YongxinWang commited on
Commit
d3d2a91
·
1 Parent(s): d0d56dd
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_concat_lora/README.md +202 -0
  2. ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_concat_lora/adapter_config.json +34 -0
  3. ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_concat_lora/adapter_model.safetensors +3 -0
  4. ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_concat_lora/config.json +73 -0
  5. ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_concat_lora/non_lora_trainables.bin +3 -0
  6. ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_concat_lora/trainer_state.json +972 -0
  7. ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_concat_new_lora/README.md +202 -0
  8. ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_concat_new_lora/adapter_config.json +34 -0
  9. ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_concat_new_lora/adapter_model.safetensors +3 -0
  10. ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_concat_new_lora/config.json +73 -0
  11. ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_concat_new_lora/non_lora_trainables.bin +3 -0
  12. ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_concat_new_lora/trainer_state.json +972 -0
  13. ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_lora/README.md +202 -0
  14. ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_lora/adapter_config.json +34 -0
  15. ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_lora/adapter_model.safetensors +3 -0
  16. ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_lora/config.json +73 -0
  17. ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_lora/non_lora_trainables.bin +3 -0
  18. ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_lora/trainer_state.json +972 -0
  19. ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_new_lora/README.md +202 -0
  20. ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_new_lora/adapter_config.json +34 -0
  21. ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_new_lora/adapter_model.safetensors +3 -0
  22. ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_new_lora/config.json +73 -0
  23. ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_new_lora/non_lora_trainables.bin +3 -0
  24. ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_new_lora/trainer_state.json +972 -0
  25. ckpt/llava-v1.6-mistral-7b-STIC-Iter1_lora/README.md +202 -0
  26. ckpt/llava-v1.6-mistral-7b-STIC-Iter1_lora/adapter_config.json +34 -0
  27. ckpt/llava-v1.6-mistral-7b-STIC-Iter1_lora/adapter_model.safetensors +3 -0
  28. ckpt/llava-v1.6-mistral-7b-STIC-Iter1_lora/config.json +73 -0
  29. ckpt/llava-v1.6-mistral-7b-STIC-Iter1_lora/non_lora_trainables.bin +3 -0
  30. ckpt/llava-v1.6-mistral-7b-STIC-Iter1_lora/trainer_state.json +972 -0
  31. ckpt/llava-v1.6-mistral-7b-STIC-Iter1_lora_2ep/README.md +202 -0
  32. ckpt/llava-v1.6-mistral-7b-STIC-Iter1_lora_2ep/adapter_config.json +34 -0
  33. ckpt/llava-v1.6-mistral-7b-STIC-Iter1_lora_2ep/adapter_model.safetensors +3 -0
  34. ckpt/llava-v1.6-mistral-7b-STIC-Iter1_lora_2ep/config.json +73 -0
  35. ckpt/llava-v1.6-mistral-7b-STIC-Iter1_lora_2ep/non_lora_trainables.bin +3 -0
  36. ckpt/llava-v1.6-mistral-7b-STIC-Iter1_lora_2ep/trainer_state.json +1914 -0
  37. ckpt/llava-v1.6-mistral-7b-STIC-Iter2_lora/README.md +202 -0
  38. ckpt/llava-v1.6-mistral-7b-STIC-Iter2_lora/adapter_config.json +34 -0
  39. ckpt/llava-v1.6-mistral-7b-STIC-Iter2_lora/adapter_model.safetensors +3 -0
  40. ckpt/llava-v1.6-mistral-7b-STIC-Iter2_lora/config.json +73 -0
  41. ckpt/llava-v1.6-mistral-7b-STIC-Iter2_lora/non_lora_trainables.bin +3 -0
  42. ckpt/llava-v1.6-mistral-7b-STIC-Iter2_lora/trainer_state.json +972 -0
  43. ckpt/llava-v1.6-mistral-7b-STIC-gt-judge_lora/README.md +202 -0
  44. ckpt/llava-v1.6-mistral-7b-STIC-gt-judge_lora/adapter_config.json +34 -0
  45. ckpt/llava-v1.6-mistral-7b-STIC-gt-judge_lora/adapter_model.safetensors +3 -0
  46. ckpt/llava-v1.6-mistral-7b-STIC-gt-judge_lora/config.json +73 -0
  47. ckpt/llava-v1.6-mistral-7b-STIC-gt-judge_lora/non_lora_trainables.bin +3 -0
  48. ckpt/llava-v1.6-mistral-7b-STIC-gt-judge_lora/trainer_state.json +972 -0
  49. ckpt/llava-v1.6-mistral-7b-STIC-judge_lora/README.md +202 -0
  50. ckpt/llava-v1.6-mistral-7b-STIC-judge_lora/adapter_config.json +34 -0
ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_concat_lora/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: liuhaotian/llava-v1.6-mistral-7b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_concat_lora/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "liuhaotian/llava-v1.6-mistral-7b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 128,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "gate_proj",
24
+ "o_proj",
25
+ "down_proj",
26
+ "q_proj",
27
+ "k_proj",
28
+ "v_proj",
29
+ "up_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_concat_lora/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dabdc79eeea56bbec7f760233c65518d1f7c78e69bc33e03ea66362ed2ab12d1
3
+ size 708923528
ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_concat_lora/config.json ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "liuhaotian/llava-v1.6-mistral-7b",
3
+ "architectures": [
4
+ "LlavaMistralForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "freeze_mm_mlp_adapter": false,
11
+ "freeze_mm_vision_resampler": false,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 4096,
14
+ "image_aspect_ratio": "pad",
15
+ "image_crop_resolution": 224,
16
+ "image_grid_pinpoints": [
17
+ [
18
+ 336,
19
+ 672
20
+ ],
21
+ [
22
+ 672,
23
+ 336
24
+ ],
25
+ [
26
+ 672,
27
+ 672
28
+ ],
29
+ [
30
+ 1008,
31
+ 336
32
+ ],
33
+ [
34
+ 336,
35
+ 1008
36
+ ]
37
+ ],
38
+ "image_split_resolution": 224,
39
+ "initializer_range": 0.02,
40
+ "intermediate_size": 14336,
41
+ "max_position_embeddings": 32768,
42
+ "mm_hidden_size": 1024,
43
+ "mm_patch_merge_type": "flat",
44
+ "mm_projector_lr": 2e-05,
45
+ "mm_projector_type": "mlp2x_gelu",
46
+ "mm_resampler_type": null,
47
+ "mm_use_im_patch_token": false,
48
+ "mm_use_im_start_end": false,
49
+ "mm_vision_select_feature": "patch",
50
+ "mm_vision_select_layer": -2,
51
+ "mm_vision_tower": "openai/clip-vit-large-patch14-336",
52
+ "mm_vision_tower_lr": 2e-06,
53
+ "model_type": "llava_llama",
54
+ "num_attention_heads": 32,
55
+ "num_hidden_layers": 32,
56
+ "num_key_value_heads": 8,
57
+ "pretraining_tp": 1,
58
+ "rms_norm_eps": 1e-05,
59
+ "rope_scaling": null,
60
+ "rope_theta": 1000000.0,
61
+ "sliding_window": null,
62
+ "tie_word_embeddings": false,
63
+ "tokenizer_model_max_length": 2048,
64
+ "tokenizer_padding_side": "right",
65
+ "torch_dtype": "bfloat16",
66
+ "transformers_version": "4.37.2",
67
+ "tune_mm_mlp_adapter": false,
68
+ "tune_mm_vision_resampler": false,
69
+ "unfreeze_mm_vision_tower": true,
70
+ "use_cache": true,
71
+ "use_mm_proj": true,
72
+ "vocab_size": 32000
73
+ }
ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_concat_lora/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60fb82c3660319e6d0b239950b20c28181e97f1ade117dc0660b40e2ad94a89b
3
+ size 912
ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_concat_lora/trainer_state.json ADDED
@@ -0,0 +1,972 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 157,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 4.000000000000001e-06,
14
+ "loss": 1.6049,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 8.000000000000001e-06,
20
+ "loss": 1.5677,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.02,
25
+ "learning_rate": 1.2e-05,
26
+ "loss": 1.287,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.03,
31
+ "learning_rate": 1.6000000000000003e-05,
32
+ "loss": 1.1397,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.03,
37
+ "learning_rate": 2e-05,
38
+ "loss": 1.0795,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.04,
43
+ "learning_rate": 1.9997864167879313e-05,
44
+ "loss": 1.0153,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.04,
49
+ "learning_rate": 1.999145758387301e-05,
50
+ "loss": 1.1696,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.05,
55
+ "learning_rate": 1.9980782984658682e-05,
56
+ "loss": 1.1496,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.06,
61
+ "learning_rate": 1.99658449300667e-05,
62
+ "loss": 0.8637,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.06,
67
+ "learning_rate": 1.994664980113243e-05,
68
+ "loss": 0.9228,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.07,
73
+ "learning_rate": 1.992320579737045e-05,
74
+ "loss": 0.9077,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.08,
79
+ "learning_rate": 1.9895522933272028e-05,
80
+ "loss": 0.9028,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.08,
85
+ "learning_rate": 1.9863613034027224e-05,
86
+ "loss": 0.9086,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.09,
91
+ "learning_rate": 1.9827489730473597e-05,
92
+ "loss": 0.9552,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.1,
97
+ "learning_rate": 1.9787168453273546e-05,
98
+ "loss": 0.9274,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.1,
103
+ "learning_rate": 1.9742666426322877e-05,
104
+ "loss": 0.9081,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.11,
109
+ "learning_rate": 1.9694002659393306e-05,
110
+ "loss": 0.8028,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.11,
115
+ "learning_rate": 1.9641197940012136e-05,
116
+ "loss": 0.8879,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.12,
121
+ "learning_rate": 1.958427482458253e-05,
122
+ "loss": 0.9053,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.13,
127
+ "learning_rate": 1.9523257628748148e-05,
128
+ "loss": 0.8821,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.13,
133
+ "learning_rate": 1.9458172417006347e-05,
134
+ "loss": 0.9305,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.14,
139
+ "learning_rate": 1.9389046991574298e-05,
140
+ "loss": 0.8461,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.15,
