|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from psalm.train.train_datasets import * |
|
|
from psalm.eval.eval_davis import DAVIS_Dataset, Ego_Train_Dataset, Multicondition_Dataset |
|
|
from psalm.mask_config.config import Config |
|
|
|
|
|
|
|
|
from psalm.model.language_model.llava_phi_SSL_MultiCondition import PSALM_SSL_MultiCondition |
|
|
|
|
|
from psalm.train.llava_trainer_SSL import LLaVATrainerSSL |
|
|
|
|
|
from fvcore.common.config import CfgNode |
|
|
import warnings |
|
|
|
|
|
print('Version: SSL_MultiCondition!') |
|
|
|
|
|
warnings.filterwarnings('ignore') |
|
|
local_rank = None |
|
|
|
|
|
def print_trainable_parm(model,prefix): |
|
|
for name, module in model.named_modules(): |
|
|
print_flag = False |
|
|
for p in module.parameters(): |
|
|
if p.requires_grad == True: |
|
|
print(f'{prefix}: {name}') |
|
|
print_flag = True |
|
|
break |
|
|
def get_mask_config(config='./psalm/mask_config/maskformer2_swin_base_384_bs16_50ep.yaml'): |
|
|
cfg_coco = Config.fromfile(config) |
|
|
cfg_base = CfgNode.load_yaml_with_base(config, allow_unsafe=True) |
|
|
cfg_base.update(cfg_coco.__dict__.items()) |
|
|
cfg = cfg_base |
|
|
cfg = Config(cfg) |
|
|
return cfg |
|
|
|
|
|
def print_dtype(model,prefix,dtype): |
|
|
for name,p in model.named_parameters(): |
|
|
if p.dtype != dtype: |
|
|
print(f'{prefix}: {name}') |
|
|
print(p.dtype) |
|
|
|
|
|
def rank0_print(*args): |
|
|
if local_rank == 0: |
|
|
print(*args) |
|
|
|
|
|
|
|
|
@dataclass |
|
|
class ModelArguments: |
|
|
model_name_or_path: Optional[str] = field(default="facebook/opt-125m") |
|
|
version: Optional[str] = field(default="v0") |
|
|
freeze_backbone: bool = field(default=False) |
|
|
train_backbone: bool = field(default=False) |
|
|
tune_mm_mlp_adapter: bool = field(default=False) |
|
|
vision_tower: Optional[str] = field(default=None) |
|
|
mm_vision_select_layer: Optional[int] = field(default=-1) |
|
|
pretrain_mm_mlp_adapter: Optional[str] = field(default=None) |
|
|
mm_use_im_start_end: bool = field(default=False) |
|
|
mm_use_im_patch_token: bool = field(default=True) |
|
|
mm_vision_select_feature: Optional[str] = field(default="patch") |
|
|
with_norm: bool = field(default=True) |
|
|
with_layernorm: bool = field(default=False) |
|
|
skip_init_vision: bool = field(default=False) |
|
|
with_sam: bool = field(default=False) |
|
|
with_swin: bool = field(default=False) |
|
|
with_teacher: bool = field(default=False) |
|
|
swin_type: Optional[str] = field(default="base") |
|
|
projector_outdim: Optional[int] = field(default=2048) |
|
|
mm_projector_type: Optional[str] = field(default="swin_conv") |
|
|
model_version: Optional[str] = field(default="v1") |
|
|
load_mask2former: bool = field(default=True) |
|
|
seg_task: Optional[str] = field(default="panoptic") |
|
|
mask_config: Optional[str] = field(default="./psalm/mask_config/maskformer2_swin_base_384_bs16_50ep.yaml") |
|
|
dino_path: Optional[str] = field(default=None) |
|
|
|
|
|
@dataclass |
|
|
class DataArguments: |
|
|
data_path: str = field(default=None, |
|
|
metadata={"help": "Path to the training data."}) |
|
|
lazy_preprocess: bool = False |
|
|
