|
|
if from_head_prefix is not None: |
|
extracted_params = flatten_dict(unfreeze(params["params"][from_head_prefix])) |
|
extracted_params.update(flatten_dict(params["batch_stats"][from_head_prefix])) |
|
else: |
|
extracted_params = flatten_dict(unfreeze(params["params"])) |
|
extracted_params.update(flatten_dict(params["batch_stats"])) |
|
|
|
|
|
else: |
|
if from_head_prefix is not None: |
|
extracted_params = flatten_dict(unfreeze(params[from_head_prefix])) |
|
else: |
|
extracted_params = flatten_dict(unfreeze(params)) |
|
|
|
return extracted_params |
|
|
|
|
|
@require_flax |
|
class FlaxModelTesterMixin: |
|
model_tester = None |
|
all_model_classes = () |
|
test_mismatched_shapes = True |
|
is_encoder_decoder = False |
|
test_head_masking = False |
|
has_attentions = True |
|
|
|
def _prepare_for_class(self, inputs_dict, model_class): |
|
inputs_dict = copy.deepcopy(inputs_dict) |
|
|
|
|
|
if "ForMultipleChoice" in model_class.__name__: |
|
inputs_dict = { |
|
k: jnp.broadcast_to(v[:, None], (v.shape[0], self.model_tester.num_choices, v.shape[-1])) |
|
if isinstance(v, (jnp.ndarray, np.ndarray)) and k != "indices_prng_key" |
|
else v |
|
for k, v in inputs_dict.items() |
|
} |
|
|
|
return inputs_dict |
|
|
|
def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float): |
|
diff = np.abs((a - b)).max() |
|
self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).") |
|
|
|
def test_model_outputs_equivalence(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}): |
|
tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs) |
|
dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple() |
|
|
|
def recursive_check(tuple_object, dict_object): |
|
if isinstance(tuple_object, (List, Tuple)): |
|
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object): |
|
recursive_check(tuple_iterable_value, dict_iterable_value) |
|
elif tuple_object is None: |
|
return |
|
else: |
|
self.assert_almost_equals(jnp.nan_to_num(tuple_object), jnp.nan_to_num(dict_object), 1e-5) |
|
|
|
recursive_check(tuple_output, dict_output) |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class) |
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class) |
|
check_equivalence(model, tuple_inputs, dict_inputs) |
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class) |
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class) |
|
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) |
|
|
|
|
|
def check_pt_flax_outputs(self, fx_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None): |
|
""" |
|
Args: |
|
model_class: The class of the model that is currently testing. For example, ..., etc. |
|
Currently unused, but it could make debugging easier and faster. |
|
|
|
names: A string, or a list of strings. These specify what fx_outputs/pt_outputs represent in the model outputs. |
|
Currently unused, but in the future, we could use this information to make the error message clearer |
|
by giving the name(s) of the output tensor(s) with large difference(s) between PT and Flax. |
|
""" |
|
|
|
self.assertEqual(type(name), str) |
|
if attributes is not None: |
|
self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`") |
|
|
|
|
|
if isinstance(fx_outputs, ModelOutput): |
|
self.assertTrue( |
|
isinstance(pt_outputs, ModelOutput), |
|
f"{name}: `pt_outputs` should an instance of `ModelOutput` when `fx_outputs` is", |
|
) |
|
|
|
fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None]) |
|
pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None]) |
|
|
|
self.assertEqual(fx_keys, pt_keys, f"{name}: Output keys differ between Flax and PyTorch") |
|
|
|
|
|
|
|
attributes = tuple([f"{name}.{k}" for k in fx_keys]) |
|
self.check_pt_flax_outputs( |
|
fx_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes |
|
) |
|
|
|
|
|
elif type(fx_outputs) in [tuple, list]: |
|
self.assertEqual( |
|
type(fx_outputs), type(pt_outputs), f"{name}: Output types differ between Flax and PyTorch" |
|
) |
|
self.assertEqual( |
|
len(fx_outputs), len(pt_outputs), f"{name}: Output lengths differ between Flax and PyTorch" |
|
) |
|
|
|
if attributes is not None: |
|
|
|
self.assertEqual( |
|
len(attributes), |
|
len(fx_outputs), |
|
f"{name}: The tuple `attributes` should have the same length as `fx_outputs`", |
|
) |
|
else: |
|
|
|