145
+ "learning_rate": 1.9315910880512792e-05,
146
+ "loss": 0.9011,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.15,
151
+ "learning_rate": 1.9238795325112867e-05,
152
+ "loss": 0.8867,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.16,
157
+ "learning_rate": 1.9157733266550577e-05,
158
+ "loss": 0.8389,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.17,
163
+ "learning_rate": 1.9072759331815602e-05,
164
+ "loss": 0.9627,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.17,
169
+ "learning_rate": 1.898390981891979e-05,
170
+ "loss": 0.8125,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.18,
175
+ "learning_rate": 1.8891222681391853e-05,
176
+ "loss": 0.8371,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.18,
181
+ "learning_rate": 1.879473751206489e-05,
182
+ "loss": 0.8698,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.19,
187
+ "learning_rate": 1.869449552616367e-05,
188
+ "loss": 0.795,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.2,
193
+ "learning_rate": 1.8590539543698852e-05,
194
+ "loss": 0.8308,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.2,
199
+ "learning_rate": 1.8482913971175737e-05,
200
+ "loss": 0.8484,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.21,
205
+ "learning_rate": 1.8371664782625287e-05,
206
+ "loss": 0.9724,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.22,
211
+ "learning_rate": 1.825683949996556e-05,
212
+ "loss": 0.8933,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.22,
217
+ "learning_rate": 1.813848717270195e-05,
218
+ "loss": 0.9189,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.23,
223
+ "learning_rate": 1.8016658356974885e-05,
224
+ "loss": 0.9257,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.24,
229
+ "learning_rate": 1.789140509396394e-05,
230
+ "loss": 0.8358,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.24,
235
+ "learning_rate": 1.7762780887657576e-05,
236
+ "loss": 0.9147,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.25,
241
+ "learning_rate": 1.7630840681998068e-05,
242
+ "loss": 0.8726,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.25,
247
+ "learning_rate": 1.7495640837411265e-05,
248
+ "loss": 0.8943,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.26,
253
+ "learning_rate": 1.735723910673132e-05,
254
+ "loss": 0.8694,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.27,
259
+ "learning_rate": 1.7215694610530624e-05,
260
+ "loss": 0.8393,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.27,
265
+ "learning_rate": 1.7071067811865477e-05,
266
+ "loss": 0.8746,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.28,
271
+ "learning_rate": 1.6923420490448298e-05,
272
+ "loss": 0.8654,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.29,
277
+ "learning_rate": 1.6772815716257414e-05,
278
+ "loss": 0.9969,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.29,
283
+ "learning_rate": 1.6619317822595666e-05,
284
+ "loss": 0.7979,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.3,
289
+ "learning_rate": 1.646299237860941e-05,
290
+ "loss": 0.8569,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.31,
295
+ "learning_rate": 1.6303906161279554e-05,
296
+ "loss": 0.8575,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.31,
301
+ "learning_rate": 1.6142127126896682e-05,
302
+ "loss": 0.9296,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.32,
307
+ "learning_rate": 1.597772438203241e-05,
308
+ "loss": 0.8336,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.32,
313
+ "learning_rate": 1.5810768154019386e-05,
314
+ "loss": 0.861,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.33,
319
+ "learning_rate": 1.5641329760952514e-05,
320
+ "loss": 0.8934,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.34,
325
+ "learning_rate": 1.5469481581224274e-05,
326
+ "loss": 0.8696,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.34,
331
+ "learning_rate": 1.529529702260709e-05,
332
+ "loss": 0.8737,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.35,
337
+ "learning_rate": 1.5118850490896012e-05,
338
+ "loss": 0.8898,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.36,
343
+ "learning_rate": 1.4940217358125042e-05,
344
+ "loss": 0.9416,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.36,
349
+ "learning_rate": 1.4759473930370738e-05,
350
+ "loss": 0.7131,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.37,
355
+ "learning_rate": 1.4576697415156818e-05,
356
+ "loss": 0.9024,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.38,
361
+ "learning_rate": 1.4391965888473705e-05,
362
+ "loss": 0.8106,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.38,
367
+ "learning_rate": 1.4205358261427076e-05,
368
+ "loss": 0.818,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.39,
373
+ "learning_rate": 1.4016954246529697e-05,
374
+ "loss": 0.8374,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.39,
379
+ "learning_rate": 1.3826834323650899e-05,
380
+ "loss": 0.8278,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.4,
385
+ "learning_rate": 1.3635079705638298e-05,
386
+ "loss": 0.9448,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.41,
391
+ "learning_rate": 1.3441772303626387e-05,
392
+ "loss": 0.8176,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.41,
397
+ "learning_rate": 1.3246994692046837e-05,
398
+ "loss": 0.9006,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.42,
403
+ "learning_rate": 1.305083007335549e-05,
404
+ "loss": 0.8019,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.43,
409
+ "learning_rate": 1.2853362242491054e-05,
410
+ "loss": 0.8697,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.43,
415
+ "learning_rate": 1.2654675551080724e-05,
416
+ "loss": 0.8485,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.44,
421
+ "learning_rate": 1.2454854871407993e-05,
422
+ "loss": 0.8067,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.45,
427
+ "learning_rate": 1.2253985560158064e-05,
428
+ "loss": 0.8093,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.45,
433
+ "learning_rate": 1.2052153421956343e-05,
434
+ "loss": 0.8593,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.46,
439
+ "learning_rate": 1.1849444672715587e-05,
440
+ "loss": 0.8346,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.46,
445
+ "learning_rate": 1.164594590280734e-05,
446
+ "loss": 0.8768,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.47,
451
+ "learning_rate": 1.1441744040073469e-05,
452
+ "loss": 0.8154,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.48,
457
+ "learning_rate": 1.123692631269348e-05,
458
+ "loss": 0.7885,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.48,
463
+ "learning_rate": 1.103158021192357e-05,
464
+ "loss": 0.7218,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.49,
469
+ "learning_rate": 1.0825793454723325e-05,
470
+ "loss": 0.8328,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.5,
475
+ "learning_rate": 1.0619653946285948e-05,
476
+ "loss": 0.8158,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.5,
481
+ "learning_rate": 1.0413249742488132e-05,
482
+ "loss": 0.8299,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.51,
487
+ "learning_rate": 1.0206669012275546e-05,
488
+ "loss": 0.8389,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.52,
493
+ "learning_rate": 1e-05,
494
+ "loss": 0.8949,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.52,
499
+ "learning_rate": 9.79333098772446e-06,
500
+ "loss": 0.8906,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.53,
505
+ "learning_rate": 9.586750257511868e-06,
506
+ "loss": 0.8657,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.54,
511
+ "learning_rate": 9.380346053714055e-06,
512
+ "loss": 0.8198,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.54,
517
+ "learning_rate": 9.174206545276678e-06,
518
+ "loss": 0.7598,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.55,
523
+ "learning_rate": 8.968419788076431e-06,
524
+ "loss": 0.8781,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.55,
529
+ "learning_rate": 8.763073687306523e-06,
530
+ "loss": 0.9329,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.56,
535
+ "learning_rate": 8.558255959926533e-06,
536
+ "loss": 0.8624,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.57,
541
+ "learning_rate": 8.35405409719266e-06,
542
+ "loss": 0.7555,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.57,
547
+ "learning_rate": 8.150555327284417e-06,
548
+ "loss": 0.8942,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.58,
553
+ "learning_rate": 7.947846578043658e-06,
554
+ "loss": 0.8751,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.59,
559
+ "learning_rate": 7.746014439841941e-06,
560
+ "loss": 0.8816,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.59,
565
+ "learning_rate": 7.545145128592009e-06,
566
+ "loss": 0.8395,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.6,
571
+ "learning_rate": 7.34532444891928e-06,
572
+ "loss": 0.7847,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.61,
577
+ "learning_rate": 7.14663775750895e-06,
578
+ "loss": 0.8718,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.61,
583
+ "learning_rate": 6.949169926644513e-06,
584
+ "loss": 0.8546,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.62,
589
+ "learning_rate": 6.7530053079531664e-06,
590
+ "loss": 0.864,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.62,
595
+ "learning_rate": 6.558227696373617e-06,
596
+ "loss": 0.828,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.63,
601
+ "learning_rate": 6.364920294361701e-06,
602
+ "loss": 0.8531,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.64,
607
+ "learning_rate": 6.173165676349103e-06,
608
+ "loss": 0.8737,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.64,
613
+ "learning_rate": 5.983045753470308e-06,
614
+ "loss": 0.8595,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.65,
619
+ "learning_rate": 5.794641738572925e-06,
620