is_multimodal: bool = False |
|
|
image_folder: Optional[str] = field(default=None) |
|
|
refcoco_image_folder: Optional[str] = "/path/to/refer_seg/images/mscoco/images/train2014" |
|
|
image_first: bool = field(default=True) |
|
|
seg_last: bool = field(default=True) |
|
|
instruction_version: str = 'v1' |
|
|
image_aspect_ratio: str = 'square' |
|
|
image_grid_pinpoints: Optional[str] = field(default=None) |
|
|
json_path: str = '/path/to/instruction_segmentation_train.json' |
|
|
instance_json_path: str = '/path/to/instruction_segmentation_train.json' |
|
|
lvis_json_path: str = '/path/to/lvis_instance_train.json' |
|
|
lvis_categories_path: str = '/path/to/lvis_instance_categories.json' |
|
|
region_json_path: str = '/path/to/visual_prompt_segmentation_train.json' |
|
|
panoptic_json_path: str = "/path/to/coco" |
|
|
ref_coco_path: str = '/path/to/refcoco/refcoco_train.json' |
|
|
ref_coco_plus_path: str = '/path/to/refcoco+/refcoco+_train.json' |
|
|
ref_coco_g_path: str = '/path/to/refcocog/refcocog_train.json' |
|
|
mmconv_path: str = '/path/to/llava_1_5' |
|
|
data_ratio: str = '1||1||1||1' |
|
|
fix_dataset_len: int = 0 |
|
|
segmentation: bool = True |
|
|
|
|
|
@dataclass |
|
|
class TrainingArguments(transformers.TrainingArguments): |
|
|
cache_dir: Optional[str] = field(default=None) |
|
|
optim: str = field(default="adamw_torch") |
|
|
remove_unused_columns: bool = field(default=False) |
|
|
freeze_mm_mlp_adapter: bool = field(default=False) |
|
|
mpt_attn_impl: Optional[str] = field(default="triton") |
|
|
model_max_length: int = field( |
|
|
default=512, |
|
|
metadata={ |
|
|
"help": |
|
|
"Maximum sequence length. Sequences will be right padded (and possibly truncated)." |
|
|
}, |
|
|
) |
|
|
double_quant: bool = field( |
|
|
default=True, |
|
|
metadata={"help": "Compress the quantization statistics through double quantization."} |
|
|
) |
|
|
quant_type: str = field( |
|
|
default="nf4", |
|
|
metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."} |
|
|
) |
|
|
bits: int = field( |
|
|
default=16, |
|
|
metadata={"help": "How many bits to use."} |
|
|
) |
|
|
lora_enable: bool = False |
|
|
lora_r: int = 64 |
|
|
lora_alpha: int = 16 |
|
|
lora_dropout: float = 0.05 |
|
|
lora_weight_path: str = "" |
|
|
lora_bias: str = "none" |
|
|
dataloader_drop_last: bool = True |
|
|
|
|
|
|
|
|
def maybe_zero_3(param, ignore_status=False, name=None): |
|
|
from deepspeed import zero |
|
|
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus |
|
|
if hasattr(param, "ds_id"): |
|
|
if param.ds_status == ZeroParamStatus.NOT_AVAILABLE: |
|
|
if not ignore_status: |
|
|
logging.warning(f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}") |
|
|
with zero.GatheredParameters([param]): |
|
|
param = param.data.detach().cpu().clone() |
|
|
else: |
|
|
param = param.detach().cpu().clone() |
|
|
return param |
|
|
|
|
|
|
|
|
|
|
|
def get_peft_state_maybe_zero_3(named_params, bias): |
|
|
if bias == "none": |
|
|
to_return = {k: t for k, t in named_params if "lora_" in k} |
|
|
elif bias == "all": |
|
|
to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k} |
|
|
elif bias == "lora_only": |
|
|
to_return = {} |
