Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +13 -13
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -2.98 +/- 0.49
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ed4b628218cfaf899a1178917cbcbdc9d9e782e23e588790ef58f0ec83b67c1
|
3 |
+
size 108029
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -41,12 +41,12 @@
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
-
"num_timesteps":
|
45 |
-
"_total_timesteps":
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
@@ -55,10 +55,10 @@
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[ 0.
|
60 |
-
"desired_goal": "[[-
|
61 |
-
"observation": "[[ 0.
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,9 +66,9 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
@@ -77,13 +77,13 @@
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
-
"_n_updates":
|
87 |
"n_steps": 5,
|
88 |
"gamma": 0.99,
|
89 |
"gae_lambda": 1.0,
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f38f1020700>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f38f1021400>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
+
"num_timesteps": 2000000,
|
45 |
+
"_total_timesteps": 2000000,
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
+
"start_time": 1680091658688102478,
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAARUjYPtF/ibsiWBM/RUjYPtF/ibsiWBM/RUjYPtF/ibsiWBM/RUjYPtF/ibsiWBM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA4fcMvxUkYz8JKi++qx6Dvy1B+z3hb7I/YfN2P10HCD8xDpO+jlXFP0UyZz+bpT+/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABFSNg+0X+JuyJYEz/5KFc8mKweOmRzCTxFSNg+0X+JuyJYEz/5KFc8mKweOmRzCTxFSNg+0X+JuyJYEz/5KFc8mKweOmRzCTxFSNg+0X+JuyJYEz/5KFc8mKweOmRzCTyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.42242637 -0.00419615 0.57556355]\n [ 0.42242637 -0.00419615 0.57556355]\n [ 0.42242637 -0.00419615 0.57556355]\n [ 0.42242637 -0.00419615 0.57556355]]",
|
60 |
+
"desired_goal": "[[-0.55065733 0.8872693 -0.17105879]\n [-1.0243734 0.12268291 1.3940393 ]\n [ 0.96465117 0.53136235 -0.28721765]\n [ 1.5416734 0.9031108 -0.7486207 ]]",
|
61 |
+
"observation": "[[ 0.42242637 -0.00419615 0.57556355 0.01313233 0.00060529 0.00838933]\n [ 0.42242637 -0.00419615 0.57556355 0.01313233 0.00060529 0.00838933]\n [ 0.42242637 -0.00419615 0.57556355 0.01313233 0.00060529 0.00838933]\n [ 0.42242637 -0.00419615 0.57556355 0.01313233 0.00060529 0.00838933]]"
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAXz4LvWa1AD4Io0c8SD0CPt2aEz7MAh0+CtK5PCsu+L0oKBc+fo/GPdKYqD1q/Aw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.03399503 0.12569198 0.01218487]\n [ 0.1271869 0.14414544 0.15333098]\n [ 0.02268316 -0.12118181 0.14761412]\n [ 0.09695338 0.08232273 0.13768163]]",