+ "loss": 0.8554,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.66,
625
+ "learning_rate": 5.608034111526298e-06,
626
+ "loss": 0.9207,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.66,
631
+ "learning_rate": 5.423302584843186e-06,
632
+ "loss": 0.7204,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.67,
637
+ "learning_rate": 5.240526069629265e-06,
638
+ "loss": 0.8894,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.68,
643
+ "learning_rate": 5.059782641874962e-06,
644
+ "loss": 0.9081,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.68,
649
+ "learning_rate": 4.881149509103993e-06,
650
+ "loss": 0.8254,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.69,
655
+ "learning_rate": 4.704702977392914e-06,
656
+ "loss": 0.7317,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.69,
661
+ "learning_rate": 4.530518418775734e-06,
662
+ "loss": 0.8093,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.7,
667
+ "learning_rate": 4.35867023904749e-06,
668
+ "loss": 0.91,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.71,
673
+ "learning_rate": 4.189231845980618e-06,
674
+ "loss": 0.8295,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.71,
679
+ "learning_rate": 4.0222756179675915e-06,
680
+ "loss": 0.8139,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.72,
685
+ "learning_rate": 3.857872873103322e-06,
686
+ "loss": 0.83,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.73,
691
+ "learning_rate": 3.69609383872045e-06,
692
+ "loss": 0.888,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.73,
697
+ "learning_rate": 3.5370076213905904e-06,
698
+ "loss": 0.7776,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.74,
703
+ "learning_rate": 3.380682177404335e-06,
704
+ "loss": 0.9289,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.75,
709
+ "learning_rate": 3.2271842837425917e-06,
710
+ "loss": 0.7565,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.75,
715
+ "learning_rate": 3.0765795095517026e-06,
716
+ "loss": 0.8483,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.76,
721
+ "learning_rate": 2.9289321881345257e-06,
722
+ "loss": 0.9144,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.76,
727
+ "learning_rate": 2.7843053894693805e-06,
728
+ "loss": 0.8004,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.77,
733
+ "learning_rate": 2.642760893268684e-06,
734
+ "loss": 0.7999,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.78,
739
+ "learning_rate": 2.504359162588741e-06,
740
+ "loss": 0.8308,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.78,
745
+ "learning_rate": 2.369159318001937e-06,
746
+ "loss": 0.7993,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.79,
751
+ "learning_rate": 2.237219112342426e-06,
752
+ "loss": 0.8012,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.8,
757
+ "learning_rate": 2.1085949060360654e-06,
758
+ "loss": 0.9826,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.8,
763
+ "learning_rate": 1.983341643025117e-06,
764
+ "loss": 0.8274,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.81,
769
+ "learning_rate": 1.861512827298051e-06,
770
+ "loss": 0.8353,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.82,
775
+ "learning_rate": 1.743160500034443e-06,
776
+ "loss": 0.7645,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.82,
781
+ "learning_rate": 1.6283352173747148e-06,
782
+ "loss": 0.8052,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.83,
787
+ "learning_rate": 1.5170860288242638e-06,
788
+ "loss": 0.8088,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.83,
793
+ "learning_rate": 1.409460456301147e-06,
794
+ "loss": 0.8813,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.84,
799
+ "learning_rate": 1.305504473836331e-06,
800
+ "loss": 0.8412,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.85,
805
+ "learning_rate": 1.2052624879351105e-06,
806
+ "loss": 0.8056,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.85,
811
+ "learning_rate": 1.1087773186081474e-06,
812
+ "loss": 0.8288,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.86,
817
+ "learning_rate": 1.0160901810802114e-06,
818
+ "loss": 0.7976,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.87,
823
+ "learning_rate": 9.272406681844015e-07,
824
+ "loss": 0.8435,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.87,
829
+ "learning_rate": 8.42266733449425e-07,
830
+ "loss": 0.8213,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.88,
835
+ "learning_rate": 7.612046748871327e-07,
836
+ "loss": 0.8252,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.89,
841
+ "learning_rate": 6.840891194872112e-07,
842
+ "loss": 0.8717,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.89,
847
+ "learning_rate": 6.109530084257043e-07,
848
+ "loss": 0.8021,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.9,
853
+ "learning_rate": 5.418275829936537e-07,
854
+ "loss": 0.9097,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.9,
859
+ "learning_rate": 4.7674237125185597e-07,
860
+ "loss": 0.8138,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.91,
865
+ "learning_rate": 4.1572517541747294e-07,
866
+ "loss": 0.8239,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.92,
871
+ "learning_rate": 3.588020599878639e-07,
872
+ "loss": 0.8928,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.92,
877
+ "learning_rate": 3.059973406066963e-07,
878
+ "loss": 0.8394,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.93,
883
+ "learning_rate": 2.573335736771254e-07,
884
+ "loss": 0.8145,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.94,
889
+ "learning_rate": 2.1283154672645522e-07,
890
+ "loss": 0.793,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.94,
895
+ "learning_rate": 1.7251026952640583e-07,
896
+ "loss": 0.8447,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.95,
901
+ "learning_rate": 1.3638696597277678e-07,
902
+ "loss": 0.8043,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.96,
907
+ "learning_rate": 1.0447706672797264e-07,
908
+ "loss": 0.8184,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.96,
913
+ "learning_rate": 7.679420262954984e-08,
914
+ "loss": 0.8438,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.97,
919
+ "learning_rate": 5.3350198867574424e-08,
920
+ "loss": 0.8593,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 0.97,
925
+ "learning_rate": 3.4155069933301535e-08,
926
+ "loss": 0.9214,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 0.98,
931
+ "learning_rate": 1.9217015341318478e-08,
932
+ "loss": 0.9089,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 0.99,
937
+ "learning_rate": 8.542416126989805e-09,
938
+ "loss": 0.7958,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 0.99,
943
+ "learning_rate": 2.1358321206899067e-09,
944
+ "loss": 0.7539,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 1.0,
949
+ "learning_rate": 0.0,
950
+ "loss": 0.9521,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 1.0,
955
+ "step": 157,
956
+ "total_flos": 1.8231670013217997e+17,
957
+ "train_loss": 0.8739353289270098,
958
+ "train_runtime": 606.183,
959
+ "train_samples_per_second": 8.248,
960
+ "train_steps_per_second": 0.259
961
+ }
962
+ ],
963
+ "logging_steps": 1.0,
964
+ "max_steps": 157,
965
+ "num_input_tokens_seen": 0,
966
+ "num_train_epochs": 1,
967
+ "save_steps": 1000,
968
+ "total_flos": 1.8231670013217997e+17,
969
+ "train_batch_size": 8,
970
+ "trial_name": null,
971
+ "trial_params": null
972
+ }
ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_concat_new_lora/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: liuhaotian/llava-v1.6-mistral-7b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_concat_new_lora/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "liuhaotian/llava-v1.6-mistral-7b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 128,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "gate_proj",
25
+ "o_proj",
26
+ "up_proj",
27
+ "down_proj",
28
+ "q_proj",
29
+ "k_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_concat_new_lora/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff6d67f6f22e19587f0f4829988e80c0a3c96544c49f9f708a35c49218d2b0fe
3
+ size 708923528
ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_concat_new_lora/config.json ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "liuhaotian/llava-v1.6-mistral-7b",
3
+ "architectures": [
4
+ "LlavaMistralForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "freeze_mm_mlp_adapter": false,
11
+ "freeze_mm_vision_resampler": false,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 4096,
14
+ "image_aspect_ratio": "pad",
15
+ "image_crop_resolution": 224,
16
+ "image_grid_pinpoints": [
17
+ [
18
+ 336,
19
+ 672
20
+ ],
21
+ [
22
+ 672,
23
+ 336
24
+ ],
25
+ [
26
+ 672,
27
+ 672
28
+ ],
29
+ [
30
+ 1008,
31
+ 336
32
+ ],
33
+ [
34
+ 336,
35
+ 1008
36
+ ]
37
+ ],
38
+ "image_split_resolution": 224,
39
+ "initializer_range": 0.02,
40
+ "intermediate_size": 14336,
41
+ "max_position_embeddings": 32768,
42
+ "mm_hidden_size": 1024,
43
+ "mm_patch_merge_type": "flat",
44
+ "mm_projector_lr": 2e-05,
45
+ "mm_projector_type": "mlp2x_gelu",
46
+ "mm_resampler_type": null,
47
+ "mm_use_im_patch_token": false,
48
+ "mm_use_im_start_end": false,
49
+ "mm_vision_select_feature": "patch",
50
+ "mm_vision_select_layer": -2,
51
+ "mm_vision_tower": "openai/clip-vit-large-patch14-336",
52
+ "mm_vision_tower_lr": 2e-06,
53
+ "model_type": "llava_llama",
54
+ "num_attention_heads": 32,
55
+ "num_hidden_layers": 32,
56
+ "num_key_value_heads": 8,
57
+ "pretraining_tp": 1,
58
+ "rms_norm_eps": 1e-05,
59
+ "rope_scaling": null,
60
+ "rope_theta": 1000000.0,
61
+ "sliding_window": null,
62
+ "tie_word_embeddings": false,
63
+ "tokenizer_model_max_length": 2048,
64
+ "tokenizer_padding_side": "right",
65
+ "torch_dtype": "bfloat16",
66
+ "transformers_version": "4.37.2",
67
+ "tune_mm_mlp_adapter": false,
68
+ "tune_mm_vision_resampler": false,
69
+ "unfreeze_mm_vision_tower": true,