|
|
maybe_lora_bias = {} |
|
|
lora_bias_names = set() |
|
|
for k, t in named_params: |
|
|
if "lora_" in k: |
|
|
to_return[k] = t |
|
|
bias_name = k.split("lora_")[0] + "bias" |
|
|
lora_bias_names.add(bias_name) |
|
|
elif "bias" in k: |
|
|
maybe_lora_bias[k] = t |
|
|
for k, t in maybe_lora_bias: |
|
|
if bias_name in lora_bias_names: |
|
|
to_return[bias_name] = t |
|
|
else: |
|
|
raise NotImplementedError |
|
|
to_return = {k: maybe_zero_3(v, name=k) for k, v in to_return.items()} |
|
|
return to_return |
|
|
|
|
|
|
|
|
def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True): |
|
|
to_return = {k: t for k, t in named_params if "lora_" not in k} |
|
|
if require_grad_only: |
|
|
to_return = {k: t for k, t in to_return.items() if t.requires_grad} |
|
|
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()} |
|
|
return to_return |
|
|
|
|
|
|
|
|
def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match): |
|
|
to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)} |
|
|
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()} |
|
|
return to_return |
|
|
|
|
|
|
|
|
def find_all_linear_names(model): |
|
|
cls = torch.nn.Linear |
|
|
lora_module_names = set() |
|
|
for name, module in model.named_modules(): |
|
|
if isinstance(module, cls): |
|
|
names = name.split('.') |
|
|
lora_module_names.add(names[0] if len(names) == 1 else names[-1]) |
|
|
|
|
|
if 'lm_head' in lora_module_names: |
|
|
lora_module_names.remove('lm_head') |
|
|
return list(lora_module_names) |
|
|
|
|
|
|
|
|
def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, |
|
|
output_dir: str): |
|
|
"""Collects the state dict and dump to disk.""" |
|
|
|
|
|
if getattr(trainer.args, "tune_mm_mlp_adapter", False): |
|
|
|
|
|
keys_to_match = ['mm_projector'] |
|
|
if getattr(trainer.args, "use_im_start_end", False): |
|
|
keys_to_match.extend(['embed_tokens', 'embed_in']) |
|
|
|
|
|
weight_to_save = get_mm_adapter_state_maybe_zero_3(trainer.model.named_parameters(), keys_to_match) |
|
|
trainer.model.config.save_pretrained(output_dir) |
|
|
|
|
|
current_folder = output_dir.split('/')[-1] |
|
|
parent_folder = os.path.dirname(output_dir) |
|
|
if trainer.args.local_rank == 0 or trainer.args.local_rank == -1: |
|
|
if current_folder.startswith('checkpoint-'): |
|
|
mm_projector_folder = os.path.join(parent_folder, "mm_projector") |
|
|
os.makedirs(mm_projector_folder, exist_ok=True) |
|
|
torch.save(weight_to_save, os.path.join(mm_projector_folder, f'{current_folder}.bin')) |
|
|
else: |
|
|
torch.save(weight_to_save, os.path.join(output_dir, f'mm_projector.bin')) |
|
|
return |
|
|
|
|
|
if trainer.deepspeed: |
|
|
torch.cuda.synchronize() |
|
|
trainer.save_model(output_dir) |
|
|
return |
|
|
|
|
|
state_dict = trainer.model.state_dict() |
|
|
if trainer.args.should_save: |
|
|
cpu_state_dict = { |
|
|
key: value.cpu() |
|
|
for key, value in state_dict.items() |
|
|
} |
|
|
del state_dict |
|
|
trainer._save(output_dir, state_dict=cpu_state_dict) |
|
|
|
|
|
|
|
|
def smart_tokenizer_and_embedding_resize( |
|
|
special_tokens_dict: Dict, |
|
|
tokenizer: transformers.PreTrainedTokenizer, |
|
|
model: transformers.PreTrainedModel, |