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIg24vaYxWA8CUhpRSlIwBbJRLMowBdJRHQLfXT4b0e2d1fZQoaAZoCWgPQwhqwCDp0woCwJSGlFKUaBVLMmgWR0C31y9cv/R3dX2UKGgGaAloD0MIMZV+wtmtCMCUhpRSlGgVSzJoFkdAt9cNn13+uXV9lChoBmgJaA9DCHO4VnvYqwrAlIaUUpRoFUsyaBZHQLfW7YGMXJp1fZQoaAZoCWgPQwhBSBYwgdv2v5SGlFKUaBVLMmgWR0C319OUY8+zdX2UKGgGaAloD0MIyOwseqeC/7+UhpRSlGgVSzJoFkdAt9ezg5zYEnV9lChoBmgJaA9DCG6hKxGoHgjAlIaUUpRoFUsyaBZHQLfXkct5D7Z1fZQoaAZoCWgPQwiA8+LEV/v9v5SGlFKUaBVLMmgWR0C313GZ3LV4dX2UKGgGaAloD0MIcalKW1yjB8CUhpRSlGgVSzJoFkdAt9hQPNFBp3V9lChoBmgJaA9DCPmFV5I8FwHAlIaUUpRoFUsyaBZHQLfYL/k/8l51fZQoaAZoCWgPQwg0L4fdd+wEwJSGlFKUaBVLMmgWR0C32A49X9zfdX2UKGgGaAloD0MILZRMTu3sBMCUhpRSlGgVSzJoFkdAt9ft+I/JNnV9lChoBmgJaA9DCLNfd7rz5ADAlIaUUpRoFUsyaBZHQLfY1Ebo8p11fZQoaAZoCWgPQwhHcvkP6fcFwJSGlFKUaBVLMmgWR0C32LRFVktmdX2UKGgGaAloD0MIb37DRIP0AcCUhpRSlGgVSzJoFkdAt9iSlgtvoHV9lChoBmgJaA9DCAqGcw0ztAbAlIaUUpRoFUsyaBZHQLfYcmwJPZZ1fZQoaAZoCWgPQwi1No3ttWAAwJSGlFKUaBVLMmgWR0C32VSE12q2dX2UKGgGaAloD0MItrsH6L68BMCUhpRSlGgVSzJoFkdAt9k0XzlLe3V9lChoBmgJaA9DCGeeXFMgs/e/lIaUUpRoFUsyaBZHQLfZEqubI911fZQoaAZoCWgPQwimYfiImNL7v5SGlFKUaBVLMmgWR0C32PKO1fE5dX2UKGgGaAloD0MIeawZGeTuA8CUhpRSlGgVSzJoFkdAt9nvfhuO0nV9lChoBmgJaA9DCMalKm1xDfS/lIaUUpRoFUsyaBZHQLfZz+98JD51fZQoaAZoCWgPQwhBuAIK9fT5v5SGlFKUaBVLMmgWR0C32a6IBRyfdX2UKGgGaAloD0MIrtnKS/4HB8CUhpRSlGgVSzJoFkdAt9mOn/DLsHV9lChoBmgJaA9DCJ1lFqHYSgDAlIaUUpRoFUsyaBZHQLfa3EOy3Td1fZQoaAZoCWgPQwigM2lTdQ8QwJSGlFKUaBVLMmgWR0C32r0BGQS0dX2UKGgGaAloD0MI9MEyNnSzAcCUhpRSlGgVSzJoFkdAt9qbi2lVLnV9lChoBmgJaA9DCHCUvDrHwPq/lIaUUpRoFUsyaBZHQLfae+uNgjR1fZQoaAZoCWgPQwiBQ6hSs1cTwJSGlFKUaBVLMmgWR0C327+vpyIYdX2UKGgGaAloD0MIO99PjZcuCsCUhpRSlGgVSzJoFkdAt9ugRujynXV9lChoBmgJaA9DCDShSWJJuQPAlIaUUpRoFUsyaBZHQLfbfwIMSbp1fZQoaAZoCWgPQwgiADj27Ln/v5SGlFKUaBVLMmgWR0C321850bLmdX2UKGgGaAloD0MIINWw3xOrDsCUhpRSlGgVSzJoFkdAt9yYOUdJa3V9lChoBmgJaA9DCBGnk2x1eQnAlIaUUpRoFUsyaBZHQLfceJzDGcZ1fZQoaAZoCWgPQwjAe0eNCREQwJSGlFKUaBVLMmgWR0C33FdGus90dX2UKGgGaAloD0MIXknyXN/H+r+UhpRSlGgVSzJoFkdAt9w3VLBbfXV9lChoBmgJaA9DCB75g4HnngnAlIaUUpRoFUsyaBZHQLfdeSpR4yJ1fZQoaAZoCWgPQwgUQDGyZM4CwJSGlFKUaBVLMmgWR0C33Vl3+uNhdX2UKGgGaAloD0MIKNcUyOzsAMCUhpRSlGgVSzJoFkdAt904H9m6G3V9lChoBmgJaA9DCFclkX2QpQzAlIaUUpRoFUsyaBZHQLfdGHvMKTl1fZQoaAZoCWgPQwg3NjtSfef5v5SGlFKUaBVLMmgWR0C33lU5yU9qdX2UKGgGaAloD0MIdsb3xaUKBcCUhpRSlGgVSzJoFkdAt941m29cr3V9lChoBmgJaA9DCDjb3JiecP6/lIaUUpRoFUsyaBZHQLfeFEeyRjl1fZQoaAZoCWgPQwhzK4TVWMLpv5SGlFKUaBVLMmgWR0C33fRYzSCwdX2UKGgGaAloD0MImS7E6o9wDcCUhpRSlGgVSzJoFkdAt98EhY/3WXV9lChoBmgJaA9DCMzriEM2EP+/lIaUUpRoFUsyaBZHQLfe5FdcB2h1fZQoaAZoCWgPQwi7K7tgcE0HwJSGlFKUaBVLMmgWR0C33sKBI4EPdX2UKGgGaAloD0MIrU1jey0oAcCUhpRSlGgVSzJoFkdAt96iPmxMWXV9lChoBmgJaA9DCO4m+KbpkwLAlIaUUpRoFUsyaBZHQLffgfywwCd1fZQoaAZoCWgPQwgFFOrpI7AAwJSGlFKUaBVLMmgWR0C332HhOxjbdX2UKGgGaAloD0MIRfXWwFZJ+r+UhpRSlGgVSzJoFkdAt99AExIrfHV9lChoBmgJaA9DCIaTNH9MK/e/lIaUUpRoFUsyaBZHQLffIAkcCHR1fZQoaAZoCWgPQwh/g/bq4+EAwJSGlFKUaBVLMmgWR0C33/oFmnO0dX2UKGgGaAloD0MITtTS3AphBMCUhpRSlGgVSzJoFkdAt9/Z1DBuXXV9lChoBmgJaA9DCITU7ewrzwDAlIaUUpRoFUsyaBZHQLfft/2TPjZ1fZQoaAZoCWgPQwj2lQfpKbICwJSGlFKUaBVLMmgWR0C335e0w8GLdX2UKGgGaAloD0MIyzDuBtFaAsCUhpRSlGgVSzJoFkdAt+B1elbeM3V9lChoBmgJaA9DCJRQ+kLIuQXAlIaUUpRoFUsyaBZHQLfgVUnXumd1fZQoaAZoCWgPQwjKw0KtaZ79v5SGlFKUaBVLMmgWR0C34DOWa+ewdX2UKGgGaAloD0MI7KLogY8hDcCUhpRSlGgVSzJoFkdAt+ATUy57PnV9lChoBmgJaA9DCOi+nNmuEAvAlIaUUpRoFUsyaBZHQLfg9nAIpph1fZQoaAZoCWgPQwj4Nv3Zj4QRwJSGlFKUaBVLMmgWR0C34NZbY9PldX2UKGgGaAloD0MI+rg2VIzzAcCUhpRSlGgVSzJoFkdAt+C0kHD77HV9lChoBmgJaA9DCIpVgzC3+wPAlIaUUpRoFUsyaBZHQLfglE4//vR1fZQoaAZoCWgPQwhvLCgMyrQOwJSGlFKUaBVLMmgWR0C34XUN4JNTdX2UKGgGaAloD0MIR6rv/KL0EMCUhpRSlGgVSzJoFkdAt+FUzguRLnV9lChoBmgJaA9DCNMvEW+dnwDAlIaUUpRoFUsyaBZHQLfhMx2jfvZ1fZQoaAZoCWgPQwhBnl2+9YEDwJSGlFKUaBVLMmgWR0C34RLpmmLtdX2UKGgGaAloD0MIA3egTnk0/r+UhpRSlGgVSzJoFkdAt+H+CPIXCXV9lChoBmgJaA9DCHzvb9BevQ3AlIaUUpRoFUsyaBZHQLfh3fLcKw91fZQoaAZoCWgPQwj75v7qcb8BwJSGlFKUaBVLMmgWR0C34bxIvrWzdX2UKGgGaAloD0MIMSb9vRR+BcCUhpRSlGgVSzJoFkdAt+GcJv5xi3V9lChoBmgJaA9DCMxDpnwIygLAlIaUUpRoFUsyaBZHQLfieqxC6Yp1fZQoaAZoCWgPQwgBNEqX/kUAwJSGlFKUaBVLMmgWR0C34lpr56+ndX2UKGgGaAloD0MIkWKARBNoBMCUhpRSlGgVSzJoFkdAt+I4mICU5nV9lChoBmgJaA9DCE9auKzCJvy/lIaUUpRoFUsyaBZHQLfiGFev6j51fZQoaAZoCWgPQwgOayqLwg4CwJSGlFKUaBVLMmgWR0C34vMh9srNdX2UKGgGaAloD0MI41RrYRba/r+UhpRSlGgVSzJoFkdAt+LTBXS0B3V9lChoBmgJaA9DCP7uHTUmpALAlIaUUpRoFUsyaBZHQLfisVqveP91fZQoaAZoCWgPQwjH2XQEcNMEwJSGlFKUaBVLMmgWR0C34pEvboKVdX2UKGgGaAloD0MIoyJOJ9lqCsCUhpRSlGgVSzJoFkdAt+Nx/BnBcnV9lChoBmgJaA9DCNeGinH+5gbAlIaUUpRoFUsyaBZHQLfjUc0Ltu11fZQoaAZoCWgPQwiTHLCryXMCwJSGlFKUaBVLMmgWR0C34y/2saKldX2UKGgGaAloD0MIwmuXNhwW/L+UhpRSlGgVSzJoFkdAt+MP3pOernV9lChoBmgJaA9DCEUqjC0EeQbAlIaUUpRoFUsyaBZHQLfkAobGWD91fZQoaAZoCWgPQwgBGM+goV8NwJSGlFKUaBVLMmgWR0C34+JbUwztdX2UKGgGaAloD0MI8MSsF0M5C8CUhpRSlGgVSzJoFkdAt+PAu6ErXnV9lChoBmgJaA9DCIjWijbHmQ3AlIaUUpRoFUsyaBZHQLfjoLzPKMh1fZQoaAZoCWgPQwic3zDRICUBwJSGlFKUaBVLMmgWR0C35Io4uK4ydX2UKGgGaAloD0MIv7UTJSFhEcCUhpRSlGgVSzJoFkdAt+RqBNEgGXV9lChoBmgJaA9DCFgCKbFruwPAlIaUUpRoFUsyaBZHQLfkSDPnjhl1fZQoaAZoCWgPQwijlBCsqgcQwJSGlFKUaBVLMmgWR0C35CgkC3gDdX2UKGgGaAloD0MIrz+Jz53gB8CUhpRSlGgVSzJoFkdAt+UItcv/R3V9lChoBmgJaA9DCNV46SYxCAHAlIaUUpRoFUsyaBZHQLfk6IDHOr11fZQoaAZoCWgPQwgd5WA2AQYHwJSGlFKUaBVLMmgWR0C35MbRrrPddX2UKGgGaAloD0MIqG3DKAj+BcCUhpRSlGgVSzJoFkdAt+Smj7ALzHV9lChoBmgJaA9DCJyjjo6r0RDAlIaUUpRoFUsyaBZHQLflgs4ku6F1fZQoaAZoCWgPQwiHa7WHvfAOwJSGlFKUaBVLMmgWR0C35WKji4rjdX2UKGgGaAloD0MIJzPeVnqtAcCUhpRSlGgVSzJoFkdAt+VA24uscXV9lChoBmgJaA9DCK0VbY5z+wHAlIaUUpRoFUsyaBZHQLflIKGtZFJ1ZS4="
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
+
"_n_updates": 100000,
|
87 |
"n_steps": 5,
|
88 |
"gamma": 0.99,
|
89 |
"gae_lambda": 1.0,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:839c1f0a49287adbd54668136cb6a589d6de2dbb457db3811a13981749175774
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:672e47e8ea02255da80df0d306488e229c9170b7752e989cd3b0a414a7464de9