70
+ "use_cache": true,
71
+ "use_mm_proj": true,
72
+ "vocab_size": 32000
73
+ }
ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_concat_new_lora/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60fb82c3660319e6d0b239950b20c28181e97f1ade117dc0660b40e2ad94a89b
3
+ size 912
ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_concat_new_lora/trainer_state.json ADDED
@@ -0,0 +1,972 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 157,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 4.000000000000001e-06,
14
+ "loss": 1.5817,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 8.000000000000001e-06,
20
+ "loss": 1.5711,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.02,
25
+ "learning_rate": 1.2e-05,
26
+ "loss": 1.3182,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.03,
31
+ "learning_rate": 1.6000000000000003e-05,
32
+ "loss": 1.1334,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.03,
37
+ "learning_rate": 2e-05,
38
+ "loss": 1.0625,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.04,
43
+ "learning_rate": 1.9997864167879313e-05,
44
+ "loss": 0.9888,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.04,
49
+ "learning_rate": 1.999145758387301e-05,
50
+ "loss": 1.1405,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.05,
55
+ "learning_rate": 1.9980782984658682e-05,
56
+ "loss": 1.1542,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.06,
61
+ "learning_rate": 1.99658449300667e-05,
62
+ "loss": 0.849,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.06,
67
+ "learning_rate": 1.994664980113243e-05,
68
+ "loss": 0.906,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.07,
73
+ "learning_rate": 1.992320579737045e-05,
74
+ "loss": 0.9003,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.08,
79
+ "learning_rate": 1.9895522933272028e-05,
80
+ "loss": 0.9034,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.08,
85
+ "learning_rate": 1.9863613034027224e-05,
86
+ "loss": 0.9186,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.09,
91
+ "learning_rate": 1.9827489730473597e-05,
92
+ "loss": 0.961,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.1,
97
+ "learning_rate": 1.9787168453273546e-05,
98
+ "loss": 0.9243,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.1,
103
+ "learning_rate": 1.9742666426322877e-05,
104
+ "loss": 0.9142,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.11,
109
+ "learning_rate": 1.9694002659393306e-05,
110
+ "loss": 0.7989,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.11,
115
+ "learning_rate": 1.9641197940012136e-05,
116
+ "loss": 0.8994,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.12,
121
+ "learning_rate": 1.958427482458253e-05,
122
+ "loss": 0.9093,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.13,
127
+ "learning_rate": 1.9523257628748148e-05,
128
+ "loss": 0.9071,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.13,
133
+ "learning_rate": 1.9458172417006347e-05,
134
+ "loss": 0.9132,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.14,
139
+ "learning_rate": 1.9389046991574298e-05,
140
+ "loss": 0.8535,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.15,
145
+ "learning_rate": 1.9315910880512792e-05,
146
+ "loss": 0.8986,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.15,
151
+ "learning_rate": 1.9238795325112867e-05,
152
+ "loss": 0.8829,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.16,
157
+ "learning_rate": 1.9157733266550577e-05,
158
+ "loss": 0.8102,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.17,
163
+ "learning_rate": 1.9072759331815602e-05,
164
+ "loss": 0.9561,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.17,
169
+ "learning_rate": 1.898390981891979e-05,
170
+ "loss": 0.8218,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.18,
175
+ "learning_rate": 1.8891222681391853e-05,
176
+ "loss": 0.8366,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.18,
181
+ "learning_rate": 1.879473751206489e-05,
182
+ "loss": 0.8768,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.19,
187
+ "learning_rate": 1.869449552616367e-05,
188
+ "loss": 0.803,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.2,
193
+ "learning_rate": 1.8590539543698852e-05,
194
+ "loss": 0.8192,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.2,
199
+ "learning_rate": 1.8482913971175737e-05,
200
+ "loss": 0.8371,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.21,
205
+ "learning_rate": 1.8371664782625287e-05,
206
+ "loss": 0.9333,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.22,
211
+ "learning_rate": 1.825683949996556e-05,
212
+ "loss": 0.908,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.22,
217
+ "learning_rate": 1.813848717270195e-05,
218
+ "loss": 0.938,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.23,
223
+ "learning_rate": 1.8016658356974885e-05,
224
+ "loss": 0.9311,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.24,
229
+ "learning_rate": 1.789140509396394e-05,
230
+ "loss": 0.8424,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.24,
235
+ "learning_rate": 1.7762780887657576e-05,
236
+ "loss": 0.9229,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.25,
241
+ "learning_rate": 1.7630840681998068e-05,
242
+ "loss": 0.8747,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.25,
247
+ "learning_rate": 1.7495640837411265e-05,
248
+ "loss": 0.8947,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.26,
253
+ "learning_rate": 1.735723910673132e-05,
254
+ "loss": 0.8787,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.27,
259
+ "learning_rate": 1.7215694610530624e-05,
260
+ "loss": 0.8314,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.27,
265
+ "learning_rate": 1.7071067811865477e-05,
266
+ "loss": 0.8731,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.28,
271
+ "learning_rate": 1.6923420490448298e-05,
272
+ "loss": 0.8511,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.29,
277
+ "learning_rate": 1.6772815716257414e-05,
278
+ "loss": 0.9869,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.29,
283
+ "learning_rate": 1.6619317822595666e-05,
284
+ "loss": 0.8125,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.3,
289
+ "learning_rate": 1.646299237860941e-05,
290
+ "loss": 0.868,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.31,
295
+ "learning_rate": 1.6303906161279554e-05,
296
+ "loss": 0.8703,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.31,
301
+ "learning_rate": 1.6142127126896682e-05,
302
+ "loss": 0.9422,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.32,
307
+ "learning_rate": 1.597772438203241e-05,
308
+ "loss": 0.8392,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.32,
313
+ "learning_rate": 1.5810768154019386e-05,
314
+ "loss": 0.86,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.33,
319
+ "learning_rate": 1.5641329760952514e-05,
320
+ "loss": 0.8937,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.34,
325
+ "learning_rate": 1.5469481581224274e-05,
326
+ "loss": 0.8762,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.34,
331
+ "learning_rate": 1.529529702260709e-05,
332
+ "loss": 0.8871,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.35,
337
+ "learning_rate": 1.5118850490896012e-05,
338
+ "loss": 0.8835,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.36,
343
+ "learning_rate": 1.4940217358125042e-05,
344
+ "loss": 0.9378,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.36,
349
+ "learning_rate": 1.4759473930370738e-05,
350
+ "loss": 0.7139,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.37,
355
+ "learning_rate": 1.4576697415156818e-05,
356
+ "loss": 0.9047,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.38,
361
+ "learning_rate": 1.4391965888473705e-05,
362
+ "loss": 0.8321,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.38,
367
+ "learning_rate": 1.4205358261427076e-05,
368
+ "loss": 0.857,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.39,
373
+ "learning_rate": 1.4016954246529697e-05,
374
+ "loss": 0.8319,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.39,
379
+ "learning_rate": 1.3826834323650899e-05,
380
+ "loss": 0.8344,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.4,
385
+ "learning_rate": 1.3635079705638298e-05,
386
+ "loss": 0.9341,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.41,
391
+ "learning_rate": 1.3441772303626387e-05,
392
+ "loss": 0.8111,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.41,
397
+ "learning_rate": 1.3246994692046837e-05,
398
+ "loss": 0.8999,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.42,
403
+ "learning_rate": 1.305083007335549e-05,
404
+ "loss": 0.8366,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.43,
409
+ "learning_rate": 1.2853362242491054e-05,
410
+ "loss": 0.8498,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.43,
415
+ "learning_rate": 1.2654675551080724e-05,
416
+ "loss": 0.8503,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.44,
421
+ "learning_rate": 1.2454854871407993e-05,
422
+ "loss": 0.8007,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.45,
427
+ "learning_rate": 1.2253985560158064e-05,
428
+ "loss": 0.8063,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.45,
433
+ "learning_rate": 1.2052153421956343e-05,
434
+ "loss": 0.8664,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.46,
439
+ "learning_rate": 1.1849444672715587e-05,
440
+ "loss": 0.8396,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.46,
445
+ "learning_rate": 1.164594590280734e-05,
446
+ "loss": 0.8645,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.47,
451
+ "learning_rate": 1.1441744040073469e-05,
452
+ "loss": 0.824,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.48,
457
+ "learning_rate": 1.123692631269348e-05,
458
+ "loss": 0.8026,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.48,
463
+ "learning_rate": 1.103158021192357e-05,
464
+ "loss": 0.7482,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.49,
469