attributes = tuple([f"{name}_{idx}" for idx in range(len(fx_outputs))]) |
|
|
|
for fx_output, pt_output, attr in zip(fx_outputs, pt_outputs, attributes): |
|
self.check_pt_flax_outputs(fx_output, pt_output, model_class, tol=tol, name=attr) |
|
|
|
elif isinstance(fx_outputs, jnp.ndarray): |
|
self.assertTrue( |
|
isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `fx_outputs` is" |
|
) |
|
|
|
|
|
fx_outputs = np.array(fx_outputs) |
|
pt_outputs = pt_outputs.detach().to("cpu").numpy() |
|
|
|
self.assertEqual( |
|
fx_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between Flax and PyTorch" |
|
) |
|
|
|
|
|
if np.isscalar(fx_outputs): |
|
fx_outputs = np.array([fx_outputs]) |
|
pt_outputs = np.array([pt_outputs]) |
|
|
|
fx_nans = np.isnan(fx_outputs) |
|
pt_nans = np.isnan(pt_outputs) |
|
|
|
pt_outputs[fx_nans] = 0 |
|
fx_outputs[fx_nans] = 0 |
|
pt_outputs[pt_nans] = 0 |
|
fx_outputs[pt_nans] = 0 |
|
|
|
max_diff = np.amax(np.abs(fx_outputs - pt_outputs)) |
|
self.assertLessEqual( |
|
max_diff, tol, f"{name}: Difference between PyTorch and Flax is {max_diff} (>= {tol})." |
|
) |
|
else: |
|
raise ValueError( |
|
"`fx_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `jnp.ndarray`. Got" |
|
f" {type(fx_outputs)} instead." |
|
) |
|
|
|
@is_pt_flax_cross_test |
|
def test_equivalence_pt_to_flax(self): |
|
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
with self.subTest(model_class.__name__): |
|
|
|
config.output_hidden_states = True |
|
config.output_attentions = self.has_attentions |
|
|
|
|
|
prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) |
|
pt_inputs = {k: torch.tensor(v.tolist(), device=torch_device) for k, v in prepared_inputs_dict.items()} |
|
|
|
|
|
pt_model_class_name = model_class.__name__[4:] |
|
pt_model_class = getattr(transformers, pt_model_class_name) |
|
|
|
pt_model = pt_model_class(config).eval() |
|
|
|
|
|
pt_model.config.use_cache = False |
|
fx_model = model_class(config, dtype=jnp.float32) |
|
|
|
fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model) |
|
fx_model.params = fx_state |
|
|
|
|
|
pt_model.to(torch_device) |
|
|
|
with torch.no_grad(): |
|
pt_outputs = pt_model(**pt_inputs) |
|
fx_outputs = fx_model(**prepared_inputs_dict) |
|
|
|
fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None]) |
|
pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None]) |
|
|
|
self.assertEqual(fx_keys, pt_keys) |
|
self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
pt_model.save_pretrained(tmpdirname) |
|
fx_model_loaded = model_class.from_pretrained(tmpdirname, from_pt=True) |
|
|
|
fx_outputs_loaded = fx_model_loaded(**prepared_inputs_dict) |
|
|
|
fx_keys = tuple([k for k, v in fx_outputs_loaded.items() if v is not None]) |
|
pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None]) |
|
|
|
self.assertEqual(fx_keys, pt_keys) |
|
self.check_pt_flax_outputs(fx_outputs_loaded, pt_outputs, model_class) |
|
|
|
@is_pt_flax_cross_test |
|
def test_equivalence_flax_to_pt(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
with self.subTest(model_class.__name__): |
|
|
|
config.output_hidden_states = True |
|
config.output_attentions = self.has_attentions |
|
|
|
|
|
prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) |
|
pt_inputs = {k: torch.tensor(v.tolist(), device=torch_device) for k, v in prepared_inputs_dict.items()} |
|
|
|
|
|
pt_model_class_name = model_class.__name__[4:] |
|
pt_model_class = getattr(transformers, pt_model_class_name) |
|
|
|
pt_model = pt_model_class(config).eval() |
|
|
|
|
|
pt_model.config.use_cache = False |
|
fx_model = model_class(config, dtype=jnp.float32) |
|
|
|
pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params) |
|
|
|
|
|
pt_model.tie_weights() |
|
|
|
|
|
pt_model.to(torch_device) |
|
|
|
with torch.no_grad(): |
|
pt_outputs = pt_model(**pt_inputs) |
|
fx_outputs = fx_model(**prepared_inputs_dict) |
|
|
|
fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None]) |
|
pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None]) |
|
|
|
self.assertEqual(fx_keys, pt_keys) |
|
self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
fx_model.save_pretrained(tmpdirname) |
|
pt_model_loaded = pt_model_class.from_pretrained(tmpdirname, from_flax=True) |
|
|
|
|
|
pt_model_loaded.to(torch_device) |
|
pt_model_loaded.eval() |
|
|
