Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +22 -22
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -1402.61 +/- 257.49
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ed824144b80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ed824144c10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ed824144ca0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ed824144d30>", "_build": "<function ActorCriticPolicy._build at 0x7ed824144dc0>", "forward": "<function ActorCriticPolicy.forward at 0x7ed824144e50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ed824144ee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ed824144f70>", "_predict": "<function ActorCriticPolicy._predict at 0x7ed824145000>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ed824145090>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ed824145120>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ed8241451b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ed8242d6f80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1708708180253058445, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADPkAj1mDQ8/UoeIvWd0GL6WEPC8+jatvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGqMFU6xPfuMAWyUTZUBjAF0lEdAmlPnlGPPs3V9lChoBkdAbFpYwqRU3mgHTaoBaAhHQJpXY5BC2MN1fZQoaAZHQG+mTAeq7yxoB01+AWgIR0CaWYJMg2ZRdX2UKGgGR0BxK2Jxeb/faAdNswFoCEdAmlvdoSL613V9lChoBkdAboBWHUMG5mgHTaoBaAhHQJpfXaufVZt1fZQoaAZHQGucpjMFEApoB02oAWgIR0CaYa9DQZ4wdX2UKGgGR0Bwb7VnVXmvaAdNjQFoCEdAmmUXfIjnm3V9lChoBkdAcK2slb/wRWgHTXcCaAhHQJpopB+nZTR1fZQoaAZHQGxoU03wTdtoB027AWgIR0CabENR3u/ldX2UKGgGR0Bv+JIlMRHxaAdNkAFoCEdAmm528AaNuXV9lChoBkdAbxiQvpQk5mgHTcQBaAhHQJpxQoiLVFx1fZQoaAZHQGrfiMxXXAdoB02/AWgIR0CadgsDW9UTdX2UKGgGR0Bvvf4ubqhUaAdNRQFoCEdAmng3j+717XV9lChoBkdAa4zLPldTpGgHTcgBaAhHQJp766lLvkR1fZQoaAZHQG3K1IiC8OFoB02vAWgIR0Cafk6YVqN7dX2UKGgGR0Boe4Ia99MLaAdNwAFoCEdAmoHudXko4XV9lChoBkdAbmUyOaOPvWgHTaYBaAhHQJqETt8eCCl1fZQoaAZHQGoPvtUn5SFoB02mAWgIR0CahqxCpm29dX2UKGgGR0BuXDGHYYixaAdNlgFoCEdAmooKmj0tiHV9lChoBkdAbunryDqW1WgHTbUBaAhHQJqMY7YChex1fZQoaAZHQG7nLqMWGh5oB02qAWgIR0Caj/FK02LpdX2UKGgGR0Buw+aMJhOQaAdNiwFoCEdAmpIsdxQzlHV9lChoBkdAb5mnrpqynmgHTVkBaAhHQJqUDVRUFSt1fZQoaAZHQG5AeumrKeVoB01RAWgIR0CalxKs+3YudX2UKGgGR0