+ "learning_rate": 1.0825793454723325e-05,
470
+ "loss": 0.8448,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.5,
475
+ "learning_rate": 1.0619653946285948e-05,
476
+ "loss": 0.8229,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.5,
481
+ "learning_rate": 1.0413249742488132e-05,
482
+ "loss": 0.8355,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.51,
487
+ "learning_rate": 1.0206669012275546e-05,
488
+ "loss": 0.8457,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.52,
493
+ "learning_rate": 1e-05,
494
+ "loss": 0.8829,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.52,
499
+ "learning_rate": 9.79333098772446e-06,
500
+ "loss": 0.8783,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.53,
505
+ "learning_rate": 9.586750257511868e-06,
506
+ "loss": 0.8575,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.54,
511
+ "learning_rate": 9.380346053714055e-06,
512
+ "loss": 0.8192,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.54,
517
+ "learning_rate": 9.174206545276678e-06,
518
+ "loss": 0.7474,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.55,
523
+ "learning_rate": 8.968419788076431e-06,
524
+ "loss": 0.8726,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.55,
529
+ "learning_rate": 8.763073687306523e-06,
530
+ "loss": 0.952,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.56,
535
+ "learning_rate": 8.558255959926533e-06,
536
+ "loss": 0.8611,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.57,
541
+ "learning_rate": 8.35405409719266e-06,
542
+ "loss": 0.7553,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.57,
547
+ "learning_rate": 8.150555327284417e-06,
548
+ "loss": 0.9075,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.58,
553
+ "learning_rate": 7.947846578043658e-06,
554
+ "loss": 0.8751,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.59,
559
+ "learning_rate": 7.746014439841941e-06,
560
+ "loss": 0.8663,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.59,
565
+ "learning_rate": 7.545145128592009e-06,
566
+ "loss": 0.8329,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.6,
571
+ "learning_rate": 7.34532444891928e-06,
572
+ "loss": 0.7882,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.61,
577
+ "learning_rate": 7.14663775750895e-06,
578
+ "loss": 0.8751,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.61,
583
+ "learning_rate": 6.949169926644513e-06,
584
+ "loss": 0.8498,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.62,
589
+ "learning_rate": 6.7530053079531664e-06,
590
+ "loss": 0.8738,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.62,
595
+ "learning_rate": 6.558227696373617e-06,
596
+ "loss": 0.8388,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.63,
601
+ "learning_rate": 6.364920294361701e-06,
602
+ "loss": 0.8448,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.64,
607
+ "learning_rate": 6.173165676349103e-06,
608
+ "loss": 0.877,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.64,
613
+ "learning_rate": 5.983045753470308e-06,
614
+ "loss": 0.8464,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.65,
619
+ "learning_rate": 5.794641738572925e-06,
620
+ "loss": 0.8673,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.66,
625
+ "learning_rate": 5.608034111526298e-06,
626
+ "loss": 0.9089,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.66,
631
+ "learning_rate": 5.423302584843186e-06,
632
+ "loss": 0.7131,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.67,
637
+ "learning_rate": 5.240526069629265e-06,
638
+ "loss": 0.892,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.68,
643
+ "learning_rate": 5.059782641874962e-06,
644
+ "loss": 0.9104,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.68,
649
+ "learning_rate": 4.881149509103993e-06,
650
+ "loss": 0.8284,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.69,
655
+ "learning_rate": 4.704702977392914e-06,
656
+ "loss": 0.7382,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.69,
661
+ "learning_rate": 4.530518418775734e-06,
662
+ "loss": 0.8112,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.7,
667
+ "learning_rate": 4.35867023904749e-06,
668
+ "loss": 0.8984,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.71,
673
+ "learning_rate": 4.189231845980618e-06,
674
+ "loss": 0.8132,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.71,
679
+ "learning_rate": 4.0222756179675915e-06,
680
+ "loss": 0.811,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.72,
685
+ "learning_rate": 3.857872873103322e-06,
686
+ "loss": 0.8368,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.73,
691
+ "learning_rate": 3.69609383872045e-06,
692
+ "loss": 0.8836,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.73,
697
+ "learning_rate": 3.5370076213905904e-06,
698
+ "loss": 0.7717,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.74,
703
+ "learning_rate": 3.380682177404335e-06,
704
+ "loss": 0.9265,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.75,
709
+ "learning_rate": 3.2271842837425917e-06,
710
+ "loss": 0.7461,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.75,
715
+ "learning_rate": 3.0765795095517026e-06,
716
+ "loss": 0.8586,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.76,
721
+ "learning_rate": 2.9289321881345257e-06,
722
+ "loss": 0.9126,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.76,
727
+ "learning_rate": 2.7843053894693805e-06,
728
+ "loss": 0.8097,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.77,
733
+ "learning_rate": 2.642760893268684e-06,
734
+ "loss": 0.7964,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.78,
739
+ "learning_rate": 2.504359162588741e-06,
740
+ "loss": 0.8424,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.78,
745
+ "learning_rate": 2.369159318001937e-06,
746
+ "loss": 0.793,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.79,
751
+ "learning_rate": 2.237219112342426e-06,
752
+ "loss": 0.8117,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.8,
757
+ "learning_rate": 2.1085949060360654e-06,
758
+ "loss": 0.9946,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.8,
763
+ "learning_rate": 1.983341643025117e-06,
764
+ "loss": 0.8304,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.81,
769
+ "learning_rate": 1.861512827298051e-06,
770
+ "loss": 0.8332,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.82,
775
+ "learning_rate": 1.743160500034443e-06,
776
+ "loss": 0.7745,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.82,
781
+ "learning_rate": 1.6283352173747148e-06,
782
+ "loss": 0.795,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.83,
787
+ "learning_rate": 1.5170860288242638e-06,
788
+ "loss": 0.8032,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.83,
793
+ "learning_rate": 1.409460456301147e-06,
794
+ "loss": 0.869,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.84,
799
+ "learning_rate": 1.305504473836331e-06,
800
+ "loss": 0.8405,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.85,
805
+ "learning_rate": 1.2052624879351105e-06,
806
+ "loss": 0.791,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.85,
811
+ "learning_rate": 1.1087773186081474e-06,
812
+ "loss": 0.8274,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.86,
817
+ "learning_rate": 1.0160901810802114e-06,
818
+ "loss": 0.8043,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.87,
823
+ "learning_rate": 9.272406681844015e-07,
824
+ "loss": 0.85,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.87,
829
+ "learning_rate": 8.42266733449425e-07,
830
+ "loss": 0.8213,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.88,
835
+ "learning_rate": 7.612046748871327e-07,
836
+ "loss": 0.8231,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.89,
841
+ "learning_rate": 6.840891194872112e-07,
842
+ "loss": 0.8606,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.89,
847
+ "learning_rate": 6.109530084257043e-07,
848
+ "loss": 0.8114,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.9,
853
+ "learning_rate": 5.418275829936537e-07,
854
+ "loss": 0.9088,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.9,
859
+ "learning_rate": 4.7674237125185597e-07,
860
+ "loss": 0.8104,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.91,
865
+ "learning_rate": 4.1572517541747294e-07,
866
+ "loss": 0.8277,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.92,
871
+ "learning_rate": 3.588020599878639e-07,
872
+ "loss": 0.897,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.92,
877
+ "learning_rate": 3.059973406066963e-07,
878
+ "loss": 0.8368,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.93,
883
+ "learning_rate": 2.573335736771254e-07,
884
+ "loss": 0.8255,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.94,
889
+ "learning_rate": 2.1283154672645522e-07,
890
+ "loss": 0.8072,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.94,
895
+ "learning_rate": 1.7251026952640583e-07,
896
+ "loss": 0.8417,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.95,
901
+ "learning_rate": 1.3638696597277678e-07,
902
+ "loss": 0.8052,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.96,
907
+ "learning_rate": 1.0447706672797264e-07,
908
+ "loss": 0.8311,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.96,
913
+ "learning_rate": 7.679420262954984e-08,
914
+ "loss": 0.8345,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.97,
919
+ "learning_rate": 5.3350198867574424e-08,
920
+ "loss": 0.8417,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 0.97,
925
+ "learning_rate": 3.4155069933301535e-08,
926
+ "loss": 0.9181,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 0.98,
931
+ "learning_rate": 1.9217015341318478e-08,
932
+ "loss": 0.8762,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 0.99,
937
+ "learning_rate": 8.542416126989805e-09,
938
+ "loss": 0.7942,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 0.99,
943
+ "learning_rate": 2.1358321206899067e-09,
944
+ "loss": 0.7772,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 1.0,