|
with torch.no_grad(): |
|
pt_outputs_loaded = pt_model_loaded(**pt_inputs) |
|
|
|
fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None]) |
|
pt_keys = tuple([k for k, v in pt_outputs_loaded.items() if v is not None]) |
|
|
|
self.assertEqual(fx_keys, pt_keys) |
|
self.check_pt_flax_outputs(fx_outputs, pt_outputs_loaded, model_class) |
|
|
|
def test_from_pretrained_save_pretrained(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
with self.subTest(model_class.__name__): |
|
model = model_class(config) |
|
|
|
prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) |
|
outputs = model(**prepared_inputs_dict).to_tuple() |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.save_pretrained(tmpdirname) |
|
|
|
|
|
self.assertTrue(os.path.exists(os.path.join(tmpdirname, CONFIG_NAME))) |
|
self.assertEqual( |
|
model.can_generate(), os.path.exists(os.path.join(tmpdirname, GENERATION_CONFIG_NAME)) |
|
) |
|
|
|
model_loaded = model_class.from_pretrained(tmpdirname) |
|
|
|
outputs_loaded = model_loaded(**prepared_inputs_dict).to_tuple() |
|
for output_loaded, output in zip(outputs_loaded, outputs): |
|
self.assert_almost_equals(output_loaded, output, 1e-3) |
|
|
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.save_pretrained(tmpdirname, params=model.params) |
|
model_loaded = model_class.from_pretrained(tmpdirname) |
|
|
|
outputs_loaded = model_loaded(**prepared_inputs_dict).to_tuple() |
|
for output_loaded, output in zip(outputs_loaded, outputs): |
|
self.assert_almost_equals(output_loaded, output, 1e-3) |
|
|
|
def test_save_load_from_base(self): |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
base_class = FLAX_MODEL_MAPPING[config.__class__] |
|
|
|
for model_class in self.all_model_classes: |
|
if model_class == base_class: |
|
continue |
|
|
|
model = base_class(config) |
|
base_params = get_params(model.params) |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.save_pretrained(tmpdirname) |
|
head_model = model_class.from_pretrained(tmpdirname) |
|
|
|
base_param_from_head = get_params(head_model.params, from_head_prefix=head_model.base_model_prefix) |
|
|
|
for key in base_param_from_head.keys(): |
|
max_diff = (base_params[key] - base_param_from_head[key]).sum().item() |
|
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical") |
|
|
|
def test_save_load_to_base(self): |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
base_class = FLAX_MODEL_MAPPING[config.__class__] |
|
|
|
for model_class in self.all_model_classes: |
|
if model_class == base_class: |
|
continue |
|
|
|
model = model_class(config) |
|
base_params_from_head = get_params(model.params, from_head_prefix=model.base_model_prefix) |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.save_pretrained(tmpdirname) |
|
base_model = base_class.from_pretrained(tmpdirname) |
|
|
|
base_params = get_params(base_model.params) |
|
|
|
for key in base_params_from_head.keys(): |
|
max_diff = (base_params[key] - base_params_from_head[key]).sum().item() |
|
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical") |
|
|
|
@is_pt_flax_cross_test |
|
def test_save_load_from_base_pt(self): |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
base_class = FLAX_MODEL_MAPPING[config.__class__] |
|
|
|
for model_class in self.all_model_classes: |
|
if model_class == base_class: |
|
continue |
|
|
|
model = base_class(config) |
|
base_params = get_params(model.params) |
|
|
|
|
|
pt_model_class = getattr(transformers, base_class.__name__[4:]) |
|
pt_model = pt_model_class(config).eval() |
|
pt_model = load_flax_weights_in_pytorch_model(pt_model, model.params) |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
|
|
pt_model.save_pretrained(tmpdirname) |
|
head_model = model_class.from_pretrained(tmpdirname, from_pt=True) |
|
|
|
base_param_from_head = get_params(head_model.params, from_head_prefix=head_model.base_model_prefix) |
|
|
|
for key in base_param_from_head.keys(): |
|
max_diff = (base_params[key] - base_param_from_head[key]).sum().item() |
|
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical") |
|
|
|
@is_pt_flax_cross_test |
|
def test_save_load_to_base_pt(self): |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
base_class = FLAX_MODEL_MAPPING[config.__class__] |
|
|
|
for model_class in self.all_model_classes: |
|
