|
|
import argparse
|
|
|
import torch
|
|
|
import os
|
|
|
from enum import Enum
|
|
|
import json
|
|
|
from tqdm import tqdm
|
|
|
import shortuuid
|
|
|
import numpy as np
|
|
|
from objectrelator.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, \
|
|
|
DEFAULT_IM_END_TOKEN, DEFAULT_SEG_TOKEN, SEG_TOKEN_INDEX, CLS_TOKEN_INDEX
|
|
|
from objectrelator.model.builder import load_pretrained_model
|
|
|
from objectrelator.utils import disable_torch_init
|
|
|
from objectrelator.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
|
|
|
import cv2
|
|
|
from torch.utils.data import Dataset, DataLoader
|
|
|
|
|
|
from objectrelator import conversation as conversation_lib
|
|
|
|
|
|
from datasets.egoexo_dataset import EgoExo_Dataset_train
|
|
|
|
|
|
from detectron2.data import MetadataCatalog, DatasetCatalog
|
|
|
from pycocotools import mask
|
|
|
from typing import Dict, Optional, Sequence, List
|
|
|
from dataclasses import dataclass, field
|
|
|
import torch.distributed as dist
|
|
|
import transformers
|
|
|
import pickle
|
|
|
from pathlib import Path
|
|
|
from transformers import TextStreamer
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
class DataCollatorForCOCODatasetV2(object):
|
|
|
"""Collate examples for supervised fine-tuning."""
|
|
|
|
|
|
tokenizer: transformers.PreTrainedTokenizer
|
|
|
|
|
|
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
|
|
|
if len(instances[0]) == 0:
|
|
|
return {}
|
|
|
input_ids, labels = tuple([instance[key] for instance in instances]
|
|
|
for key in ("input_ids", "labels"))
|
|
|
input_ids = torch.nn.utils.rnn.pad_sequence(
|
|
|
input_ids,
|
|
|
batch_first=True,
|
|
|
padding_value=self.tokenizer.pad_token_id)
|
|
|
labels = torch.nn.utils.rnn.pad_sequence(labels,
|
|
|
batch_first=True,
|
|
|
padding_value=IGNORE_INDEX)
|
|
|
input_ids = input_ids[:, :self.tokenizer.model_max_length]
|
|
|
labels = labels[:, :self.tokenizer.model_max_length]
|
|
|
batch = dict(
|
|
|
input_ids=input_ids,
|
|
|
labels=labels,
|
|
|
attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
|
|
|
)
|
|
|
if 'image' in instances[0]:
|
|
|
images = [instance['image'] for instance in instances]
|
|
|
if all(x is not None and x.shape == images[0].shape for x in images):
|
|
|
batch['images'] = torch.stack(images)
|
|
|
else:
|
|
|
batch['images'] = images
|
|
|
if 'vp_image' in instances[0]:
|
|
|
vp_images = [instance['vp_image'] for instance in instances]
|
|
|
if all(x is not None and x.shape == vp_images[0].shape for x in vp_images):
|
|
|
batch['vp_images'] = torch.stack(vp_images)
|
|
|
else:
|
|
|
batch['vp_images'] = vp_images
|
|
|
for instance in instances:
|
|
|
for key in ['input_ids', 'labels', 'image']:
|
|
|
del instance[key]
|
|
|
batch['seg_info'] = [instance for instance in instances]
|
|
|
|
|
|
if 'dataset_type' in instances[0]:
|
|
|
batch['dataset_type'] = [instance['dataset_type'] for instance in instances]
|
|
|
|
|
|
if 'class_name_ids' in instances[0]:
|
|
|
class_name_ids = [instance['class_name_ids'] for instance in instances]
|
|
|
if any(x.shape != class_name_ids[0].shape for x in class_name_ids):
|
|
|
batch['class_name_ids'] = torch.nn.utils.rnn.pad_sequence(
|
|
|
class_name_ids,
|
|
|
batch_first=True,
|
|
|
padding_value=-1,
|
|
|
)
|
|
|
else:
|
|
|
batch['class_name_ids'] = torch.stack(class_name_ids, dim=0)