BuNq6STyJ9aAdNrAFoCEdAmplv8EV32XV9lChoBkdAbu6XSBshxGgHTU0BaAhHQJqbWN96Tnt1fZQoaAZHQGrs1g6U7jloB011AWgIR0CanpTbFjusdX2UKGgGR0BvodajesPraAdN7wFoCEdAmqIXFDOTq3V9lChoBkdAHhsmOU+s5mgHTQUBaAhHQJqj7ronrpt1fZQoaAZHQD8tTOxB3RpoB0v7aAhHQJqnHkp7TlV1fZQoaAZHQG4P0Uwi7kJoB01lAWgIR0CaqRSHdoFndX2UKGgGR0BxPs9ovi97aAdNPgFoCEdAmqroe1a4c3V9lChoBkdAbIGry1/lQ2gHTasBaAhHQJquYb83uNR1fZQoaAZHQGpg7uDzyz5oB01YAWgIR0CasEPZZjhDdX2UKGgGR0Bv533nIQvpaAdNaQFoCEdAmrI7Hp8neHV9lChoBkdAcW6AE+xGD2gHTXkBaAhHQJq1i+sYEW91fZQoaAZHQG2EPnKW9lFoB01sAWgIR0Cat7AYYR/WdX2UKGgGR8AxQmJWNm16aAdNQAFoCEdAmrqfyXlbNnV9lChoBkdAbJwZQYUFjmgHTVkBaAhHQJq8jst03fh1fZQoaAZHQGw3i5Etuk1oB010AWgIR0CavqQfZElWdX2UKGgGR0BtKYDifg76aAdNbwFoCEdAmsHT2nKnvXV9lChoBkdAbKII1LrX2GgHTYgBaAhHQJrEBGWldkd1fZQoaAZHQG3J5hz/6wdoB01jAWgIR0Caxfp7kXDWdX2UKGgGR0BugIdlum78aAdNcQFoCEdAmslOHerMknV9lChoBkdAcEec0Ltu1mgHTZwBaAhHQJrLsfms/6h1fZQoaAZHQHE7/pD/lyRoB02XAWgIR0CazetcOby6dX2UKGgGR0BvZHKISDh+aAdNbQFoCEdAmtIIWP91l3V9lChoBkdAbXopo9LYgGgHTXgBaAhHQJrVAsAeaKF1fZQoaAZHQEK6e7L+xW1oB00ZAWgIR0Ca1pO6/ZdwdX2UKGgGR0BqqxUHY6GQaAdNugFoCEdAmto5udf9gnV9lChoBkdAbxdmeUY8+2gHTWUBaAhHQJrcRXKbKA91fZQoaAZHQHG3aUzKs+5oB02dAWgIR0Ca38CpFTegdX2UKGgGR0BxG5vybx3FaAdN4AFoCEdAmuJlKkEcKnV9lChoBkdAcDo7FsHjZWgHTXYBaAhHQJrkgXxe9jB1fZQoaAZHQG5A0lJHy3FoB01jAWgIR0Ca55PVNHpbdX2UKGgGR0BjVbx/d69kaAdN6ANoCEdAmu40aESM+HV9lChoBkdAb1j4yoGY8mgHTVUBaAhHQJrwG+De0ol1fZQoaAZHQG7mdkSVW0ZoB02aAWgIR0Ca83QDV6NVdX2UKGgGR0BwW3fKp1ifaAdNggFoCEdAmvWex0MgEHV9lChoBkdAaZ91+y7f52gHTaMBaAhHQJr3/mQr+YN1fZQoaAZHQHHY792ovSNoB019AWgIR0Ca+z+2mYShdX2UKGgGR0BvZCVbA1vVaAdNuwFoCEdAmv370Bfa6HV9lChoBkdAbVDliBoVVWgHTRICaAhHQJsDbafzz3B1fZQoaAZHQGoM59/jKgZoB02IAWgIR0CbBad2Pkq+dX2UKGgGR0BvhuoHcDbKaAdNlAFoCEdAmwfWZy+6AnV9lChoBkdAb9Ltb9qDb2gHTaoBaAhHQJsLXWhAWzp1fZQoaAZHQG14YjbBXS1oB01rAWgIR0CbDVkVeruIdX2UKGgGR0BwnNDG96C2aAdNuAFoCEdAmxDwOJ+DvnV9lChoBkdAbrwjrRjSX2gHTYIBaAhHQJsTEao/A0t1fZQoaAZHQG+o81XNke9oB02LAWgIR0CbFT2qkuYhdX2UKGgGR0BrNGOU+s5oaAdN0QFoCEdAmxkb5AQg93V9lChoBkdAcN8qx1PnCGgHTXoBaAhHQJsbOMvRJEp1fZQoaAZHQG6JLHdXT3JoB03XAWgIR0CbHwgFX7tRdX2UKGgGR0BuNtlmOEM9aAdNhQFoCEdAmyFNf1Hvt3V9lChoBkdAbU7L127nPmgHTZ0BaAhHQJsjr+MqBmR1fZQoaAZHQHCTEKNQ0oBoB02OAWgIR0CbJv9+w1R+dX2UKGgGR0BsvNIiC8ODaAdNYAJoCEdAmypXzDn/1nV9lChoBkdAb