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fa562575ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fa562574c80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680029668982204961, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAo/vfPh5m2by81xQ/o/vfPh5m2by81xQ/o/vfPh5m2by81xQ/o/vfPh5m2by81xQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVIuov1kBWL/AtHG/2wrGPzVw07/L7MK/DAi0PkRnoz1eU7I/bT3RP+jcnD9THVm/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACj+98+HmbZvLzXFD+7tTO6uqngu3JoCbyj+98+HmbZvLzXFD+7tTO6uqngu3JoCbyj+98+HmbZvLzXFD+7tTO6uqngu3JoCbyj+98+HmbZvLzXFD+7tTO6uqngu3JoCbyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4374667 -0.02653795 0.58141685]\n [ 0.4374667 -0.02653795 0.58141685]\n [ 0.4374667 -0.02653795 0.58141685]\n [ 0.4374667 -0.02653795 0.58141685]]", "desired_goal": "[[-1.316752 -0.84377056 -0.9441643 ]\n [ 1.5472063 -1.6518618 -1.5228513 ]\n [ 0.3516239 0.07978681 1.3931692 ]\n [ 1.6346871 1.2254915 -0.8481037 ]]", "observation": "[[ 0.4374667 -0.02653795 0.58141685 -0.00068554 -0.00685617 -0.00838672]\n [ 0.4374667 -0.02653795 0.58141685 -0.00068554 -0.00685617 -0.00838672]\n [ 0.4374667 -0.02653795 0.58141685 -0.00068554 -0.00685617 -0.00838672]\n [ 0.4374667 -0.02653795 0.58141685 -0.00068554 -0.00685617 -0.00838672]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAjsJePcvc1r3a9Kw9p7rDPQf5rj1ZWGM+o93yvcFyjr3dVzI9QJN5vQ+xCj6urbA9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.05438476 -0.10491332 0.08445139]\n [ 0.09557085 0.08543592 0.2220167 ]\n [-0.1185868 -0.06955481 0.04354082]\n [-0.06093144 0.13544105 0.08626877]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIuaerOxZbB8CUhpRSlIwBbJRLMowBdJRHQKc2Vjin5zp1fZQoaAZoCWgPQwi4I5wWvAgQwJSGlFKUaBVLMmgWR0CnNfwtjCpFdX2UKGgGaAloD0MIUmLX9narDsCUhpRSlGgVSzJoFkdApzWit7rs0HV9lChoBmgJaA9DCKfpswOuSxLAlIaUUpRoFUsyaBZHQKc1TF2mpER1fZQoaAZoCWgPQwg5YFeTp7wRwJSGlFKUaBVLMmgWR0CnNzTwUg0TdX2UKGgGaAloD0MIq+ek942PE8CUhpRSlGgVSzJoFkdApzba9/SYxHV9lChoBmgJaA9DCAorFVRUPQTAlIaUUpRoFUsyaBZHQKc2gYoiLVF1fZQoaAZoCWgPQwjFWRE10QcKwJSGlFKUaBVLMmgWR0CnNisMZxaQdX2UKGgGaAloD0MILo1feCWZEcCUhpRSlGgVSzJoFkdApzhRREWqLnV9lChoBmgJaA9DCJEPejarvgPAlIaUUpRoFUsyaBZHQKc3+NYr8SB1fZQoaAZoCWgPQwj2Rq0wfS8IwJSGlFKUaBVLMmgWR0CnN6AO8TSLdX2UKGgGaAloD0MIuyU5YFdzEcCUhpRSlGgVSzJoFkdApzdKOWBz3nV9lChoBmgJaA9DCM0jfzDwvBPAlIaUUpRoFUsyaBZHQKc5vgQYk3V1fZQoaAZoCWgPQwg9uDtrt10TwJSGlFKUaBVLMmgWR0CnOWSYgJTmdX2UKGgGaAloD0MIPzp15bP8/b+UhpRSlGgVSzJoFkdApzkLshPj43V9lChoBmgJaA9DCBBc5QmETRfAlIaUUpRoFUsyaBZHQKc4thOP/711fZQoaAZoCWgPQwiY+nlTkaoFwJSGlFKUaBVLMmgWR0CnOziqIacadX2UKGgGaAloD0MInuxmRj+qFcCUhpRSlGgVSzJoFkdApzrfR9gF5nV9lChoBmgJaA9DCImzImqibw3AlIaUUpRoFUsyaBZHQKc6hr+Haex1fZQoaAZoCWgPQwgrptJPOFsQwJSGlFKUaBVLMmgWR0CnOjDNpudgdX2UKGgGaAloD0MIDDohdNDlEsCUhpRSlGgVSzJoFkdApzy4plSS/3V9lChoBmgJaA9DCFjKMsSx7hDAlIaUUpRoFUsyaBZHQKc8X7F85S51fZQoaAZoCWgPQwguA85SsnwIwJSGlFKUaBVLMmgWR0CnPAeIl+mWdX2UKGgGaAloD0MINxd/2xOkAcCUhpRSlGgVSzJoFkdApzux4t6HCXV9lChoBmgJaA9