|
|
|
if 'token_refer_id' in instances[0]:
|
|
|
token_refer_id = [instance['token_refer_id'] for instance in instances]
|
|
|
batch['token_refer_id'] = token_refer_id
|
|
|
if 'cls_indices' in instances[0]:
|
|
|
cls_indices = [instance['cls_indices'] for instance in instances]
|
|
|
if any(x.shape != cls_indices[0].shape for x in cls_indices):
|
|
|
batch['cls_indices'] = torch.nn.utils.rnn.pad_sequence(
|
|
|
cls_indices,
|
|
|
batch_first=True,
|
|
|
padding_value=-1,
|
|
|
)
|
|
|
else:
|
|
|
batch['cls_indices'] = torch.stack(cls_indices, dim=0)
|
|
|
if 'random_idx' in instances[0]:
|
|
|
random_idxs = [instance['random_idx'] for instance in instances]
|
|
|
batch['random_idx'] = torch.stack(random_idxs, dim=0)
|
|
|
if 'class_name_embedding_indices' in instances[0]:
|
|
|
class_name_embedding_indices = [instance['class_name_embedding_indices'] for instance in instances]
|
|
|
class_name_embedding_indices = torch.nn.utils.rnn.pad_sequence(
|
|
|
class_name_embedding_indices,
|
|
|
batch_first=True,
|
|
|
padding_value=0)
|
|
|
batch['class_name_embedding_indices'] = class_name_embedding_indices
|
|
|
if 'refer_embedding_indices' in instances[0]:
|
|
|
refer_embedding_indices = [instance['refer_embedding_indices'] for instance in instances]
|
|
|
refer_embedding_indices = torch.nn.utils.rnn.pad_sequence(
|
|
|
refer_embedding_indices,
|
|
|
batch_first=True,
|
|
|
padding_value=0)
|
|
|
batch['refer_embedding_indices'] = refer_embedding_indices
|
|
|
|
|
|
return batch
|
|
|
def __str__(self):
|
|
|
fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})"
|
|
|
return fmtstr.format(**self.__dict__)
|
|
|
|
|
|
class Summary(Enum):
|
|
|
NONE = 0
|
|
|
AVERAGE = 1
|
|
|
SUM = 2
|
|
|
COUNT = 3
|
|
|
|
|
|
|
|
|
class AverageMeter(object):
|
|
|
"""Computes and stores the average and current value"""
|
|
|
|
|
|
def __init__(self, name, fmt=":f", summary_type=Summary.AVERAGE):
|
|
|
self.name = name
|
|
|
self.fmt = fmt
|
|
|
self.summary_type = summary_type
|
|
|
self.reset()
|
|
|
|
|
|
def reset(self):
|
|
|
self.val = 0
|
|
|
self.avg = 0
|
|
|
self.sum = 0
|
|
|
self.count = 0
|
|
|
|
|
|
def update(self, val, n=1):
|
|
|
self.val = val
|
|
|
self.sum += val * n
|
|
|
self.count += n
|
|
|
self.avg = self.sum / self.count
|
|
|
|
|
|
def all_reduce(self):
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
if isinstance(self.sum, np.ndarray):
|
|
|
total = torch.tensor(
|
|
|
self.sum.tolist()
|
|
|
+ [
|
|
|
self.count,
|
|
|
],
|
|
|
dtype=torch.float32,
|
|
|
device=device,
|
|
|
)
|
|
|
else:
|
|
|
total = torch.tensor(
|
|
|
[self.sum, self.count], dtype=torch.float32, device=device
|
|
|
)
|
|
|
|
|
|
dist.all_reduce(total, dist.ReduceOp.SUM, async_op=False)
|
|
|
if total.shape[0] > 2:
|
|
|
self.sum, self.count = total[:-1].cpu().numpy(), total[-1].cpu().item()
|
|
|
else:
|
|
|
self.sum, self.count = total.tolist()
|
|
|
self.avg = self.sum / (self.count + 1e-5)
|
|
|
|
|
|
def __str__(self):
|
|
|
fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})"
|
|
|
return fmtstr.format(**self.__dict__)
|
|
|
|
|
|
def summary(self):
|
|
|
fmtstr = ""
|
|
|
if self.summary_type is Summary.NONE:
|
|
|
fmtstr = ""
|
|
|
elif self.summary_type is Summary.AVERAGE:
|
|
|
fmtstr = "{name} {avg:.3f}"
|
|
|
elif self.summary_type is Summary.SUM:
|
|
|
fmtstr = "{name} {sum:.3f}"
|
|
|
elif self.summary_type is Summary.COUNT:
|
|
|
fmtstr = "{name} {count:.3f}"
|
|
|
else:
|
|
|
raise ValueError("invalid summary type %r" % self.summary_type)
|
|
|
|
|
|
return fmtstr.format(**self.__dict__)
|
|
|
|
|
|
|
|
|
def intersectionAndUnionGPU(output, target, K, ignore_index=255):
|
|
|
|
|
|
assert output.dim() in [1, 2, 3]
|
|
|
assert output.shape == target.shape
|
|
|
output = output.view(-1)
|
|
|
target = target.view(-1)
|
|
|
output[target == ignore_index] = ignore_index
|
|
|
intersection = output[output == target]
|
|
|
area_intersection = torch.histc(intersection, bins=K, min=0, max=K - 1)
|
|
|
area_output = torch.histc(output, bins=K, min=0, max=K - 1)
|
|
|
area_target = torch.histc(target, bins=K, min=0, max=K - 1)
|
|
|
area_union = area_output + area_target - area_intersection
|
|
|
return area_intersection, area_union, area_target
|
|
|
|
|
|
def parse_outputs(outputs,gt_mask):
|
|
|
res_list = []
|
|
|
for output in outputs:
|
|
|
|
|
|
|
|
|
pred_mask = output['instances'].pred_masks
|
|
|
pred_mask = pred_mask.cpu().numpy()
|
|
|
scores = output['instances'].scores.cpu().numpy()
|
|
|
try:
|
|
|
pred_cls = output['instances'].pred_classes.cpu().numpy()
|
|
|
except:
|
|
|
pred_cls = None
|
|
|
res = {
|
|
|
'pred':pred_mask,
|
|
|
'gt': gt_mask,
|
|
|
'scores':scores,
|
|
|
'pred_cls':pred_cls
|
|
|
}
|
|
|
res_list.append(res)
|
|
|
return res_list
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def compute_metric(intersection_meter,union_meter,acc_iou_meter, gt_cls, results_list):
|
|
|
pred_list = []
|
|
|
gt_list = []
|
|
|
results_list = list(results_list)
|
|
|
for results in results_list:
|
|
|
gt = results['gt']
|
|
|
print("gt:", gt.shape, type(gt))
|
|
|
preds = results['pred']
|
|
|
print("preds:", preds.shape, type(preds))
|
|
|
scores = results['scores']
|
|
|
print("scores:", scores.shape, type(scores))
|
|
|
preds = preds.astype(np.uint8)
|
|
|
|
|
|
topk_scores,idx = torch.topk(torch.tensor(scores),1)
|
|
|
idx = idx.cpu().numpy()
|
|
|
topk_preds = preds[idx,:]
|
|
|
print("topk_preds:", topk_preds.shape, type(topk_preds))
|
|
|
if results['pred_cls'] is not None:
|
|
|
topk_pred_cls = results['pred_cls'][idx]
|
|
|
max_acc_iou = -1
|
|
|
max_iou = 0
|
|
|
max_intersection = 0
|
|
|
max_union = 0
|
|
|
max_i = 0
|
|
|
|
|
|
for i,pred_ in enumerate(topk_preds):
|
|
|
intersection, union, _ = intersectionAndUnionGPU(
|
|
|
torch.tensor(pred_).int().cuda().contiguous().clone(), torch.tensor(gt).int().cuda().contiguous(), 2, ignore_index=255
|
|
|
)
|
|
|
intersection, union = intersection.cpu().numpy(), union.cpu().numpy()
|
|
|
acc_iou = intersection / (union + 1e-5)
|
|
|
acc_iou[union == 0] = 1.0
|
|
|
fore_acc_iou = acc_iou[1]
|
|
|
if fore_acc_iou > max_acc_iou:
|
|
|
max_acc_iou = fore_acc_iou
|
|
|
max_iou = acc_iou
|
|
|
max_intersection = intersection
|
|
|
max_union = union
|
|
|
max_i = i
|
|
|
intersection_meter.update(max_intersection)
|
|
|
union_meter.update(max_union)
|
|
|
acc_iou_meter.update(max_iou, n=1)
|
|
|
pred_list.append(topk_preds[max_i])
|
|
|
gt_list.append(gt)
|
|
|
|
|
|
return pred_list,gt_list
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
class DataArguments:
|
|
|
data_path: str = field(default=None,
|
|
|