506vJRwZWgHTW4BaAhHQJsuGmIj4Yd1fZQoaAZHQGraCKrJbMZoB03aAWgIR0CbMXOfNA1OdX2UKGgGR0BximOtGNJfaAdNjAFoCEdAmzUd/4Irv3V9lChoBkdAavbCKrJbMWgHTWoBaAhHQJs3HayrxRV1fZQoaAZHQG4GMrEtNBZoB014AWgIR0CbOS/WlMyrdX2UKGgGR0BwO7mDDjzaaAdNnAFoCEdAmzygCr92o3V9lChoBkdAcUNRaouPFWgHTZ4BaAhHQJs+/Ooo/iZ1fZQoaAZHQHHbUxZdOZdoB02WAWgIR0CbQmVW0Z3tdX2UKGgGR0BtJyPEKmbcaAdNjwFoCEdAm0SVzZHuqnV9lChoBkdAbF0c+aBqbmgHTY0BaAhHQJtGzTF2mpF1fZQoaAZHQGy3y2H+IdloB017AWgIR0CbSfKaG5+ZdX2UKGgGR0BuNd7rs0HhaAdNeAFoCEdAm0wHXNC7b3V9lChoBkdAbdz/9YOlPGgHTY8BaAhHQJtOJ6nivPl1fZQoaAZHQHAf7GaQV9FoB02KAWgIR0CbUYHZK3/hdX2UKGgGR0Bs71jslb/waAdNzwFoCEdAm1QFPrOZ9nV9lChoBkfABx/I8yN4q2gHTU4BaAhHQJtXJBSk0rN1fZQoaAZHQG8LlUhmoR9oB01FAWgIR0CbWOq8UVSGdX2UKGgGR0BrOEJF9a2XaAdNfgFoCEdAm1tXSjQAuXV9lChoBkdAasR8cdYGMWgHTe4BaAhHQJtgiGwiaAp1fZQoaAZHQGo2Q8wHqu9oB01tAWgIR0CbYtKRdQfqdX2UKGgGR0Bs3/4h2W6caAdNcwFoCEdAm2YBfF72MHV9lChoBkdAbh8FaB7NS2gHTaYBaAhHQJtoWA4GUwB1fZQoaAZHQHB6h4hUzbhoB01gAWgIR0Cbak3+uNgjdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c9725ee09d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c9725ee0a60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c9725ee0af0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c9725ee0b80>", "_build": "<function ActorCriticPolicy._build at 0x7c9725ee0c10>", "forward": "<function ActorCriticPolicy.forward at 0x7c9725ee0ca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c9725ee0d30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c9725ee0dc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7c9725ee0e50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c9725ee0ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c9725ee0f70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c9725ee1000>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c9725e7cf40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2000896, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1709565032532411298, "learning_rate": 