|
|
): |
|
|
"""Resize tokenizer and embedding. |
|
|
|
|
|
Note: This is the unoptimized version that may make your embedding size not be divisible by 64. |
|
|
""" |
|
|
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict) |
|
|
model.resize_token_embeddings(len(tokenizer)) |
|
|
|
|
|
if num_new_tokens > 0: |
|
|
input_embeddings = model.get_input_embeddings().weight.data |
|
|
output_embeddings = model.get_output_embeddings().weight.data |
|
|
|
|
|
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( |
|
|
dim=0, keepdim=True) |
|
|
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( |
|
|
dim=0, keepdim=True) |
|
|
|
|
|
input_embeddings[-num_new_tokens:] = input_embeddings_avg |
|
|
output_embeddings[-num_new_tokens:] = output_embeddings_avg |
|
|
|
|
|
|
|
|
def _tokenize_fn(strings: Sequence[str], |
|
|
tokenizer: transformers.PreTrainedTokenizer) -> Dict: |
|
|
"""Tokenize a list of strings.""" |
|
|
tokenized_list = [ |
|
|
tokenizer( |
|
|
text, |
|
|
return_tensors="pt", |
|
|
padding="longest", |
|
|
max_length=tokenizer.model_max_length, |
|
|
truncation=True, |
|
|
) for text in strings |
|
|
] |
|
|
input_ids = labels = [ |
|
|
tokenized.input_ids[0] for tokenized in tokenized_list |
|
|
] |
|
|
input_ids_lens = labels_lens = [ |
|
|
tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item() |
|
|
for tokenized in tokenized_list |
|
|
] |
|
|
return dict( |
|
|
input_ids=input_ids, |
|
|
labels=labels, |
|
|
input_ids_lens=input_ids_lens, |
|
|
labels_lens=labels_lens, |
|
|
) |
|
|
|
|
|
|
|
|
def _mask_targets(target, tokenized_lens, speakers): |
|
|
|
|
|
cur_idx = tokenized_lens[0] |
|
|
tokenized_lens = tokenized_lens[1:] |
|
|
target[:cur_idx] = IGNORE_INDEX |
|
|
for tokenized_len, speaker in zip(tokenized_lens, speakers): |
|
|
if speaker == "human": |
|
|
target[cur_idx + 2:cur_idx + tokenized_len] = IGNORE_INDEX |
|
|
cur_idx += tokenized_len |
|
|
|
|
|
|
|
|
def _add_speaker_and_signal(header, source, get_conversation=True): |
|
|
"""Add speaker and start/end signal on each round.""" |
|
|
BEGIN_SIGNAL = "### " |
|
|
END_SIGNAL = "\n" |
|
|
conversation = header |
|
|
for sentence in source: |
|
|
from_str = sentence["from"] |
|
|
if from_str.lower() == "human": |
|
|
from_str = conversation_lib.default_conversation.roles[0] |
|
|
elif from_str.lower() == "gpt": |
|
|
from_str = conversation_lib.default_conversation.roles[1] |
|
|
else: |
|
|
from_str = 'unknown' |
|
|
sentence["value"] = (BEGIN_SIGNAL + from_str + ": " + |
|
|
sentence["value"] + END_SIGNAL) |
|
|
if get_conversation: |
|
|
conversation += sentence["value"] |
|
|
conversation += BEGIN_SIGNAL |
|
|
return conversation |
|
|
|
|
|
|
|
|
def make_unify_datamodule(tokenizer, data_args, training_args): |
|
|
data_ratio = data_args.data_ratio |
|
|
data_ratio = data_ratio.split('||') |
|
|
data_ratio = [int(data_) for data_ in data_ratio] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
egoexo_dataset = Multicondition_Dataset(json_path=data_args.region_json_path, tokenizer=tokenizer,data_args=data_args) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
datasets = [egoexo_dataset] |
|
|