949
+ "learning_rate": 0.0,
950
+ "loss": 0.9354,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 1.0,
955
+ "step": 157,
956
+ "total_flos": 1.8389854578121114e+17,
957
+ "train_loss": 0.8740508131160858,
958
+ "train_runtime": 613.0383,
959
+ "train_samples_per_second": 8.156,
960
+ "train_steps_per_second": 0.256
961
+ }
962
+ ],
963
+ "logging_steps": 1.0,
964
+ "max_steps": 157,
965
+ "num_input_tokens_seen": 0,
966
+ "num_train_epochs": 1,
967
+ "save_steps": 1000,
968
+ "total_flos": 1.8389854578121114e+17,
969
+ "train_batch_size": 8,
970
+ "trial_name": null,
971
+ "trial_params": null
972
+ }
ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_lora/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: liuhaotian/llava-v1.6-mistral-7b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_lora/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "liuhaotian/llava-v1.6-mistral-7b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 128,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "down_proj",
24
+ "up_proj",
25
+ "gate_proj",
26
+ "k_proj",
27
+ "o_proj",
28
+ "v_proj",
29
+ "q_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_lora/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88f217654051ca039066a54f6f9ab673645cf9808ced93014c396fdac5b72962
3
+ size 708923528
ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_lora/config.json ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "liuhaotian/llava-v1.6-mistral-7b",
3
+ "architectures": [
4
+ "LlavaMistralForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "freeze_mm_mlp_adapter": false,
11
+ "freeze_mm_vision_resampler": false,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 4096,
14
+ "image_aspect_ratio": "pad",
15
+ "image_crop_resolution": 224,
16
+ "image_grid_pinpoints": [
17
+ [
18
+ 336,
19
+ 672
20
+ ],
21
+ [
22
+ 672,
23
+ 336
24
+ ],
25
+ [
26
+ 672,
27
+ 672
28
+ ],
29
+ [
30
+ 1008,
31
+ 336
32
+ ],
33
+ [
34
+ 336,
35
+ 1008
36
+ ]
37
+ ],
38
+ "image_split_resolution": 224,
39
+ "initializer_range": 0.02,
40
+ "intermediate_size": 14336,
41
+ "max_position_embeddings": 32768,
42
+ "mm_hidden_size": 1024,
43
+ "mm_patch_merge_type": "flat",
44
+ "mm_projector_lr": 2e-05,
45
+ "mm_projector_type": "mlp2x_gelu",
46
+ "mm_resampler_type": null,
47
+ "mm_use_im_patch_token": false,
48
+ "mm_use_im_start_end": false,
49
+ "mm_vision_select_feature": "patch",
50
+ "mm_vision_select_layer": -2,
51
+ "mm_vision_tower": "openai/clip-vit-large-patch14-336",
52
+ "mm_vision_tower_lr": 2e-06,
53
+ "model_type": "llava_llama",
54
+ "num_attention_heads": 32,
55
+ "num_hidden_layers": 32,
56
+ "num_key_value_heads": 8,
57
+ "pretraining_tp": 1,
58
+ "rms_norm_eps": 1e-05,
59
+ "rope_scaling": null,
60
+ "rope_theta": 1000000.0,
61
+ "sliding_window": null,
62
+ "tie_word_embeddings": false,
63
+ "tokenizer_model_max_length": 2048,
64
+ "tokenizer_padding_side": "right",
65
+ "torch_dtype": "bfloat16",
66
+ "transformers_version": "4.37.2",
67
+ "tune_mm_mlp_adapter": false,
68
+ "tune_mm_vision_resampler": false,
69
+ "unfreeze_mm_vision_tower": true,
70
+ "use_cache": true,
71
+ "use_mm_proj": true,
72
+ "vocab_size": 32000
73
+ }
ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_lora/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60fb82c3660319e6d0b239950b20c28181e97f1ade117dc0660b40e2ad94a89b
3
+ size 912
ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_lora/trainer_state.json ADDED
@@ -0,0 +1,972 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 157,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 4.000000000000001e-06,
14
+ "loss": 1.6142,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 8.000000000000001e-06,
20
+ "loss": 1.5786,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.02,
25
+ "learning_rate": 1.2e-05,
26
+ "loss": 1.2847,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.03,
31
+ "learning_rate": 1.6000000000000003e-05,
32
+ "loss": 1.1396,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.03,
37
+ "learning_rate": 2e-05,
38
+ "loss": 1.0801,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.04,
43
+ "learning_rate": 1.9997864167879313e-05,
44
+ "loss": 1.0158,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.04,
49
+ "learning_rate": 1.999145758387301e-05,
50
+ "loss": 1.1713,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.05,
55
+ "learning_rate": 1.9980782984658682e-05,
56
+ "loss": 1.1505,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.06,
61
+ "learning_rate": 1.99658449300667e-05,
62
+ "loss": 0.8642,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.06,
67
+ "learning_rate": 1.994664980113243e-05,
68
+ "loss": 0.9232,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.07,
73
+ "learning_rate": 1.992320579737045e-05,
74
+ "loss": 0.9072,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.08,
79
+ "learning_rate": 1.9895522933272028e-05,
80
+ "loss": 0.9024,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.08,
85
+ "learning_rate": 1.9863613034027224e-05,
86
+ "loss": 0.9076,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.09,
91
+ "learning_rate": 1.9827489730473597e-05,
92
+ "loss": 0.9545,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.1,
97
+ "learning_rate": 1.9787168453273546e-05,
98
+ "loss": 0.9271,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.1,
103
+ "learning_rate": 1.9742666426322877e-05,
104
+ "loss": 0.9082,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.11,
109
+ "learning_rate": 1.9694002659393306e-05,
110
+ "loss": 0.8031,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.11,
115
+ "learning_rate": 1.9641197940012136e-05,
116
+ "loss": 0.8884,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.12,
121
+ "learning_rate": 1.958427482458253e-05,
122
+ "loss": 0.9053,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.13,
127
+ "learning_rate": 1.9523257628748148e-05,
128
+ "loss": 0.8838,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.13,
133
+ "learning_rate": 1.9458172417006347e-05,
134
+ "loss": 0.9307,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.14,
139
+ "learning_rate": 1.9389046991574298e-05,
140
+ "loss": 0.847,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.15,
145
+ "learning_rate": 1.9315910880512792e-05,
146
+ "loss": 0.9007,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.15,
151
+ "learning_rate": 1.9238795325112867e-05,
152
+ "loss": 0.8866,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.16,
157
+ "learning_rate": 1.9157733266550577e-05,
158
+ "loss": 0.838,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.17,
163
+ "learning_rate": 1.9072759331815602e-05,
164
+ "loss": 0.9628,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.17,
169
+ "learning_rate": 1.898390981891979e-05,
170
+ "loss": 0.8116,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.18,
175
+ "learning_rate": 1.8891222681391853e-05,
176
+ "loss": 0.8367,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.18,
181
+ "learning_rate": 1.879473751206489e-05,
182
+ "loss": 0.8703,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.19,
187
+ "learning_rate": 1.869449552616367e-05,
188
+ "loss": 0.7948,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.2,
193
+ "learning_rate": 1.8590539543698852e-05,
194
+ "loss": 0.8315,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.2,
199
+ "learning_rate": 1.8482913971175737e-05,
200
+ "loss": 0.8493,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.21,
205
+ "learning_rate": 1.8371664782625287e-05,
206
+ "loss": 0.9724,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.22,
211
+ "learning_rate": 1.825683949996556e-05,
212
+ "loss": 0.893,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.22,
217
+ "learning_rate": 1.813848717270195e-05,
218
+ "loss": 0.92,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.23,
223
+ "learning_rate": 1.8016658356974885e-05,
224
+ "loss": 0.9265,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.24,
229
+ "learning_rate": 1.789140509396394e-05,
230
+ "loss": 0.8343,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.24,
235
+ "learning_rate": 1.7762780887657576e-05,
236
+ "loss": 0.9146,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.25,
241
+ "learning_rate": 1.7630840681998068e-05,
242
+ "loss": 0.873,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.25,
247
+ "learning_rate": 1.7495640837411265e-05,
248
+ "loss": 0.8941,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.26,
253
+ "learning_rate": 1.735723910673132e-05,
254
+ "loss": 0.8715,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.27,
259
+ "learning_rate": 1.7215694610530624e-05,
260
+ "loss": 0.8403,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.27,
265
+ "learning_rate": 1.7071067811865477e-05,
266
+ "loss": 0.8749,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.28,
271
+ "learning_rate": 1.6923420490448298e-05,
272
+ "loss": 0.8654,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.29,
277
+ "learning_rate": 1.6772815716257414e-05,
278
+ "loss": 0.9962,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.29,
283
+ "learning_rate": 1.6619317822595666e-05,
284
+ "loss": 0.7976,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.3,
289
+ "learning_rate": 1.646299237860941e-05,
290
+ "loss": 0.8586,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.31,
295
+ "learning_rate": 1.6303906161279554e-05,
296
+ "loss": 0.8587,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.31,
301
+ "learning_rate": 1.6142127126896682e-05,
302
+ "loss": 0.9293,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.32,
307
+ "learning_rate": 1.597772438203241e-05,
308
+ "loss": 0.8326,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.32,
313
+ "learning_rate": 1.5810768154019386e-05,
314
+ "loss": 0.8618,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.33,
319
+ "learning_rate": 1.5641329760952514e-05,
320