1e-05, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAKX9zr7xJl8+Dpo3vhljq7+IMI2/aP+evgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEBpuDzyz5aMAWyUTegDjAF0lEdAp2MsD0UXYXV9lChoBkfAZ3YizLOiWWgHS4poCEdAp2OMdtEXtXV9lChoBkfAY7Nj81n/UGgHS2VoCEdAp2PVWCEpRXV9lChoBkfAUwJLqUu+RGgHS0BoCEdAp2QAzJp35nV9lChoBkfAZ8u1/DtPYWgHS15oCEdAp2RActGutHV9lChoBkfAXnCSHM2WIGgHS15oCEdAp2SCmygPE3V9lChoBkfAYozwH7gsLGgHS0doCEdAp2SyKR+z+nV9lChoBkfAYOtn9Nvfj2gHS3toCEdAp2UOW4Vh1HV9lChoBkfAajh5ckdFOWgHS2xoCEdAp2VYXZXdTHV9lChoBkfAY1mIacZtN2gHS2ZoCEdAp2W4NiH6/XV9lChoBkfAV30h3aBZp2gHS4FoCEdAp2YwecQRPHV9lChoBkfAYk83iJfplmgHS3doCEdAp2ajlcQiA3V9lChoBkfAar0mmce8w2gHS2VoCEdAp2cCwhW5pnV9lChoBkfAWbALNOdoWmgHS3ZoCEdAp2dzG96C2HV9lChoBkfAUHL5uZThpGgHS11oCEdAp2fCD0163XV9lChoBkfAUYA0XP7emGgHS2loCEdAp2gfqC6H03V9lChoBkfAZ5TS619fC2gHS2NoCEdAp2h59ZzPr3V9lChoBkfAVfnscABDHGgHS0VoCEdAp2i/i1iON3V9lChoBkfAYDAcfeUILWgHS0VoCEdAp2j+a2F36nV9lChoBkfAbYyUY8+zMWgHS3NoCEdAp2mbcM3IdXV9lChoBkfAVLenqFAVwmgHS1doCEdAp2n1fb9IgHV9lChoBkfAXkLTWoWHlGgHS15oCEdAp2o4sf7rLXV9lChoBkfAVAmGgzxgA2gHS1RoCEdAp2pzopx3mnV9lChoBkfAV3KsPrfLtGgHS0ZoCEdAp2qk+5e7c3V9lChoBkfAWFkuez2OAGgHS2VoCEdAp2rqzeGfw3V9lChoBkfARLLZxrBTGmgHS0NoCEdAp2saTW5H3HV9lChoBkfAVWFq33Hq/2gHS2poCEdAp2tjwx33YnV9lChoBkfAUHGQPqcEvGgHS0xoCEdAp2uW9US7G3V9lChoBkfAWowsK9f1H2gHS1VoCEdAp2vQjUutfXV9lChoBkfAT6yLZSNwSGgHS1VoCEdAp2wJ+UhV2nV9lChoBkfAXmakTHsC1mgHS1RoCEdAp2xH+IdlunV9lChoBkfAZMNOvdM0xmgHS1poCEdAp2ygG0NSZXV9lChoBkfAUhfcM3IdVGgHS0RoCEdAp2zPLcKw6nV9lChoBkfAYM+mjTKDCmgHS3xoCEdAp20mbAk9lnV9lChoBkfAVV38XN1QqWgHS2RoCEdAp21r/4qPO3V9lChoBkfAYXdru6VdHGgHS2loCEdAp22ywbEP2HV9lChoBkfAUrLYdyT6i2gHS0poCEdAp23kCPp6hXV9lChoBkfAWlF40Mw1zmgHS0xoCEdAp24X+fh/AnV9lChoBkfAVQKyTpxFRmgHS0xoCEdAp25OQhfShXV9lChoBkfAVPyuV5a/y2gHS0loCEdAp26AuM+/xnV9lChoBkfAUcUvzvqkdmgHS1toCEdAp26/qHGjsXV9lChoBkfATtGlwcYIjWgHS1FoCEdAp274Ap8WsXV9lChoBkfAXny6iCaqj2gHS1RoCEdAp28yhtcfNnV9lChoBkfAcNvYR/ViF2gHS4doCEdAp2+nC9AX23V9lChoBkfAXdwXZXdTHmgHS2NoCEdAp2/qMxXXAnV9lChoBkfAYKHl9Sde6mgHS1loCEdAp3Aok7fYSXV9lChoBkfAQOjxb0OEumgHS2loCEdAp3By4OMER3V9lChoBkfAcJyfSQYDT2gHS3RoCEdAp3DBi7TUiXV9lChoBkfAYRO3qiXY2GgHS1hoCEdAp3EDjtG/e3V9lChoBkfAVgidTYNAkmgHS0doCEdAp3E2mR/3FnV9lChoBkfAXEhGUfPom2gHS1poCEdAp3F5XXAdn3V9lChoBkfAUoIiPhhpg2gHS2hoCEdAp3G/j81n/XV9lChoBkfAQ61JjDsMRmgHS4ZoCEdAp3IasuFpPHV9lChoBkfAUWuu8scyWWgHS1BoCEdAp3JzXe3x4XV9lChoBkfAVZ3cVQAMlWgHS1NoCEdAp3KwgzP8h3V9lChoBkfAVVvPomoitGgHS0poCEdAp3Llh3JPqXV9lChoBkfAWMdSaVlf7mgHS1RoCEdAp3MhnrY5DXV9lChoBkfAZSpES/TLGWgHS45oCEdAp