if model_class == base_class: |
|
continue |
|
|
|
model = model_class(config) |
|
base_params_from_head = get_params(model.params, from_head_prefix=model.base_model_prefix) |
|
|
|
|
|
pt_model_class = getattr(transformers, model_class.__name__[4:]) |
|
pt_model = pt_model_class(config).eval() |
|
pt_model = load_flax_weights_in_pytorch_model(pt_model, model.params) |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
pt_model.save_pretrained(tmpdirname) |
|
base_model = base_class.from_pretrained(tmpdirname, from_pt=True) |
|
|
|
base_params = get_params(base_model.params) |
|
|
|
for key in base_params_from_head.keys(): |
|
max_diff = (base_params[key] - base_params_from_head[key]).sum().item() |
|
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical") |
|
|
|
@is_pt_flax_cross_test |
|
def test_save_load_bf16_to_base_pt(self): |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
base_class = FLAX_MODEL_MAPPING[config.__class__] |
|
|
|
for model_class in self.all_model_classes: |
|
if model_class == base_class: |
|
continue |
|
|
|
model = model_class(config) |
|
model.params = model.to_bf16(model.params) |
|
base_params_from_head = get_params(model.params, from_head_prefix=model.base_model_prefix) |
|
|
|
|
|
pt_model_class = getattr(transformers, model_class.__name__[4:]) |
|
pt_model = pt_model_class(config).eval() |
|
pt_model = load_flax_weights_in_pytorch_model(pt_model, model.params) |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
pt_model.save_pretrained(tmpdirname) |
|
base_model = base_class.from_pretrained(tmpdirname, from_pt=True) |
|
|
|
base_params = get_params(base_model.params) |
|
|
|
for key in base_params_from_head.keys(): |
|
max_diff = (base_params[key] - base_params_from_head[key]).sum().item() |
|
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical") |
|
|
|
def test_jit_compilation(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
with self.subTest(model_class.__name__): |
|
prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) |
|
model = model_class(config) |
|
|
|
@jax.jit |
|
def model_jitted(input_ids, attention_mask=None, **kwargs): |
|
return model(input_ids=input_ids, attention_mask=attention_mask, **kwargs) |
|
|
|
with self.subTest("JIT Enabled"): |
|
jitted_outputs = model_jitted(**prepared_inputs_dict).to_tuple() |
|
|
|
with self.subTest("JIT Disabled"): |
|
with jax.disable_jit(): |
|
outputs = model_jitted(**prepared_inputs_dict).to_tuple() |
|
|
|
self.assertEqual(len(outputs), len(jitted_outputs)) |
|
for jitted_output, output in zip(jitted_outputs, outputs): |
|
self.assertEqual(jitted_output.shape, output.shape) |
|
|
|
def test_forward_signature(self): |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
signature = inspect.signature(model.__call__) |
|
|
|
arg_names = [*signature.parameters.keys()] |
|
|
|
if model.config.is_encoder_decoder: |
|
expected_arg_names = [ |
|
"input_ids", |
|
"attention_mask", |
|
"decoder_input_ids", |
|
"decoder_attention_mask", |
|
] |
|
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) |
|
else: |
|
expected_arg_names = ["input_ids", "attention_mask"] |
|
self.assertListEqual(arg_names[:2], expected_arg_names) |
|
|
|
def test_naming_convention(self): |
|
for model_class in self.all_model_classes: |
|
model_class_name = model_class.__name__ |
|
module_class_name = ( |
|
model_class_name[:-5] + "Module" if model_class_name[-5:] == "Model" else model_class_name + "Module" |
|
) |
|
bert_modeling_flax_module = __import__(model_class.__module__, fromlist=[module_class_name]) |
|
module_cls = getattr(bert_modeling_flax_module, module_class_name) |
|
|
|
self.assertIsNotNone(module_cls) |
|
|
|
def test_hidden_states_output(self): |
|
def check_hidden_states_output(inputs_dict, config, model_class): |
|
model = model_class(config) |
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) |
|
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states |
|
|
|
expected_num_layers = getattr( |
|
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 |
|
) |
|
self.assertEqual(len(hidden_states), expected_num_layers) |
|
|
|
if hasattr(self.model_tester, "encoder_seq_length"): |
|
seq_length = self.model_tester.encoder_seq_length |
|
else: |
|
seq_length = self.model_tester.seq_length |
|
|
|
self.assertListEqual( |
|