+ "loss": 0.8936,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.34,
325
+ "learning_rate": 1.5469481581224274e-05,
326
+ "loss": 0.8694,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.34,
331
+ "learning_rate": 1.529529702260709e-05,
332
+ "loss": 0.8758,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.35,
337
+ "learning_rate": 1.5118850490896012e-05,
338
+ "loss": 0.8909,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.36,
343
+ "learning_rate": 1.4940217358125042e-05,
344
+ "loss": 0.9415,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.36,
349
+ "learning_rate": 1.4759473930370738e-05,
350
+ "loss": 0.7136,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.37,
355
+ "learning_rate": 1.4576697415156818e-05,
356
+ "loss": 0.9016,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.38,
361
+ "learning_rate": 1.4391965888473705e-05,
362
+ "loss": 0.8108,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.38,
367
+ "learning_rate": 1.4205358261427076e-05,
368
+ "loss": 0.8177,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.39,
373
+ "learning_rate": 1.4016954246529697e-05,
374
+ "loss": 0.8379,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.39,
379
+ "learning_rate": 1.3826834323650899e-05,
380
+ "loss": 0.8294,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.4,
385
+ "learning_rate": 1.3635079705638298e-05,
386
+ "loss": 0.9436,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.41,
391
+ "learning_rate": 1.3441772303626387e-05,
392
+ "loss": 0.8188,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.41,
397
+ "learning_rate": 1.3246994692046837e-05,
398
+ "loss": 0.9014,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.42,
403
+ "learning_rate": 1.305083007335549e-05,
404
+ "loss": 0.8018,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.43,
409
+ "learning_rate": 1.2853362242491054e-05,
410
+ "loss": 0.8717,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.43,
415
+ "learning_rate": 1.2654675551080724e-05,
416
+ "loss": 0.8495,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.44,
421
+ "learning_rate": 1.2454854871407993e-05,
422
+ "loss": 0.8079,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.45,
427
+ "learning_rate": 1.2253985560158064e-05,
428
+ "loss": 0.8104,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.45,
433
+ "learning_rate": 1.2052153421956343e-05,
434
+ "loss": 0.8598,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.46,
439
+ "learning_rate": 1.1849444672715587e-05,
440
+ "loss": 0.8319,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.46,
445
+ "learning_rate": 1.164594590280734e-05,
446
+ "loss": 0.8767,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.47,
451
+ "learning_rate": 1.1441744040073469e-05,
452
+ "loss": 0.8151,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.48,
457
+ "learning_rate": 1.123692631269348e-05,
458
+ "loss": 0.7896,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.48,
463
+ "learning_rate": 1.103158021192357e-05,
464
+ "loss": 0.7223,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.49,
469
+ "learning_rate": 1.0825793454723325e-05,
470
+ "loss": 0.8326,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.5,
475
+ "learning_rate": 1.0619653946285948e-05,
476
+ "loss": 0.817,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.5,
481
+ "learning_rate": 1.0413249742488132e-05,
482
+ "loss": 0.8301,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.51,
487
+ "learning_rate": 1.0206669012275546e-05,
488
+ "loss": 0.8375,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.52,
493
+ "learning_rate": 1e-05,
494
+ "loss": 0.8966,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.52,
499
+ "learning_rate": 9.79333098772446e-06,
500
+ "loss": 0.8918,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.53,
505
+ "learning_rate": 9.586750257511868e-06,
506
+ "loss": 0.8671,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.54,
511
+ "learning_rate": 9.380346053714055e-06,
512
+ "loss": 0.8199,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.54,
517
+ "learning_rate": 9.174206545276678e-06,
518
+ "loss": 0.7601,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.55,
523
+ "learning_rate": 8.968419788076431e-06,
524
+ "loss": 0.8774,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.55,
529
+ "learning_rate": 8.763073687306523e-06,
530
+ "loss": 0.9337,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.56,
535
+ "learning_rate": 8.558255959926533e-06,
536
+ "loss": 0.8624,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.57,
541
+ "learning_rate": 8.35405409719266e-06,
542
+ "loss": 0.7563,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.57,
547
+ "learning_rate": 8.150555327284417e-06,
548
+ "loss": 0.8946,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.58,
553
+ "learning_rate": 7.947846578043658e-06,
554
+ "loss": 0.8755,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.59,
559
+ "learning_rate": 7.746014439841941e-06,
560
+ "loss": 0.8803,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.59,
565
+ "learning_rate": 7.545145128592009e-06,
566
+ "loss": 0.8393,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.6,
571
+ "learning_rate": 7.34532444891928e-06,
572
+ "loss": 0.7844,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.61,
577
+ "learning_rate": 7.14663775750895e-06,
578
+ "loss": 0.8715,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.61,
583
+ "learning_rate": 6.949169926644513e-06,
584
+ "loss": 0.8551,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.62,
589
+ "learning_rate": 6.7530053079531664e-06,
590
+ "loss": 0.8642,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.62,
595
+ "learning_rate": 6.558227696373617e-06,
596
+ "loss": 0.8282,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.63,
601
+ "learning_rate": 6.364920294361701e-06,
602
+ "loss": 0.8538,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.64,
607
+ "learning_rate": 6.173165676349103e-06,
608
+ "loss": 0.8745,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.64,
613
+ "learning_rate": 5.983045753470308e-06,
614
+ "loss": 0.86,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.65,
619
+ "learning_rate": 5.794641738572925e-06,
620
+ "loss": 0.856,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.66,
625
+ "learning_rate": 5.608034111526298e-06,
626
+ "loss": 0.9212,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.66,
631
+ "learning_rate": 5.423302584843186e-06,
632
+ "loss": 0.7199,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.67,
637
+ "learning_rate": 5.240526069629265e-06,
638
+ "loss": 0.8897,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.68,
643
+ "learning_rate": 5.059782641874962e-06,
644
+ "loss": 0.9083,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.68,
649
+ "learning_rate": 4.881149509103993e-06,
650
+ "loss": 0.8257,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.69,
655
+ "learning_rate": 4.704702977392914e-06,
656
+ "loss": 0.7323,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.69,
661
+ "learning_rate": 4.530518418775734e-06,
662
+ "loss": 0.81,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.7,
667
+ "learning_rate": 4.35867023904749e-06,
668
+ "loss": 0.9093,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.71,
673
+ "learning_rate": 4.189231845980618e-06,
674
+ "loss": 0.8304,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.71,
679
+ "learning_rate": 4.0222756179675915e-06,
680
+ "loss": 0.8144,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.72,
685
+ "learning_rate": 3.857872873103322e-06,
686
+ "loss": 0.8304,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.73,
691
+ "learning_rate": 3.69609383872045e-06,
692
+ "loss": 0.8901,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.73,
697
+ "learning_rate": 3.5370076213905904e-06,
698
+ "loss": 0.7796,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.74,
703
+ "learning_rate": 3.380682177404335e-06,
704
+ "loss": 0.93,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.75,
709
+ "learning_rate": 3.2271842837425917e-06,
710
+ "loss": 0.7561,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.75,
715
+ "learning_rate": 3.0765795095517026e-06,
716
+ "loss": 0.8489,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.76,
721
+ "learning_rate": 2.9289321881345257e-06,
722
+ "loss": 0.9132,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.76,
727
+ "learning_rate": 2.7843053894693805e-06,
728
+ "loss": 0.7999,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.77,
733
+ "learning_rate": 2.642760893268684e-06,
734
+ "loss": 0.8003,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.78,
739
+ "learning_rate": 2.504359162588741e-06,
740
+ "loss": 0.8317,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.78,
745
+ "learning_rate": 2.369159318001937e-06,
746
+ "loss": 0.8005,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.79,
751
+ "learning_rate": 2.237219112342426e-06,
752
+ "loss": 0.8019,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.8,
757
+ "learning_rate": 2.1085949060360654e-06,
758
+ "loss": 0.9828,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.8,
763
+ "learning_rate": 1.983341643025117e-06,
764
+ "loss": 0.8288,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.81,
769
+ "learning_rate": 1.861512827298051e-06,
770
+ "loss": 0.835,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.82,
775
+ "learning_rate": 1.743160500034443e-06,
776
+ "loss": 0.766,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.82,
781
+ "learning_rate": 1.6283352173747148e-06,
782
+ "loss": 0.8061,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.83,
787
+ "learning_rate": 1.5170860288242638e-06,
788
+ "loss": 0.8105,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.83,
793
+ "learning_rate": 1.409460456301147e-06,
794
+ "loss": 0.8824,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.84,
799
+ "learning_rate": 1.305504473836331e-06,
800