DCN17uOS4kw3AlIaUUpRoFUsyaBZHQKc+kRgZ0jl1fZQoaAZoCWgPQwjek4eFWhMAwJSGlFKUaBVLMmgWR0CnPjf8VHnVdX2UKGgGaAloD0MIS+XtCKdlD8CUhpRSlGgVSzJoFkdApz3fQdCE6HV9lChoBmgJaA9DCM8wtaUOMgzAlIaUUpRoFUsyaBZHQKc9jAsTWXl1fZQoaAZoCWgPQwhYVMTpJJsBwJSGlFKUaBVLMmgWR0CnQIZle4TcdX2UKGgGaAloD0MIGa2jqgki+7+UhpRSlGgVSzJoFkdAp0AtH4Glh3V9lChoBmgJaA9DCPcA3ZczW/+/lIaUUpRoFUsyaBZHQKc/1f0mMOx1fZQoaAZoCWgPQwiJtmPqriz5v5SGlFKUaBVLMmgWR0CnP4AqmTC+dX2UKGgGaAloD0MIaJdvfVi/FMCUhpRSlGgVSzJoFkdAp0J1WuHN5nV9lChoBmgJaA9DCJMdG4F4Hfu/lIaUUpRoFUsyaBZHQKdCHB6a9bp1fZQoaAZoCWgPQwi4rS08L3ULwJSGlFKUaBVLMmgWR0CnQcOKXOW0dX2UKGgGaAloD0MIFHtoHysYD8CUhpRSlGgVSzJoFkdAp0FvIdU83nV9lChoBmgJaA9DCJMcsKvJE/y/lIaUUpRoFUsyaBZHQKdEQw5eZ5R1fZQoaAZoCWgPQwh7M2q+Sl4DwJSGlFKUaBVLMmgWR0CnQ+nscABDdX2UKGgGaAloD0MIjwBuFi8WCcCUhpRSlGgVSzJoFkdAp0ORokAxSHV9lChoBmgJaA9DCLVv7q8eZxnAlIaUUpRoFUsyaBZHQKdDO+L3sX11fZQoaAZoCWgPQwjr/UY7bigbwJSGlFKUaBVLMmgWR0CnRf4jrzGxdX2UKGgGaAloD0MIf73CgvvBEcCUhpRSlGgVSzJoFkdAp0WlMTN+s3V9lChoBmgJaA9DCFxxcVRuAgbAlIaUUpRoFUsyaBZHQKdFTKRuCPJ1fZQoaAZoCWgPQwibqntkc9USwJSGlFKUaBVLMmgWR0CnRPfWcz68dX2UKGgGaAloD0MIUYNpGD7CDMCUhpRSlGgVSzJoFkdAp0e+9cry2HV9lChoBmgJaA9DCDDysiYWWAnAlIaUUpRoFUsyaBZHQKdHZazNUwV1fZQoaAZoCWgPQwgGZoUi3Y/3v5SGlFKUaBVLMmgWR0CnRw0p3HJcdX2UKGgGaAloD0MIhZUKKqqOEcCUhpRSlGgVSzJoFkdAp0a3M6ij+XV9lChoBmgJaA9DCMwnK4arExjAlIaUUpRoFUsyaBZHQKdJjvPTodN1fZQoaAZoCWgPQwhWC+wxkbIcwJSGlFKUaBVLMmgWR0CnSTbcoH9ndX2UKGgGaAloD0MIhV/q500VEcCUhpRSlGgVSzJoFkdAp0jenhsImnV9lChoBmgJaA9DCIcx6e+l8A7AlIaUUpRoFUsyaBZHQKdIimZVn291fZQoaAZoCWgPQwiC/kKPGF0TwJSGlFKUaBVLMmgWR0CnSzEYO2AodX2UKGgGaAloD0MIWRR2UfRgEsCUhpRSlGgVSzJoFkdAp0rX6dlNDnV9lChoBmgJaA9DCIXP1sHBXgHAlIaUUpRoFUsyaBZHQKdKgBczImx1fZQoaAZoCWgPQwgN5NnlW28awJSGlFKUaBVLMmgWR0CnSioK2KEWdX2UKGgGaAloD0MI8X9HVKieE8CUhpRSlGgVSzJoFkdAp0zHOObRW3V9lChoBmgJaA9DCMvVj03ywwbAlIaUUpRoFUsyaBZHQKdMbhAnlXB1fZQoaAZoCWgPQwhwKHy2Do4FwJSGlFKUaBVLMmgWR0CnTBWugYgrdX2UKGgGaAloD0MIv4I0Y9FEGcCUhpRSlGgVSzJoFkdAp0u/xc3VC3V9lChoBmgJaA9DCGZoPBHEOQHAlIaUUpRoFUsyaBZHQKdOZHaN+9d1fZQoaAZoCWgPQwivJ7ou/KAIwJSGlFKUaBVLMmgWR0CnTgsy8BdVdX2UKGgGaAloD0MI/+vctBm3EsCUhpRSlGgVSzJoFkdAp02yXt0FKXV9lChoBmgJaA9DCO9UwD3PHwDAlIaUUpRoFUsyaBZHQKdNXH9WIXV1fZQoaAZoCWgPQwimttRBXk8TwJSGlFKUaBVLMmgWR0CnUAGEGqxUdX2UKGgGaAloD0MIb4EExY8xCMCUhpRSlGgVSzJoFkdAp0+oa1kUbnV9lChoBmgJaA9DCKT/5Vq0IAnAlIaUUpRoFUsyaBZHQKdPT8wYced1fZQoaAZoCWgPQwhHADeLF2sNwJSGlFKUaBVLMmgWR0CnTvn2ZiNLdX2UKGgGaAloD0MIvJAOD2HsEMCUhpRSlGgVSzJoFkdAp1GxxLkCFXV9lChoBmgJaA9DCPiL2ZJVsRPAlIaUUpRoFUsyaBZHQKdRWU+s5n11fZQoaAZoCWgPQwiMTMCvkeQDwJSGlFKUaBVLMmgWR0CnUQEwnH/+dX2UKGgGaAloD0MI/RAbLJyk/r+UhpRSlGgVSzJoFkdAp1CsRpUPx3V9lChoBmgJaA9DCKTgKeRKXQbAlIaUUpRoFUsyaBZHQKdTPDZUT+N1fZQoaAZoCWgPQwizsn3IWw4DwJSGlFKUaBVLMmgWR0CnUuMewLVndX2UKGgGaAloD0MIWYejq3TnEMCUhpRSlGgVSzJoFkdAp1KKrFOwgXV9lChoBmgJaA9DCJPH0/IDtwzAlIaUUpRoFUsyaBZHQKdSNRxcVxl1fZQoaAZoCWgPQwghkEsceYABwJSGlFKUaBVLMmgWR0CnVCeb3Gn5dX2UKGgGaAloD0MI6e3PRUNG+b+UhpRSlGgVSzJoFkdAp1PNsN2C/XV9lChoBmgJaA9DCNLj9zb9aR7AlIaUUpRoFUsyaBZHQKdTdEuxrzp1fZQoaAZoCWgPQwia7+AnDiD4v5SGlFKUaBVLMmgWR0CnUx3RXwLFdX2UKGgGaAloD0MI7+GS406pBsCUhpRSlGgVSzJoFkdAp1UGNWEK3XV9lChoBmgJaA9DCIRLx5xnzAfAlIaUUpRoFUsyaBZHQKdUrFKkEcN1fZQoaAZoCWgPQwhmMbH5uLb5v5SGlFKUaBVLMmgWR0CnVFMG5c1PdX2UKGgGaAloD0MI7FG4HoULBMCUhpRSlGgVSzJoFkdAp1P8a0hNd3V9lChoBmgJaA9DCN4AM9/BjxjAlIaUUpRoFUsyaBZHQKdV6MVDa5B1fZQoaAZoCWgPQwi/RSdLrbcWwJSGlFKUaBVLMmgWR0CnVY7QC0WudX2UKGgGaAloD0MIGQKAY8+e+7+UhpRSlGgVSzJoFkdAp1U1dE9dNXV9lChoBmgJaA9DCCcwndZtEPK/lIaUUpRoFUsyaBZHQKdU3wob4rV1fZQoaAZoCWgPQwjGpL+XwgMVwJSGlFKUaBVLMmgWR0CnVs/PX05EdX2UKGgGaAloD0MID167tOGwGMCUhpRSlGgVSzJoFkdAp1Z18ohIOHV9lChoBmgJaA9DCAFNhA1Pr/+/lIaUUpRoFUsyaBZHQKdWHJFLFn91fZQoaAZoCWgPQwgi/IugMVMJwJSGlFKUaBVLMmgWR0CnVcYBeXzEdX2UKGgGaAloD0MIZ3xfXKoyFcCUhpRSlGgVSzJoFkdAp1e1HvttynV9lChoBmgJaA9DCDS+Ly5VaQvAlIaUUpRoFUsyaBZHQKdXWxQizLR1fZQoaAZoCWgPQwgN38K68U4KwJSGlFKUaBVLMmgWR0CnVwGoR7JGdX2UKGgGaAloD0MIQMHFihpcFMCUhpRSlGgVSzJoFkdAp1arLpzLfXV9lChoBmgJaA9DCHxETIkkihPAlIaUUpRoFUsyaBZHQKdYnp1RtP51fZQoaAZoCWgPQwg3OXzSiSQFwJSGlFKUaBVLMmgWR0CnWEStmthedX2UKGgGaAloD0MIw2SqYFRyAMCUhpRSlGgVSzJoFkdAp1friZOSGXV9lChoBmgJaA9DCCMxQQ3fggjAlIaUUpRoFUsyaBZHQKdXlTho/Rp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f38f1020700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f38f1021400>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680091658688102478, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAARUjYPtF/ibsiWBM/RUjYPtF/ibsiWBM/RUjYPtF/ibsiWBM/RUjYPtF/ibsiWBM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA4fcMvxUkYz8JKi++qx6Dvy1B+z3hb7I/YfN2P10HCD8xDpO+jlXFP0UyZz+bpT+/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABFSNg+0X+JuyJYEz/5KFc8mKweOmRzCTxFSNg+0X+JuyJYEz/5KFc8mKweOmRzCTxFSNg+0X+JuyJYEz/5KFc8mKweOmRzCTxFSNg+0X+JuyJYEz/5KFc8mKweOmRzCTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.42242637 -0.00419615 0.57556355]\n [ 0.42242637 -0.00419615 0.57556355]\n [ 0.42242637 -0.00419615 0.57556355]\n [ 0.42242637 -0.00419615 0.57556355]]", "desired_goal": "[[-0.55065733 0.8872693 -0.17105879]\n [-1.0243734 0.12268291 1.3940393 ]\n [ 0.96465117 0.53136235 -0.28721765]\n [ 1.5416734 0.9031108 -0.7486207 ]]", "observation": "[[ 0.42242637 -0.00419615 0.57556355 0.01313233 0.00060529 0.00838933]\n [ 0.42242637 -0.00419615 0.57556355 0.01313233 0.00060529 0.00838933]\n [ 0.42242637 -0.00419615 0.57556355 0.01313233 0.00060529 0.00838933]\n [ 0.42242637 -0.00419615 0.57556355 0.01313233 0.00060529 0.00838933]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAXz4LvWa1AD4Io0c8SD0CPt2aEz7MAh0+CtK5PCsu+L0oKBc+fo/GPdKYqD1q/Aw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.03399503 0.12569198 0.01218487]\n [ 0.1271869 0.14414544 0.15333098]\n [ 0.02268316 -0.12118181 0.14761412]\n [ 0.09695338 0.08232273 