list(hidden_states[0].shape[-2:]), |
|
[seq_length, self.model_tester.hidden_size], |
|
) |
|
|
|
if config.is_encoder_decoder: |
|
hidden_states = outputs.decoder_hidden_states |
|
|
|
self.assertIsInstance(hidden_states, (list, tuple)) |
|
self.assertEqual(len(hidden_states), expected_num_layers) |
|
seq_len = getattr(self.model_tester, "seq_length", None) |
|
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) |
|
|
|
self.assertListEqual( |
|
list(hidden_states[0].shape[-2:]), |
|
[decoder_seq_length, self.model_tester.hidden_size], |
|
) |
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
inputs_dict["output_hidden_states"] = True |
|
check_hidden_states_output(inputs_dict, config, model_class) |
|
|
|
|
|
del inputs_dict["output_hidden_states"] |
|
config.output_hidden_states = True |
|
|
|
check_hidden_states_output(inputs_dict, config, model_class) |
|
|
|
def test_attention_outputs(self): |
|
if not self.has_attentions: |
|
self.skipTest(reason="Model does not output attentions") |
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
config.return_dict = True |
|
|
|
seq_length = getattr(self.model_tester, "seq_length", None) |
|
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_length) |
|
encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_length) |
|
decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length) |
|
encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) |
|
|
|
for model_class in self.all_model_classes: |
|
inputs_dict["output_attentions"] = True |
|
inputs_dict["output_hidden_states"] = False |
|
model = model_class(config) |
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) |
|
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions |
|
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) |
|
|
|
|
|
del inputs_dict["output_attentions"] |
|
config.output_attentions = True |
|
model = model_class(config) |
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) |
|
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions |
|
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) |
|
|
|
self.assertListEqual( |
|
list(attentions[0].shape[-3:]), |
|
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], |
|
) |
|
out_len = len(outputs) |
|
|
|
if self.is_encoder_decoder: |
|
correct_outlen = 5 |
|
|
|
|
|
if model_class in get_values(FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING): |
|
correct_outlen += 1 |
|
|
|
self.assertEqual(out_len, correct_outlen) |
|
|
|
|
|
decoder_attentions = outputs.decoder_attentions |
|
self.assertIsInstance(decoder_attentions, (list, tuple)) |
|
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) |
|
self.assertListEqual( |
|
list(decoder_attentions[0].shape[-3:]), |
|
[self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length], |
|
) |
|
|
|
|
|
cross_attentions = outputs.cross_attentions |
|
self.assertIsInstance(cross_attentions, (list, tuple)) |
|
self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers) |
|
self.assertListEqual( |
|
list(cross_attentions[0].shape[-3:]), |
|
[ |
|
self.model_tester.num_attention_heads, |
|
decoder_seq_length, |
|
encoder_key_length, |
|
], |
|
) |
|
|
|
|
|
inputs_dict["output_attentions"] = True |
|
inputs_dict["output_hidden_states"] = True |
|
model = model_class(config) |
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) |
|
|
|
if hasattr(self.model_tester, "num_hidden_states_types"): |
|
added_hidden_states = self.model_tester.num_hidden_states_types |
|
elif self.is_encoder_decoder: |
|
added_hidden_states = 2 |
|
else: |
|
added_hidden_states = 1 |
|
self.assertEqual(out_len + added_hidden_states, len(outputs)) |
|
|
|
self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions |
|
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) |
|
|
|
self.assertListEqual( |
|
list(self_attentions[0].shape[-3:]), |
|
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], |
|
) |
|
|
|
def test_load_with_mismatched_shapes(self): |
|
if not self.test_mismatched_shapes: |
|
return |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
if model_class not in get_values(FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING): |
|
continue |
|
|
|
with self.subTest(msg=f"Testing {model_class}"): |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
model = model_class(config) |
|