3OF/SYw7HV9lChoBkfAPnVGb1AZ9GgHS3RoCEdAp3PZOpKjBXV9lChoBkfAcOzy/KyOaWgHS4FoCEdAp3QylYU343V9lChoBkfAbHgLtNSIg2gHS2toCEdAp3SCXMQmNXV9lChoBkfAXJLSApazNWgHS11oCEdAp3TEZBLPEHV9lChoBkfAcMwFfiPyTmgHS2loCEdAp3UPpt78enV9lChoBkfAZbW3mV7hN2gHS71oCEdAp3Wq72+PBHV9lChoBkfAWHz8HfMwDmgHS1doCEdAp3XlajesP3V9lChoBkfAVj3CN0eU6mgHS1hoCEdAp3YhNsWO63V9lChoBkfAWTypYLb5/WgHS5BoCEdAp3aKAtnPFHV9lChoBkfAVLMh3aBZp2gHS0toCEdAp3a9F2FFlXV9lChoBkfAYLVDqGDcumgHS1hoCEdAp3b5b6guiHV9lChoBkfAXdeiyprDZWgHS1JoCEdAp3cyEFnqV3V9lChoBkfAVM/5N47ihmgHS0xoCEdAp3dkV8CxNnV9lChoBkfAVuKYsunMuGgHS31oCEdAp3e3dM0xd3V9lChoBkfAUs18IAwPAmgHS0hoCEdAp3fnSjQAuXV9lChoBkfAYmIW5Yoy9GgHS3BoCEdAp3hNFz+3pnV9lChoBkfAVJ2COFQEZGgHS1NoCEdAp3iK4MF2V3V9lChoBkfAb9TUUfxMFmgHS49oCEdAp3jxk9U0enV9lChoBkfAYFGxGlQ/HGgHS3doCEdAp3lEdV/+bXV9lChoBkfAVwCtlqagEmgHS31oCEdAp3mZbdJrcnV9lChoBkfAYDBQSBbwB2gHS3hoCEdAp3nqgVXV9XV9lChoBkfAXcEMvysjmmgHS3RoCEdAp3o5WxQizXV9lChoBkfAZR68OkLx7WgHS3loCEdAp3qQpH7P6nV9lChoBkfAT7hpWV/tpmgHSzxoCEdAp3q6R+z+m3V9lChoBkfAbaXda+vhZWgHS3xoCEdAp3ssIJJGv3V9lChoBkfAU0tgKF7D22gHS11oCEdAp3ttxEORT3V9lChoBkfAae+f6oESumgHS2ZoCEdAp3u70J4SpXV9lChoBkfAcn/UypJf6WgHS5FoCEdAp3wgoCuEEnV9lChoBkfAUSVGtp22X2gHS0RoCEdAp3xRV+7UX3V9lChoBkfAT1xeb/ffoGgHS3poCEdAp3ys/wAlwHV9lChoBkfAaZsggX/HYGgHS4poCEdAp30TONYKY3V9lChoBkfAUb+kO7QLNWgHS4VoCEdAp31yef7Jn3V9lChoBkfAacYW69TP0WgHS4poCEdAp33RxvNu+HV9lChoBkfAVGNd5Y5ksmgHS2xoCEdAp35VmUW2w3V9lChoBkfAYZpcqOLiuWgHS0toCEdAp36iYTj//HV9lChoBkfAcGp0oScslWgHS4JoCEdAp38VLzwtrnV9lChoBkfAdbxP+4smOWgHS15oCEdAp39oH5aePXV9lChoBkfAV6A1KoQ4CWgHS1hoCEdAp3+yXt0FKXV9lChoBkfAXtwbdadMCmgHS4VoCEdAp4Af7WNFSnV9lChoBkfAY8voYekpJGgHS3poCEdAp4CQZ/CqInV9lChoBkfAYES/lhgE2mgHS3hoCEdAp4EE87p3YHV9lChoBkfAUTZ7pmmLtWgHS1BoCEdAp4FXbdrO7nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 7816, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 512, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz7k+LWI42jxhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c8bb944ee3c399314244c78914e9d6e8e455a768326dce270c6f9c14b3f47d2
|
3 |
+
size 147298
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,34 +4,34 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
-
"learning_rate":
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -45,13 +45,13 @@