metadata={"help": "Path to the training data."})
|
|
|
lazy_preprocess: bool = False
|
|
|
is_multimodal: bool = False
|
|
|
image_folder: Optional[str] = field(default='/path/to/val2017')
|
|
|
model_path: Optional[str] = field(default="/path/to/model")
|
|
|
mask_config: Optional[str] = field(default="./objectrelator/mask_config/maskformer2_swin_base_384_bs16_50ep.yaml")
|
|
|
image_aspect_ratio: str = 'square'
|
|
|
image_grid_pinpoints: Optional[str] = field(default=None)
|
|
|
json_path: str = '/path/to/coco'
|
|
|
model_map_name: str = 'psalm_output_text'
|
|
|
version: str = 'llava_phi'
|
|
|
output_dir: str = './output/panoptic_segmentation'
|
|
|
segmentation: bool = True
|
|
|
eval_batch_size: int = 1
|
|
|
dataloader_num_workers: int = 4
|
|
|
seg_task: Optional[str] = field(default="referring")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def evaluation():
|
|
|
parser = transformers.HfArgumentParser(DataArguments)
|
|
|
data_args = parser.parse_args_into_dataclasses()[0]
|
|
|
disable_torch_init()
|
|
|
model_path = os.path.expanduser(data_args.model_path)
|
|
|
|
|
|
model_name = data_args.model_map_name
|
|
|
save_suffix = os.path.basename(data_args.json_path).split('.')[0]
|
|
|
print(f'save suffix is {save_suffix}')
|
|
|
print(f'current model is {model_path}')
|
|
|
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name, model_args=data_args, mask_config=data_args.mask_config, device='cuda')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_args.image_processor = image_processor
|
|
|
data_args.is_multimodal = True
|
|
|
conversation_lib.default_conversation = conversation_lib.conv_templates[data_args.version]
|
|
|
|
|
|
data_args.refcoco_image_folder = data_args.image_folder
|
|
|
eval_dataset = EgoExo_Dataset_train(json_path=data_args.json_path, tokenizer=tokenizer, data_args=data_args)
|
|
|
data_collator = DataCollatorForCOCODatasetV2(tokenizer=tokenizer)
|
|
|
dataloader_params = {
|
|
|
"batch_size": data_args.eval_batch_size,
|
|
|
"num_workers": data_args.dataloader_num_workers,
|
|
|
}
|
|
|
eval_dataloader = DataLoader(eval_dataset, batch_size=dataloader_params['batch_size'], collate_fn=data_collator,
|
|
|
num_workers=dataloader_params['num_workers'])
|
|
|
|
|
|
def load_ref_dataset():
|
|
|
return RefCOCO_dataset(json_path=data_args.json_path, tokenizer=tokenizer, data_args=data_args)
|
|
|
|
|
|
DatasetCatalog.register('refcoco_dataset', load_ref_dataset)
|
|
|
MetadataCatalog.get('refcoco_dataset').set(stuff_classes=['object'],)
|
|
|
gt_json_path = data_args.json_path
|
|
|
with open(gt_json_path) as f:
|
|
|
gt_data = json.load(f)
|
|
|
|
|
|
|
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
|
|
model.to(device=device,dtype=torch.float).eval()
|
|
|
save_list = []
|
|
|
intersection_meter = AverageMeter("Intersec", ":6.3f", Summary.SUM)
|
|
|
union_meter = AverageMeter("Union", ":6.3f", Summary.SUM)
|
|
|
acc_iou_meter = AverageMeter("gIoU", ":6.3f", Summary.SUM)
|
|
|
|
|
|
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
|
|
|
|
|
with torch.no_grad():
|
|
|
for idx, inputs in tqdm(enumerate(eval_dataloader), total=len(eval_dataloader)):
|
|
|
gt = gt_data[idx]['anns']
|
|
|
h, w = gt_data[idx]['image_info']['height'], gt_data[idx]['image_info']['width']
|
|
|
|
|
|
masks = []
|
|
|
for annotation in gt:
|
|
|