model.save_pretrained(tmp_dir) |
|
|
|
|
|
with self.assertRaises(ValueError): |
|
new_model = FlaxAutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42) |
|
with self.assertRaises(ValueError): |
|
new_model_without_prefix = FlaxAutoModel.from_pretrained(tmp_dir, vocab_size=10) |
|
|
|
logger = logging.get_logger("transformers.modeling_flax_utils") |
|
with CaptureLogger(logger) as cl: |
|
new_model = FlaxAutoModelForSequenceClassification.from_pretrained( |
|
tmp_dir, num_labels=42, ignore_mismatched_sizes=True |
|
) |
|
self.assertIn("the shapes did not match", cl.out) |
|
|
|
logits = new_model(**inputs_dict)["logits"] |
|
self.assertEqual(logits.shape[1], 42) |
|
|
|
with CaptureLogger(logger) as cl: |
|
new_model_without_prefix = FlaxAutoModel.from_pretrained( |
|
tmp_dir, vocab_size=10, ignore_mismatched_sizes=True |
|
) |
|
self.assertIn("the shapes did not match", cl.out) |
|
input_ids = ids_tensor((2, 8), 10) |
|
if self.is_encoder_decoder: |
|
new_model_without_prefix(input_ids, decoder_input_ids=input_ids) |
|
else: |
|
new_model_without_prefix(input_ids) |
|
|
|
def test_default_params_dtype(self): |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
|
|
model = model_class(config, dtype=jnp.float16) |
|
types = jax.tree_util.tree_map(lambda x: x.dtype, model.params) |
|
types = flatten_dict(types) |
|
|
|
for name, type_ in types.items(): |
|
self.assertEquals(type_, jnp.float32, msg=f"param {name} is not initialized in fp32.") |
|
|
|
def test_to_bf16(self): |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
|
|
|
|
params = model.to_bf16(model.params) |
|
types = flatten_dict(jax.tree_util.tree_map(lambda x: x.dtype, params)) |
|
|
|
for name, type_ in types.items(): |
|
self.assertEqual(type_, jnp.bfloat16, msg=f"param {name} is not in bf16.") |
|
|
|
|
|
flat_params = flatten_dict(params) |
|
key = random.choice(list(flat_params.keys())) |
|
mask = {path: path != key for path in flat_params} |
|
mask = unflatten_dict(mask) |
|
|
|
params = model.to_bf16(model.params, mask) |
|
types = flatten_dict(jax.tree_util.tree_map(lambda x: x.dtype, params)) |
|
|
|
for name, type_ in types.items(): |
|
if name == key: |
|
self.assertEqual(type_, jnp.float32, msg=f"param {name} should be in fp32.") |
|
else: |
|
self.assertEqual(type_, jnp.bfloat16, msg=f"param {name} is not in bf16.") |
|
|
|
def test_to_fp16(self): |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
|
|
|
|
params = model.to_fp16(model.params) |
|
types = flatten_dict(jax.tree_util.tree_map(lambda x: x.dtype, params)) |
|
|
|
for name, type_ in types.items(): |
|
self.assertEqual(type_, jnp.float16, msg=f"param {name} is not in fp16.") |
|
|
|
|
|
flat_params = flatten_dict(params) |
|
key = random.choice(list(flat_params.keys())) |
|
mask = {path: path != key for path in flat_params} |
|
mask = unflatten_dict(mask) |
|
|
|
params = model.to_fp16(model.params, mask) |
|
types = flatten_dict(jax.tree_util.tree_map(lambda x: x.dtype, params)) |
|
|
|
for name, type_ in types.items(): |
|
if name == key: |
|
self.assertEqual(type_, jnp.float32, msg=f"param {name} should be in fp32.") |
|
else: |
|
self.assertEqual(type_, jnp.float16, msg=f"param {name} is not in fp16.") |
|
|
|
def test_to_fp32(self): |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
|
|
|
|
params = model.to_fp16(model.params) |
|
params = model.to_fp32(params) |
|
|
|
|
|
types = flatten_dict(jax.tree_util.tree_map(lambda x: x.dtype, params)) |
|
for name, type_ in types.items(): |
|
self.assertEqual(type_, jnp.float32, msg=f"param {name} is not in fp32.") |
|
|
|
|
|
flat_params = flatten_dict(params) |
|
key = random.choice(list(flat_params.keys())) |
|
mask = {path: path != key for path in flat_params} |
|
mask = unflatten_dict(mask) |
|
|
|
|
|
params = model.to_fp16(model.params) |
|
params = model.to_fp32(params, mask) |
|
|
|
|
|
types = flatten_dict(jax.tree_util.tree_map(lambda x: x.dtype, params)) |
|
for name, type_ in types.items(): |
|
if name == key: |
|
self.assertEqual(type_, jnp.float16, msg=f"param {name} should be in fp16.") |
|
else: |
|
self.assertEqual(type_, jnp.float32, msg=f"param {name} is not in fp32.") |
|
|
|
def test_save_load_in_fp16(self): |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
|
|
|
|
params = model.to_fp16(model.params) |