print(f'the dataset ratio is: {data_ratio}') |
|
|
|
|
|
|
|
|
train_dataset = UnifyDatasetSingleDatasetForBatch(datasets,data_ratio,16,fix_dataset_len=data_args.fix_dataset_len) |
|
|
print(f'total unify dataset number is {len(train_dataset)}') |
|
|
data_collator = DataCollatorForCOCODatasetV2(tokenizer=tokenizer) |
|
|
return dict(train_dataset=train_dataset, eval_dataset=None, data_collator=data_collator) |
|
|
|
|
|
|
|
|
def train(): |
|
|
global local_rank |
|
|
|
|
|
parser = transformers.HfArgumentParser( |
|
|
(ModelArguments, DataArguments, TrainingArguments)) |
|
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
local_rank = training_args.local_rank |
|
|
compute_dtype = (torch.float16 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32)) |
|
|
|
|
|
mask_cfg = get_mask_config(config=model_args.mask_config) |
|
|
mask_cfg.MODEL.MASK_FORMER.SEG_TASK = model_args.seg_task |
|
|
bnb_model_from_pretrained_args = {} |
|
|
|
|
|
print('using model PSALM SSL Multicondtion') |
|
|
|
|
|
|
|
|
|
|
|
''' |
|
|
model = PSALM.from_pretrained( |
|
|
model_args.model_name_or_path, |
|
|
mask_decoder_cfg=mask_cfg, |
|
|
add_cross_attn=True, |
|
|
cache_dir=training_args.cache_dir, |
|
|
**bnb_model_from_pretrained_args |
|
|
) |
|
|
model.is_train_mask_decode = False |
|
|
if not model.is_train_mask_decode: |
|
|
mask2former_ckpt = model_args.vision_tower if model_args.load_mask2former else None |
|
|
model.initial_mask_module(mask2former_ckpt) |
|
|
''' |
|
|
|
|
|
|
|
|
''' #SSL version |
|
|
model = PSALM_SSL.from_pretrained( |
|
|
# model_args.model_name_or_path, |
|
|
"/data/work2-gcp-europe-west4-a/yuqian_fu/Ego/huggingface/hub/PSALM", |
|
|
mask_decoder_cfg=mask_cfg, |
|
|
add_cross_attn=True, |
|
|
cache_dir=training_args.cache_dir, |
|
|
**bnb_model_from_pretrained_args |
|
|
) |
|
|
''' |
|
|
|
|
|
model = PSALM_SSL_MultiCondition.from_pretrained( |
|
|
|
|
|
|
|
|
"/data/work-gcp-europe-west4-a/yuqian_fu/Ego/OursMultiCondition_EgoQuery_SmallJson_1101_CAwithlearnableweight_1Head_TwoStageS1/checkpoint-152", |
|
|
mask_decoder_cfg=mask_cfg, |
|
|
add_cross_attn=True, |
|
|
cache_dir=training_args.cache_dir, |
|
|
**bnb_model_from_pretrained_args |
|
|
) |
|
|
|
|
|
model2 = PSALM_SSL_MultiCondition.from_pretrained( |
|
|
|
|
|
|
|
|
"/data/work-gcp-europe-west4-a/yuqian_fu/Ego/OursMultiCondition_EgoQuery_SmallJson_1101_CAwithlearnableweight_1Head_TwoStageS2/checkpoint-3056", |
|
|
mask_decoder_cfg=mask_cfg, |
|
|
add_cross_attn=True, |
|
|
cache_dir=training_args.cache_dir, |
|
|
**bnb_model_from_pretrained_args |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
''' |
|
|
# Lora Train Version: (By default, it is trained wo lora) |
|
|
#training_args.lora_enable = True #Looks like not quiet working |
|
|
if (training_args.lora_enable == True): |
|
|
print("Attention: CUrrent we are using lora for training") |
|
|
''' |
|
|
|
|
|
model.config.use_cache = False |
|
|
|
|
|
if model_args.freeze_backbone: |
|
|
model.model.requires_grad_(False) |
|
|
|
|
|
|
|
|
if training_args.gradient_checkpointing: |
|
|
if hasattr(model, "enable_input_require_grads"): |
|
|
model.enable_input_require_grads() |
|
|
else: |