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
@@ -83,7 +83,7 @@
|
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
-
"batch_size":
|
87 |
"n_epochs": 4,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
@@ -94,6 +94,6 @@
|
|
94 |
"target_kl": null,
|
95 |
"lr_schedule": {
|
96 |
":type:": "<class 'function'>",
|
97 |
-
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+
|
98 |
}
|
99 |
}
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7c9725ee09d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c9725ee0a60>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c9725ee0af0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c9725ee0b80>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7c9725ee0c10>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7c9725ee0ca0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7c9725ee0d30>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c9725ee0dc0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7c9725ee0e50>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c9725ee0ee0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c9725ee0f70>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7c9725ee1000>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7c9725e7cf40>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 2000896,
|
25 |
+
"_total_timesteps": 2000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1709565032532411298,
|
30 |
+
"learning_rate": 1e-05,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAKX9zr7xJl8+Dpo3vhljq7+IMI2/aP+evgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEBpuDzyz5aMAWyUTegDjAF0lEdAp2MsD0UXYXV9lChoBkfAZ3YizLOiWWgHS4poCEdAp2OMdtEXtXV9lChoBkfAY7Nj81n/UGgHS2VoCEdAp2PVWCEpRXV9lChoBkfAUwJLqUu+RGgHS0BoCEdAp2QAzJp35nV9lChoBkfAZ8u1/DtPYWgHS15oCEdAp2RActGutHV9lChoBkfAXnCSHM2WIGgHS15oCEdAp2SCmygPE3V9lChoBkfAYozwH7gsLGgHS0doCEdAp2SyKR+z+nV9lChoBkfAYOtn9Nvfj2gHS3toCEdAp2UOW4Vh1HV9lChoBkfAajh5ckdFOWgHS2xoCEdAp2VYXZXdTHV9lChoBkfAY1mIacZtN2gHS2ZoCEdAp2W4NiH6/XV9lChoBkfAV30h3aBZp2gHS4FoCEdAp2YwecQRPHV9lChoBkfAYk83iJfplmgHS3doCEdAp2ajlcQiA3V9lChoBkfAar0mmce8w2gHS2VoCEdAp2cCwhW5pnV9lChoBkfAWbALNOdoWmgHS3ZoCEdAp2dzG96C2HV9lChoBkfAUHL5