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.save_pretrained(tmpdirname, params=params) |
|
|
|
|
|
model = model_class.from_pretrained(tmpdirname) |
|
types = flatten_dict(jax.tree_util.tree_map(lambda x: x.dtype, model.params)) |
|
for name, type_ in types.items(): |
|
self.assertEqual(type_, jnp.float16, msg=f"param {name} is not in fp16.") |
|
|
|
def test_save_load_in_bf16(self): |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
|
|
|
|
params = model.to_bf16(model.params) |
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.save_pretrained(tmpdirname, params=params) |
|
|
|
|
|
model = model_class.from_pretrained(tmpdirname) |
|
types = flatten_dict(jax.tree_util.tree_map(lambda x: x.dtype, model.params)) |
|
for name, type_ in types.items(): |
|
self.assertEqual(type_, jnp.bfloat16, msg=f"param {name} is not in bf16.") |
|
|
|
def test_model_main_input_name(self): |
|
for model_class in self.all_model_classes: |
|
model_signature = inspect.signature(getattr(model_class, "__call__")) |
|
|
|
observed_main_input_name = list(model_signature.parameters.keys())[1] |
|
self.assertEqual(model_class.main_input_name, observed_main_input_name) |
|
|
|
def test_headmasking(self): |
|
if not self.test_head_masking: |
|
return |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
config.return_dict = True |
|
|
|
def _prepare_layer_head_mask(i, attention_heads, num_hidden_layers): |
|
if i == 0: |
|
return np.concatenate([np.zeros(1, dtype=jnp.int32), np.ones(attention_heads - 1, dtype=jnp.int32)]) |
|
if i == num_hidden_layers - 1: |
|
return np.concatenate([np.zeros(attention_heads - 1, dtype=jnp.int32), np.ones(1, dtype=jnp.int32)]) |
|
return np.ones(attention_heads, dtype=jnp.int32) |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
|
|
inputs_dict["output_attentions"] = True |
|
inputs_dict["output_hidden_states"] = False |
|
inputs = self._prepare_for_class(inputs_dict, model_class).copy() |
|
|
|
inputs["head_mask"] = np.stack( |
|
[ |
|
_prepare_layer_head_mask(i, config.num_attention_heads, config.num_hidden_layers) |
|
for i in range(config.num_hidden_layers) |
|
] |
|
) |
|
outputs = model(**inputs) |
|
|
|
def _check_attentions_validity(attentions): |
|
|
|
for t in attentions: |
|
|
|
self.assertLess(np.isnan(t).sum(), t.size / 4) |
|
attentions = [np.where(np.isnan(t), 0.0, t) for t in attentions] |
|
|
|
self.assertAlmostEqual(attentions[0][..., 0, :, :].sum(), 0.0) |
|
self.assertNotEqual(attentions[0][..., -1, :, :].sum(), 0.0) |
|
if len(attentions) > 2: |
|
self.assertNotEqual(attentions[1][..., 0, :, :].sum(), 0.0) |
|
self.assertAlmostEqual(attentions[-1][..., -2, :, :].sum(), 0.0) |
|
self.assertNotEqual(attentions[-1][..., -1, :, :].sum(), 0.0) |
|
|
|
if model.config.is_encoder_decoder: |
|
raise NotImplementedError("The test has not been implemented for encoder-decoder models yet.") |
|
else: |
|
_check_attentions_validity(outputs.attentions) |
|
|
|
def test_no_automatic_init(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
config.return_dict = True |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config, _do_init=False) |
|
|
|
|
|
with self.assertRaises(ValueError): |
|
params = model.params |
|
|
|
|
|
params = model.init_weights(model.key, model.input_shape) |
|
self.assertIsInstance(params, FrozenDict) |
|
|
|
keys = set(flatten_dict(unfreeze(params)).keys()) |
|
self.assertTrue(all(k in keys for k in model.required_params)) |
|
|
|
flat_params = flatten_dict(unfreeze(params)) |
|
for k, v in flatten_dict(unfreeze(model.params_shape_tree)).items(): |
|
self.assertEqual( |
|
v.shape, |
|
flat_params[k].shape, |
|
"Shapes of {} do not match. Expecting {}, got {}.".format(k, v.shape, flat_params[k].shape), |
|
) |
|
|
|
|
|
with self.assertRaises(ValueError): |
|
model.params = params |
|
|
|
|
|
inputs_dict["output_hidden_states"] = True |
|
inputs = self._prepare_for_class(inputs_dict, model_class).copy() |
|
model(**inputs, params=params) |
|
|
|
def test_from_pretrained_with_no_automatic_init(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
config.return_dict = True |
|
|
|
def _assert_all_params_initialised(model, params): |
|
|
|
keys = set(flatten_dict(unfreeze(params)).keys()) |
|
self.assertTrue(all(k in keys for k in model.required_params)) |
|
|
|