|
|
def make_inputs_require_grad(module, input, output): |
|
|
output.requires_grad_(True) |
|
|
|
|
|
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) |
|
|
|
|
|
tokenizer = transformers.AutoTokenizer.from_pretrained( |
|
|
model_args.model_name_or_path, |
|
|
cache_dir=training_args.cache_dir, |
|
|
model_max_length=training_args.model_max_length, |
|
|
padding_side="right", |
|
|
use_fast=False, |
|
|
) |
|
|
|
|
|
if tokenizer.pad_token is None: |
|
|
smart_tokenizer_and_embedding_resize( |
|
|
special_tokens_dict=dict(pad_token="[PAD]"), |
|
|
tokenizer=tokenizer, |
|
|
model=model, |
|
|
) |
|
|
if model_args.version in conversation_lib.conv_templates: |
|
|
conversation_lib.default_conversation = conversation_lib.conv_templates[model_args.version] |
|
|
else: |
|
|
conversation_lib.default_conversation = conversation_lib.conv_templates["vicuna_v1"] |
|
|
|
|
|
if model_args.vision_tower is not None: |
|
|
model.get_model().initialize_vision_modules( |
|
|
model_args=model_args, |
|
|
fsdp=training_args.fsdp |
|
|
) |
|
|
|
|
|
vision_tower = model.get_vision_tower() |
|
|
vision_tower.to(dtype=torch.float16 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32), device=training_args.device) |
|
|
data_args.image_processor = vision_tower.image_processor |
|
|
data_args.is_multimodal = True |
|
|
|
|
|
model.config.image_aspect_ratio = data_args.image_aspect_ratio |
|
|
model.config.image_grid_pinpoints = data_args.image_grid_pinpoints |
|
|
|
|
|
model.config.tune_mm_mlp_adapter = training_args.tune_mm_mlp_adapter = model_args.tune_mm_mlp_adapter |
|
|
if model_args.tune_mm_mlp_adapter: |
|
|
model.requires_grad_(False) |
|
|
for p in model.get_model().mm_projector.parameters(): |
|
|
p.requires_grad = True |
|
|
if not model_args.train_backbone: |
|
|
model.model.vision_tower.requires_grad_(False) |
|
|
|
|
|
|
|
|
model.config.freeze_mm_mlp_adapter = training_args.freeze_mm_mlp_adapter |
|
|
if training_args.freeze_mm_mlp_adapter: |
|
|
for p in model.get_model().mm_projector.parameters(): |
|
|
p.requires_grad = False |
|
|
|
|
|
|
|
|
model.config.mm_use_im_start_end = data_args.mm_use_im_start_end = model_args.mm_use_im_start_end |
|
|
training_args.use_im_start_end = model_args.mm_use_im_start_end |
|
|
model.config.mm_use_im_patch_token = model_args.mm_use_im_patch_token |
|
|
model.initialize_vision_tokenizer(model_args, tokenizer=tokenizer) |
|
|
|
|
|
tokenizer.add_tokens("[SEG]") |
|
|
model.resize_token_embeddings(len(tokenizer)) |
|
|
model.get_special_token(SEG=tokenizer("[SEG]", return_tensors='pt', add_special_tokens=False)['input_ids'], EOS=tokenizer.eos_token_id) |
|
|
|
|
|
data_module = make_unify_datamodule(tokenizer=tokenizer, data_args=data_args, training_args=training_args) |
|
|
training_args.dataloader_drop_last = True |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for name, param in model.named_parameters(): |
|
|
if "fuse_model" in name: |
|
|
print("model1",name,param) |
|
|
|
|
|
|
|
|
for name, param in model2.named_parameters(): |
|
|
if "fuse_model" in name: |
|
|
print("model2",name,param) |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
train() |
|
|
|