0.13768163]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIg24vaYxWA8CUhpRSlIwBbJRLMowBdJRHQLfXT4b0e2d1fZQoaAZoCWgPQwhqwCDp0woCwJSGlFKUaBVLMmgWR0C31y9cv/R3dX2UKGgGaAloD0MIMZV+wtmtCMCUhpRSlGgVSzJoFkdAt9cNn13+uXV9lChoBmgJaA9DCHO4VnvYqwrAlIaUUpRoFUsyaBZHQLfW7YGMXJp1fZQoaAZoCWgPQwhBSBYwgdv2v5SGlFKUaBVLMmgWR0C319OUY8+zdX2UKGgGaAloD0MIyOwseqeC/7+UhpRSlGgVSzJoFkdAt9ezg5zYEnV9lChoBmgJaA9DCG6hKxGoHgjAlIaUUpRoFUsyaBZHQLfXkct5D7Z1fZQoaAZoCWgPQwiA8+LEV/v9v5SGlFKUaBVLMmgWR0C313GZ3LV4dX2UKGgGaAloD0MIcalKW1yjB8CUhpRSlGgVSzJoFkdAt9hQPNFBp3V9lChoBmgJaA9DCPmFV5I8FwHAlIaUUpRoFUsyaBZHQLfYL/k/8l51fZQoaAZoCWgPQwg0L4fdd+wEwJSGlFKUaBVLMmgWR0C32A49X9zfdX2UKGgGaAloD0MILZRMTu3sBMCUhpRSlGgVSzJoFkdAt9ft+I/JNnV9lChoBmgJaA9DCLNfd7rz5ADAlIaUUpRoFUsyaBZHQLfY1Ebo8p11fZQoaAZoCWgPQwhHcvkP6fcFwJSGlFKUaBVLMmgWR0C32LRFVktmdX2UKGgGaAloD0MIb37DRIP0AcCUhpRSlGgVSzJoFkdAt9iSlgtvoHV9lChoBmgJaA9DCAqGcw0ztAbAlIaUUpRoFUsyaBZHQLfYcmwJPZZ1fZQoaAZoCWgPQwi1No3ttWAAwJSGlFKUaBVLMmgWR0C32VSE12q2dX2UKGgGaAloD0MItrsH6L68BMCUhpRSlGgVSzJoFkdAt9k0XzlLe3V9lChoBmgJaA9DCGeeXFMgs/e/lIaUUpRoFUsyaBZHQLfZEqubI911fZQoaAZoCWgPQwimYfiImNL7v5SGlFKUaBVLMmgWR0C32PKO1fE5dX2UKGgGaAloD0MIeawZGeTuA8CUhpRSlGgVSzJoFkdAt9nvfhuO0nV9lChoBmgJaA9DCMalKm1xDfS/lIaUUpRoFUsyaBZHQLfZz+98JD51fZQoaAZoCWgPQwhBuAIK9fT5v5SGlFKUaBVLMmgWR0C32a6IBRyfdX2UKGgGaAloD0MIrtnKS/4HB8CUhpRSlGgVSzJoFkdAt9mOn/DLsHV9lChoBmgJaA9DCJ1lFqHYSgDAlIaUUpRoFUsyaBZHQLfa3EOy3Td1fZQoaAZoCWgPQwigM2lTdQ8QwJSGlFKUaBVLMmgWR0C32r0BGQS0dX2UKGgGaAloD0MI9MEyNnSzAcCUhpRSlGgVSzJoFkdAt9qbi2lVLnV9lChoBmgJaA9DCHCUvDrHwPq/lIaUUpRoFUsyaBZHQLfae+uNgjR1fZQoaAZoCWgPQwiBQ6hSs1cTwJSGlFKUaBVLMmgWR0C327+vpyIYdX2UKGgGaAloD0MIO99PjZcuCsCUhpRSlGgVSzJoFkdAt9ugRujynXV9lChoBmgJaA9DCDShSWJJuQPAlIaUUpRoFUsyaBZHQLfbfwIMSbp1fZQoaAZoCWgPQwgiADj27Ln/v5SGlFKUaBVLMmgWR0C321850bLmdX2UKGgGaAloD0MIINWw3xOrDsCUhpRSlGgVSzJoFkdAt9yYOUdJa3V9lChoBmgJaA9DCBGnk2x1eQnAlIaUUpRoFUsyaBZHQLfceJzDGcZ1fZQoaAZoCWgPQwjAe0eNCREQwJSGlFKUaBVLMmgWR0C33FdGus90dX2UKGgGaAloD0MIXknyXN/H+r+UhpRSlGgVSzJoFkdAt9w3VLBbfXV9lChoBmgJaA9DCB75g4HnngnAlIaUUpRoFUsyaBZHQLfdeSpR4yJ1fZQoaAZoCWgPQwgUQDGyZM4CwJSGlFKUaBVLMmgWR0C33Vl3+uNhdX2UKGgGaAloD0MIKNcUyOzsAMCUhpRSlGgVSzJoFkdAt904H9m6G3V9lChoBmgJaA9DCFclkX2QpQzAlIaUUpRoFUsyaBZHQLfdGHvMKTl1fZQoaAZoCWgPQwg3NjtSfef5v5SGlFKUaBVLMmgWR0C33lU5yU9qdX2UKGgGaAloD0MIdsb3xaUKBcCUhpRSlGgVSzJoFkdAt941m29cr3V9lChoBmgJaA9DCDjb3JiecP6/lIaUUpRoFUsyaBZHQLfeFEeyRjl1fZQoaAZoCWgPQwhzK4TVWMLpv5SGlFKUaBVLMmgWR0C33fRYzSCwdX2UKGgGaAloD0MImS7E6o9wDcCUhpRSlGgVSzJoFkdAt98EhY/3WXV9lChoBmgJaA9DCMzriEM2EP+/lIaUUpRoFUsyaBZHQLfe5FdcB2h1fZQoaAZoCWgPQwi7K7tgcE0HwJSGlFKUaBVLMmgWR0C33sKBI4EPdX2UKGgGaAloD0MIrU1jey0oAcCUhpRSlGgVSzJoFkdAt96iPmxMWXV9lChoBmgJaA9DCO4m+KbpkwLAlIaUUpRoFUsyaBZHQLffgfywwCd1fZQoaAZoCWgPQwgFFOrpI7AAwJSGlFKUaBVLMmgWR0C332HhOxjbdX2UKGgGaAloD0MIRfXWwFZJ+r+UhpRSlGgVSzJoFkdAt99AExIrfHV9lChoBmgJaA9DCIaTNH9MK/e/lIaUUpRoFUsyaBZHQLffIAkcCHR1fZQoaAZoCWgPQwh/g/bq4+EAwJSGlFKUaBVLMmgWR0C33/oFmnO0dX2UKGgGaAloD0MITtTS3AphBMCUhpRSlGgVSzJoFkdAt9/Z1DBuXXV9lChoBmgJaA9DCITU7ewrzwDAlIaUUpRoFUsyaBZHQLfft/2TPjZ1fZQoaAZoCWgPQwj2lQfpKbICwJSGlFKUaBVLMmgWR0C335e0w8GLdX2UKGgGaAloD0MIyzDuBtFaAsCUhpRSlGgVSzJoFkdAt+B1elbeM3V9lChoBmgJaA9DCJRQ+kLIuQXAlIaUUpRoFUsyaBZHQLfgVUnXumd1fZQoaAZoCWgPQwjKw0KtaZ79v5SGlFKUaBVLMmgWR0C34DOWa+ewdX2UKGgGaAloD0MI7KLogY8hDcCUhpRSlGgVSzJoFkdAt+ATUy57PnV9lChoBmgJaA9DCOi+nNmuEAvAlIaUUpRoFUsyaBZHQLfg9nAIpph1fZQoaAZoCWgPQwj4Nv3Zj4QRwJSGlFKUaBVLMmgWR0C34NZbY9PldX2UKGgGaAloD0MI+rg2VIzzAcCUhpRSlGgVSzJoFkdAt+C0kHD77HV9lChoBmgJaA9DCIpVgzC3+wPAlIaUUpRoFUsyaBZHQLfglE4//vR1fZQoaAZoCWgPQwhvLCgMyrQOwJSGlFKUaBVLMmgWR0C34XUN4JNTdX2UKGgGaAloD0MIR6rv/KL0EMCUhpRSlGgVSzJoFkdAt+FUzguRLnV9lChoBmgJaA9DCNMvEW+dnwDAlIaUUpRoFUsyaBZHQLfhMx2jfvZ1fZQoaAZoCWgPQwhBnl2+9YEDwJSGlFKUaBVLMmgWR0C34RLpmmLtdX2UKGgGaAloD0MIA3egTnk0/r+UhpRSlGgVSzJoFkdAt+H+CPIXCXV9lChoBmgJaA9DCHzvb9BevQ3AlIaUUpRoFUsyaBZHQLfh3fLcKw91fZQoaAZoCWgPQwj75v7qcb8BwJSGlFKUaBVLMmgWR0C34bxIvrWzdX2UKGgGaAloD0MIMSb9vRR+BcCUhpRSlGgVSzJoFkdAt+GcJv5xi3V9lChoBmgJaA9DCMxDpnwIygLAlIaUUpRoFUsyaBZHQLfieqxC6Yp1fZQoaAZoCWgPQwgBNEqX/kUAwJSGlFKUaBVLMmgWR0C34lpr56+ndX2UKGgGaAloD0MIkWKARBNoBMCUhpRSlGgVSzJoFkdAt+I4mICU5nV9lChoBmgJaA9DCE9auKzCJvy/lIaUUpRoFUsyaBZHQLfiGFev6j51fZQoaAZoCWgPQwgOayqLwg4CwJSGlFKUaBVLMmgWR0C34vMh9srNdX2UKGgGaAloD0MI41RrYRba/r+UhpRSlGgVSzJoFkdAt+LTBXS0B3V9lChoBmgJaA9DCP7uHTUmpALAlIaUUpRoFUsyaBZHQLfisVqveP91fZQoaAZoCWgPQwjH2XQEcNMEwJSGlFKUaBVLMmgWR0C34pEvboKVdX2UKGgGaAloD0MIoyJOJ9lqCsCUhpRSlGgVSzJoFkdAt+Nx/BnBcnV9lChoBmgJaA9DCNeGinH+5gbAlIaUUpRoFUsyaBZHQLfjUc0Ltu11fZQoaAZoCWgPQwiTHLCryXMCwJSGlFKUaBVLMmgWR0C34y/2saKldX2UKGgGaAloD0MIwmuXNhwW/L+UhpRSlGgVSzJoFkdAt+MP3pOernV9lChoBmgJaA9DCEUqjC0EeQbAlIaUUpRoFUsyaBZHQLfkAobGWD91fZQoaAZoCWgPQwgBGM+goV8NwJSGlFKUaBVLMmgWR0C34+JbUwztdX2UKGgGaAloD0MI8MSsF0M5C8CUhpRSlGgVSzJoFkdAt+PAu6ErXnV9lChoBmgJaA9DCIjWijbHmQ3AlIaUUpRoFUsyaBZHQLfjoLzPKMh1fZQoaAZoCWgPQwic3zDRICUBwJSGlFKUaBVLMmgWR0C35Io4uK4ydX2UKGgGaAloD0MIv7UTJSFhEcCUhpRSlGgVSzJoFkdAt+RqBNEgGXV9lChoBmgJaA9DCFgCKbFruwPAlIaUUpRoFUsyaBZHQLfkSDPnjhl1fZQoaAZoCWgPQwijlBCsqgcQwJSGlFKUaBVLMmgWR0C35CgkC3gDdX2UKGgGaAloD0MIrz+Jz53gB8CUhpRSlGgVSzJoFkdAt+UItcv/R3V9lChoBmgJaA9DCNV46SYxCAHAlIaUUpRoFUsyaBZHQLfk6IDHOr11fZQoaAZoCWgPQwgd5WA2AQYHwJSGlFKUaBVLMmgWR0C35MbRrrPddX2UKGgGaAloD0MIqG3DKAj+BcCUhpRSlGgVSzJoFkdAt+Smj7ALzHV9lChoBmgJaA9DCJyjjo6r0RDAlIaUUpRoFUsyaBZHQLflgs4ku6F1fZQoaAZoCWgPQwiHa7WHvfAOwJSGlFKUaBVLMmgWR0C35WKji4rjdX2UKGgGaAloD0MIJzPeVnqtAcCUhpRSlGgVSzJoFkdAt+VA24uscXV9lChoBmgJaA9DCK0VbY5z+wHAlIaUUpRoFUsyaBZHQLflIKGtZFJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -2.9794061887077987, "std_reward": 0.4869989980214948, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-29T13:49:38.872079"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3056
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c6987a179b0303c59f9fd4438481c759f62c9bcc6d81c09207c3f581f7d4ff4
|
3 |
size 3056
|