uZThpGgHS11oCEdAp2fCD0163XV9lChoBkfAUYA0XP7emGgHS2loCEdAp2gfqC6H03V9lChoBkfAZ5TS619fC2gHS2NoCEdAp2h59ZzPr3V9lChoBkfAVfnscABDHGgHS0VoCEdAp2i/i1iON3V9lChoBkfAYDAcfeUILWgHS0VoCEdAp2j+a2F36nV9lChoBkfAbYyUY8+zMWgHS3NoCEdAp2mbcM3IdXV9lChoBkfAVLenqFAVwmgHS1doCEdAp2n1fb9IgHV9lChoBkfAXkLTWoWHlGgHS15oCEdAp2o4sf7rLXV9lChoBkfAVAmGgzxgA2gHS1RoCEdAp2pzopx3mnV9lChoBkfAV3KsPrfLtGgHS0ZoCEdAp2qk+5e7c3V9lChoBkfAWFkuez2OAGgHS2VoCEdAp2rqzeGfw3V9lChoBkfARLLZxrBTGmgHS0NoCEdAp2saTW5H3HV9lChoBkfAVWFq33Hq/2gHS2poCEdAp2tjwx33YnV9lChoBkfAUHGQPqcEvGgHS0xoCEdAp2uW9US7G3V9lChoBkfAWowsK9f1H2gHS1VoCEdAp2vQjUutfXV9lChoBkfAT6yLZSNwSGgHS1VoCEdAp2wJ+UhV2nV9lChoBkfAXmakTHsC1mgHS1RoCEdAp2xH+IdlunV9lChoBkfAZMNOvdM0xmgHS1poCEdAp2ygG0NSZXV9lChoBkfAUhfcM3IdVGgHS0RoCEdAp2zPLcKw6nV9lChoBkfAYM+mjTKDCmgHS3xoCEdAp20mbAk9lnV9lChoBkfAVV38XN1QqWgHS2RoCEdAp21r/4qPO3V9lChoBkfAYXdru6VdHGgHS2loCEdAp22ywbEP2HV9lChoBkfAUrLYdyT6i2gHS0poCEdAp23kCPp6hXV9lChoBkfAWlF40Mw1zmgHS0xoCEdAp24X+fh/AnV9lChoBkfAVQKyTpxFRmgHS0xoCEdAp25OQhfShXV9lChoBkfAVPyuV5a/y2gHS0loCEdAp26AuM+/xnV9lChoBkfAUcUvzvqkdmgHS1toCEdAp26/qHGjsXV9lChoBkfATtGlwcYIjWgHS1FoCEdAp274Ap8WsXV9lChoBkfAXny6iCaqj2gHS1RoCEdAp28yhtcfNnV9lChoBkfAcNvYR/ViF2gHS4doCEdAp2+nC9AX23V9lChoBkfAXdwXZXdTHmgHS2NoCEdAp2/qMxXXAnV9lChoBkfAYKHl9Sde6mgHS1loCEdAp3Aok7fYSXV9lChoBkfAQOjxb0OEumgHS2loCEdAp3By4OMER3V9lChoBkfAcJyfSQYDT2gHS3RoCEdAp3DBi7TUiXV9lChoBkfAYRO3qiXY2GgHS1hoCEdAp3EDjtG/e3V9lChoBkfAVgidTYNAkmgHS0doCEdAp3E2mR/3FnV9lChoBkfAXEhGUfPom2gHS1poCEdAp3F5XXAdn3V9lChoBkfAUoIiPhhpg2gHS2hoCEdAp3G/j81n/XV9lChoBkfAQ61JjDsMRmgHS4ZoCEdAp3IasuFpPHV9lChoBkfAUWuu8scyWWgHS1BoCEdAp3JzXe3x4XV9lChoBkfAVZ3cVQAMlWgHS1NoCEdAp3KwgzP8h3V9lChoBkfAVVvPomoitGgHS0poCEdAp3Llh3JPqXV9lChoBkfAWMdSaVlf7mgHS1RoCEdAp3MhnrY5DXV9lChoBkfAZSpES/TLGWgHS45oCEdAp3OF/SYw7HV9lChoBkfAPnVGb1AZ9GgHS3RoCEdAp3PZOpKjBXV9lChoBkfAcOzy/KyOaWgHS4FoCEdAp3QylYU343V9lChoBkfAbHgLtNSIg2gHS2toCEdAp3SCXMQmNXV9lChoBkfAXJLSApazNWgHS11oCEdAp3TEZBLPEHV9lChoBkfAcMwFfiPyTmgHS2loCEdAp3UPpt78enV9lChoBkfAZbW3mV7hN2gHS71oCEdAp3Wq72+PBHV9lChoBkfAWHz8HfMwDmgHS1doCEdAp3XlajesP3V9lChoBkfAVj3CN0eU6mgHS1hoCEdAp3YhNsWO63V9lChoBkfAWTypYLb5/WgHS5BoCEdAp3aKAtnPFHV9lChoBkfAVLMh3aBZp2gHS0toCEdAp3a9F2FFlXV9lChoBkfAYLVDqGDcumgHS1hoCEdAp3b5b6guiHV9lChoBkfAXdeiyprDZWgHS1JoCEdAp3cyEFnqV3V9lChoBkfAVM/5N47ihmgHS0xoCEdAp3dkV8CxNnV9lChoBkfAVuKYsunMuGgHS31oCEdAp3e3dM0xd3V9lChoBkfAUs18IAwPAmgHS0hoCEdAp3fnSjQAuXV9lChoBkfAYmIW5Yoy9GgHS3BoCEdAp3hNFz+3pnV9lChoBkfAVJ2COFQEZGgHS1NoCEdAp3iK4MF2V3V9lChoBkfAb9TUUfxMFmgHS49oCEdAp3jxk9U0enV9lChoBkfAYFGxGlQ/HGgHS3doCEdAp3lEdV/+bXV9lChoBkfAVwCtlqagEmgHS31oCEdAp3mZbdJrcnV9lChoBkfAYDBQSBbwB2gHS3hoCEdAp3nqgVXV9XV9lChoBkfAXcEMvysjmmgHS3RoCEdAp3o5WxQizXV9lChoBkfAZR68OkLx7WgHS3loCEdAp3qQpH7P6nV9lChoBkfAT7hpWV/tpmgHSzxoCEdAp3q6R+z+m3V9lChoBkfAbaXda+vhZWgHS3xoCEdAp3ssIJJGv3V9lChoBkfAU0tgKF7D22gHS11oCEdAp3ttxEORT3V9lChoBkfAae+f6oESumgHS2ZoCEdAp3u70J4SpXV9lChoBkfAcn/UypJf6WgHS5FoCEdAp3wgoCuEEnV9lChoBkfAUSVGtp22X2gHS0RoCEdAp3xRV+7UX3V9lChoBkfAT1xeb/ffoGgHS3poCEdAp3ys/wAlwHV9lChoBkfAaZsggX/HYGgHS4poCEdAp30TONYKY3V9lChoBkfAUb+kO7QLNWgHS4VoCEdAp31yef7Jn3V9lChoBkfAacYW69TP0WgHS4poCEdAp33RxvNu+HV9lChoBkfAVGNd5Y5ksmgHS2xoCEdAp35VmUW2w3V9lChoBkfAYZpcqOLiuWgHS0toCEdAp36iYTj//HV9lChoBkfAcGp0oScslWgHS4JoCEdAp38VLzwtrnV9lChoBkfAdbxP+4smOWgHS15oCEdAp39oH5aePXV9lChoBkfAV6A1KoQ4CWgHS1hoCEdAp3+yXt0FKXV9lChoBkfAXtwbdadMCmgHS4VoCEdAp4Af7WNFSnV9lChoBkfAY8voYekpJGgHS3poCEdAp4CQZ/CqInV9lChoBkfAYES/lhgE2mgHS3hoCEdAp4EE87p3YHV9lChoBkfAUTZ7pmmLtWgHS1BoCEdAp4FXbdrO7nVlLg=="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 7816,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 512,
|
87 |
"n_epochs": 4,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
|
|
94 |
"target_kl": null,
|
95 |
"lr_schedule": {
|
96 |
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz7k+LWI42jxhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
}
|
99 |
}
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 88362
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e87af1616e73f72aca722fa93f9b07163b2833cf90f620db2f3d4beb100943cf
|
3 |
size 88362
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43762
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf831eb6b3ef7bb1aa0389976347f82bb906aa1b876b213dc3fe040d069d18b8
|
3 |
size 43762
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": -1402.6076093, "std_reward": 257.4918642655671, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-04T16:03:12.052103"}
|