flat_params = flatten_dict(unfreeze(params)) |
|
for k, v in flatten_dict(unfreeze(model.params_shape_tree)).items(): |
|
self.assertEqual( |
|
v.shape, |
|
flat_params[k].shape, |
|
"Shapes of {} do not match. Expecting {}, got {}.".format(k, v.shape, flat_params[k].shape), |
|
) |
|
|
|
for model_class in self.all_model_classes: |
|
|
|
model = model_class(config) |
|
|
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.save_pretrained(tmpdirname) |
|
model, params = model_class.from_pretrained(tmpdirname, _do_init=False) |
|
|
|
|
|
with self.assertRaises(ValueError): |
|
params = model.params |
|
|
|
|
|
_assert_all_params_initialised(model, params) |
|
|
|
|
|
with self.assertRaises(ValueError): |
|
model.params = params |
|
|
|
|
|
flat_params = flatten_dict(unfreeze(params)) |
|
random_key = random.choice(list(flat_params.keys())) |
|
flat_params.pop(random_key) |
|
params = freeze(unflatten_dict(flat_params)) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.save_pretrained(tmpdirname, params=params) |
|
model, params = model_class.from_pretrained(tmpdirname, _do_init=False) |
|
|
|
params = model.init_weights(model.key, model.input_shape, params=params) |
|
|
|
_assert_all_params_initialised(model, params) |
|
|
|
def test_checkpoint_sharding_from_hub(self): |
|
model = FlaxBertModel.from_pretrained("ArthurZ/flax-tiny-random-bert-sharded") |
|
|
|
ref_model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-flax-only") |
|
for p1, p2 in zip(flatten_dict(model.params).values(), flatten_dict(ref_model.params).values()): |
|
assert np.allclose(np.array(p1), np.array(p2)) |
|
|
|
def test_checkpoint_sharding_local(self): |
|
model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-flax-only") |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
|
|
for max_size in ["150kB", "150kiB", "200kB", "200kiB"]: |
|
model.save_pretrained(tmp_dir, max_shard_size=max_size) |
|
|
|
|
|
shard_to_size = {} |
|
for shard in os.listdir(tmp_dir): |
|
if shard.endswith(".msgpack"): |
|
shard_file = os.path.join(tmp_dir, shard) |
|
shard_to_size[shard_file] = os.path.getsize(shard_file) |
|
|
|
index_file = os.path.join(tmp_dir, FLAX_WEIGHTS_INDEX_NAME) |
|
|
|
self.assertTrue(os.path.isfile(index_file)) |
|
self.assertFalse(os.path.isfile(os.path.join(tmp_dir, FLAX_WEIGHTS_NAME))) |
|
|
|
|
|
for shard_file, size in shard_to_size.items(): |
|
if max_size.endswith("kiB"): |
|
max_size_int = int(max_size[:-3]) * 2**10 |
|
else: |
|
max_size_int = int(max_size[:-2]) * 10**3 |
|
|
|
|
|
if size >= max_size_int + 50000: |
|
with open(shard_file, "rb") as state_f: |
|
state_file = from_bytes(FlaxBertModel, state_f.read()) |
|
self.assertEqual(len(state_file), 1) |
|
|
|
|
|
with open(index_file, "r", encoding="utf-8") as f: |
|
index = json.loads(f.read()) |
|
|
|
all_shards = set(index["weight_map"].values()) |
|
shards_found = {f for f in os.listdir(tmp_dir) if f.endswith(".msgpack")} |
|
self.assertSetEqual(all_shards, shards_found) |
|
|
|
|
|
new_model = FlaxBertModel.from_pretrained(tmp_dir) |
|
for p1, p2 in zip(flatten_dict(model.params).values(), flatten_dict(new_model.params).values()): |
|
self.assertTrue(np.allclose(np.array(p1), np.array(p2))) |
|
|
|
@is_pt_flax_cross_test |
|
def test_from_sharded_pt(self): |
|
model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded", from_pt=True) |
|
ref_model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-random-bert-fx-only") |
|
for key, ref_val in flatten_dict(ref_model.params).items(): |
|
val = flatten_dict(model.params)[key] |
|
assert np.allclose(np.array(val), np.array(ref_val)) |
|
|
|
def test_gradient_checkpointing(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
|
|
prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) |
|
model = model_class(config) |
|
remat_model = model_class(config) |
|
|
|
try: |
|
remat_model.enable_gradient_checkpointing() |
|
except NotImplementedError: |
|
continue |
|
|
|
outputs = model(**prepared_inputs_dict) |
|
remat_outputs = remat_model(**prepared_inputs_dict) |
|
|
|
|
|
self.assertEqual(outputs.keys(), remat_outputs.keys()) |
|
|
|
outputs = outputs.to_tuple() |
|
remat_outputs = remat_outputs.to_tuple() |
|
|
|
|
|
for output, remat_output in zip(outputs, remat_outputs): |
|
self.assertTrue((output == remat_output).all()) |
|
|