if isinstance(annotation['segmentation'], list):
|
|
|
segm = np.zeros((h, w), dtype=np.uint8)
|
|
|
for poly in annotation['segmentation']:
|
|
|
poly = np.array(poly, dtype=np.int32).reshape(-1, 2)
|
|
|
cv2.fillPoly(segm, [poly], 1)
|
|
|
masks.append(segm.astype(np.bool_))
|
|
|
else:
|
|
|
if isinstance(annotation['segmentation']['counts'], list):
|
|
|
rle = mask.frPyObjects(annotation['segmentation'], *annotation['segmentation']['size'])
|
|
|
segm = mask.decode(rle)
|
|
|
else:
|
|
|
segm = mask.decode(annotation['segmentation'])
|
|
|
masks.append(segm.astype(np.bool_))
|
|
|
|
|
|
gt_mask = masks[0].astype(np.uint8)
|
|
|
|
|
|
inputs = {k: v.to(device) if torch.is_tensor(v) else v for k, v in inputs.items()}
|
|
|
|
|
|
inputs['token_refer_id'] = [ids.to(device) for ids in inputs['token_refer_id']]
|
|
|
|
|
|
|
|
|
|
|
|
outputs,next_token_ids = model.eval_seg(
|
|
|
input_ids=inputs['input_ids'],
|
|
|
attention_mask=inputs['attention_mask'],
|
|
|
images=inputs['images'].float(),
|
|
|
seg_info=inputs['seg_info'],
|
|
|
token_refer_id = inputs['token_refer_id'],
|
|
|
refer_embedding_indices=inputs['refer_embedding_indices'],
|
|
|
labels=inputs['labels'],
|
|
|
)
|
|
|
|
|
|
'''以下为文本生成部分'''
|
|
|
print("next_token_ids:", next_token_ids)
|
|
|
print("next_token_ids type:", type(next_token_ids), "shape:", next_token_ids.shape if hasattr(next_token_ids, 'shape') else 'no shape')
|
|
|
|
|
|
|
|
|
if isinstance(next_token_ids, torch.Tensor):
|
|
|
if next_token_ids.numel() == 1:
|
|
|
|
|
|
generated_text = tokenizer.decode([next_token_ids.item()], skip_special_tokens=True)
|
|
|
else:
|
|
|
|
|
|
if len(next_token_ids.shape) == 0:
|
|
|
generated_text = tokenizer.decode([next_token_ids.item()], skip_special_tokens=True)
|
|
|
else:
|
|
|
generated_text = tokenizer.decode(next_token_ids.tolist(), skip_special_tokens=True)
|
|
|
else:
|
|
|
|
|
|
try:
|
|
|
generated_text = tokenizer.decode(next_token_ids, skip_special_tokens=True)
|
|
|
except:
|
|
|
generated_text = str(next_token_ids)
|
|
|
|
|
|
print("Generated text:", repr(generated_text))
|
|
|
print("Generated text (clean):", generated_text.strip())
|
|
|
|
|
|
|
|
|
gt_cls = inputs['seg_info'][0]['instances'].gt_classes
|
|
|
if torch.cuda.is_available():
|
|
|
torch.cuda.synchronize()
|
|
|
cur_res = parse_outputs(outputs,gt_mask)
|
|
|
print("cur_res", len(cur_res))
|
|
|
pred,gt_mask = compute_metric(intersection_meter,union_meter,acc_iou_meter, gt_cls, cur_res)
|
|
|
save_list.append({'pred':pred[0],'gt':gt_mask[0],'name':inputs['seg_info'][0]['file_name']})
|
|
|
print("pred_mask:", pred[0].shape, np.unique(pred[0]).tolist())
|
|
|
print("gt_mask:", gt_mask[0].shape, np.unique(gt_mask[0]).tolist())
|
|
|
print("=" * 50)
|
|
|
iou_class = intersection_meter.sum / (union_meter.sum + 1e-10)
|
|
|
ciou = iou_class[1]
|
|
|
giou = acc_iou_meter.avg[1]
|
|
|
msg = "benchmark: {}: giou: {:.4f}, ciou: {:.4f}".format(save_suffix, giou, ciou)
|
|
|
print(msg)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
save_path_pred = "/scratch/yuqian_fu/test_result/mask/1247a29c-9fda-47ac-8b9c-78b1e76e977e_ref/30_pred_complex_ego_watch.png"
|
|
|
save_path_gt = "/scratch/yuqian_fu/test_result/mask/1247a29c-9fda-47ac-8b9c-78b1e76e977e_ref/30_gt.png"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
evaluation() |