+ "loss": 0.8424,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.85,
805
+ "learning_rate": 1.2052624879351105e-06,
806
+ "loss": 0.8065,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.85,
811
+ "learning_rate": 1.1087773186081474e-06,
812
+ "loss": 0.8305,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.86,
817
+ "learning_rate": 1.0160901810802114e-06,
818
+ "loss": 0.7974,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.87,
823
+ "learning_rate": 9.272406681844015e-07,
824
+ "loss": 0.8435,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.87,
829
+ "learning_rate": 8.42266733449425e-07,
830
+ "loss": 0.8227,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.88,
835
+ "learning_rate": 7.612046748871327e-07,
836
+ "loss": 0.8259,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.89,
841
+ "learning_rate": 6.840891194872112e-07,
842
+ "loss": 0.8724,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.89,
847
+ "learning_rate": 6.109530084257043e-07,
848
+ "loss": 0.8023,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.9,
853
+ "learning_rate": 5.418275829936537e-07,
854
+ "loss": 0.9123,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.9,
859
+ "learning_rate": 4.7674237125185597e-07,
860
+ "loss": 0.8145,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.91,
865
+ "learning_rate": 4.1572517541747294e-07,
866
+ "loss": 0.8239,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.92,
871
+ "learning_rate": 3.588020599878639e-07,
872
+ "loss": 0.8931,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.92,
877
+ "learning_rate": 3.059973406066963e-07,
878
+ "loss": 0.8401,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.93,
883
+ "learning_rate": 2.573335736771254e-07,
884
+ "loss": 0.8147,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.94,
889
+ "learning_rate": 2.1283154672645522e-07,
890
+ "loss": 0.7931,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.94,
895
+ "learning_rate": 1.7251026952640583e-07,
896
+ "loss": 0.8451,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.95,
901
+ "learning_rate": 1.3638696597277678e-07,
902
+ "loss": 0.8043,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.96,
907
+ "learning_rate": 1.0447706672797264e-07,
908
+ "loss": 0.8182,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.96,
913
+ "learning_rate": 7.679420262954984e-08,
914
+ "loss": 0.8435,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.97,
919
+ "learning_rate": 5.3350198867574424e-08,
920
+ "loss": 0.8595,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 0.97,
925
+ "learning_rate": 3.4155069933301535e-08,
926
+ "loss": 0.9216,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 0.98,
931
+ "learning_rate": 1.9217015341318478e-08,
932
+ "loss": 0.9103,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 0.99,
937
+ "learning_rate": 8.542416126989805e-09,
938
+ "loss": 0.7959,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 0.99,
943
+ "learning_rate": 2.1358321206899067e-09,
944
+ "loss": 0.7549,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 1.0,
949
+ "learning_rate": 0.0,
950
+ "loss": 0.9527,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 1.0,
955
+ "step": 157,
956
+ "total_flos": 1.8231670013217997e+17,
957
+ "train_loss": 0.874420439741414,
958
+ "train_runtime": 607.8943,
959
+ "train_samples_per_second": 8.225,
960
+ "train_steps_per_second": 0.258
961
+ }
962
+ ],
963
+ "logging_steps": 1.0,
964
+ "max_steps": 157,
965
+ "num_input_tokens_seen": 0,
966
+ "num_train_epochs": 1,
967
+ "save_steps": 1000,
968
+ "total_flos": 1.8231670013217997e+17,
969
+ "train_batch_size": 8,
970
+ "trial_name": null,
971
+ "trial_params": null
972
+ }
ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_new_lora/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: liuhaotian/llava-v1.6-mistral-7b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_new_lora/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "liuhaotian/llava-v1.6-mistral-7b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 128,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "o_proj",
24
+ "k_proj",
25
+ "v_proj",
26
+ "q_proj",
27
+ "gate_proj",
28
+ "down_proj",
29
+ "up_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_new_lora/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa2a2f1e2ad0d954f92a1b6d04d2ecb413d8ea25a526b4f625d850313fd8b206
3
+ size 708923528
ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_new_lora/config.json ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "liuhaotian/llava-v1.6-mistral-7b",
3
+ "architectures": [
4
+ "LlavaMistralForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "freeze_mm_mlp_adapter": false,
11
+ "freeze_mm_vision_resampler": false,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 4096,
14
+ "image_aspect_ratio": "pad",
15
+ "image_crop_resolution": 224,
16
+ "image_grid_pinpoints": [
17
+ [
18
+ 336,
19
+ 672
20
+ ],
21
+ [
22
+ 672,
23
+ 336
24
+ ],
25
+ [
26
+ 672,
27
+ 672
28
+ ],
29
+ [
30
+ 1008,
31
+ 336
32
+ ],
33
+ [
34
+ 336,
35
+ 1008
36
+ ]
37
+ ],
38
+ "image_split_resolution": 224,
39
+ "initializer_range": 0.02,
40
+ "intermediate_size": 14336,
41
+ "max_position_embeddings": 32768,
42
+ "mm_hidden_size": 1024,
43
+ "mm_patch_merge_type": "flat",
44
+ "mm_projector_lr": 2e-05,
45
+ "mm_projector_type": "mlp2x_gelu",
46
+ "mm_resampler_type": null,
47
+ "mm_use_im_patch_token": false,
48
+ "mm_use_im_start_end": false,
49
+ "mm_vision_select_feature": "patch",
50
+ "mm_vision_select_layer": -2,
51
+ "mm_vision_tower": "openai/clip-vit-large-patch14-336",
52
+ "mm_vision_tower_lr": 2e-06,
53
+ "model_type": "llava_llama",
54
+ "num_attention_heads": 32,
55
+ "num_hidden_layers": 32,
56
+ "num_key_value_heads": 8,
57
+ "pretraining_tp": 1,
58
+ "rms_norm_eps": 1e-05,
59
+ "rope_scaling": null,
60
+ "rope_theta": 1000000.0,
61
+ "sliding_window": null,
62
+ "tie_word_embeddings": false,
63
+ "tokenizer_model_max_length": 2048,
64
+ "tokenizer_padding_side": "right",
65
+ "torch_dtype": "bfloat16",
66
+ "transformers_version": "4.37.2",
67
+ "tune_mm_mlp_adapter": false,
68
+ "tune_mm_vision_resampler": false,
69
+ "unfreeze_mm_vision_tower": true,
70
+ "use_cache": true,
71
+ "use_mm_proj": true,
72
+ "vocab_size": 32000
73
+ }
ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_new_lora/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60fb82c3660319e6d0b239950b20c28181e97f1ade117dc0660b40e2ad94a89b
3
+ size 912
ckpt/llava-v1.6-mistral-7b-STIC-Iter1_2_new_lora/trainer_state.json ADDED
@@ -0,0 +1,972 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 157,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 4.000000000000001e-06,
14
+ "loss": 1.6295,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 8.000000000000001e-06,
20
+ "loss": 1.6026,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.02,
25
+ "learning_rate": 1.2e-05,
26
+ "loss": 1.248,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.03,
31
+ "learning_rate": 1.6000000000000003e-05,
32
+ "loss": 1.1522,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.03,
37
+ "learning_rate": 2e-05,
38
+ "loss": 1.0594,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.04,
43
+ "learning_rate": 1.9997864167879313e-05,
44
+ "loss": 1.0206,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.04,
49
+ "learning_rate": 1.999145758387301e-05,
50
+ "loss": 1.1345,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.05,
55
+ "learning_rate": 1.9980782984658682e-05,
56
+ "loss": 1.1577,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.06,
61
+ "learning_rate": 1.99658449300667e-05,
62
+ "loss": 0.8709,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.06,
67
+ "learning_rate": 1.994664980113243e-05,
68
+ "loss": 0.9002,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.07,
73
+ "learning_rate": 1.992320579737045e-05,
74
+ "loss": 0.8984,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.08,
79
+ "learning_rate": 1.9895522933272028e-05,
80
+ "loss": 0.884,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.08,
85
+ "learning_rate": 1.9863613034027224e-05,
86
+ "loss": 0.9051,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.09,
91
+ "learning_rate": 1.9827489730473597e-05,
92
+ "loss": 0.9614,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.1,
97
+ "learning_rate": 1.9787168453273546e-05,
98
+ "loss": 0.9494,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.1,
103
+ "learning_rate": 1.9742666426322877e-05,
104
+ "loss": 0.9168,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.11,
109
+ "learning_rate": 1.9694002659393306e-05,
110
+ "loss": 0.798,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.11,
115
+ "learning_rate": 1.9641197940012136e-05,
116
+ "loss": 0.9036,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.12,
121
+ "learning_rate": 1.958427482458253e-05,
122
+ "loss": 0.9085,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.13,
127
+ "learning_rate": 1.9523257628748148e-05,
128
+ "loss": 0.9088,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.13,
133
+ "learning_rate": 1.9458172417006347e-05,
134
+ "loss": 0.9316,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.14,
139
+ "learning_rate": 1.9389046991574298e-05,
140
+ "loss": 0.8441,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.15,
145
+ "learning_rate": 1.9315910880512792e-05,
146
+ "loss": 0.8979,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.15,
151
+ "learning_rate": 1.9238795325112867e-05,
152
+ "loss": 0.8839,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.16,
157
+ "learning_rate": 1.9157733266550577e-05,
158
+ "loss": 0.8382,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.17,
163
+ "learning_rate": 1.9072759331815602e-05,
164
+ "loss": 0.9685,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.17,
169
+ "learning_rate": 1.898390981891979e-05,
170
+ "loss": 0.812,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.18,
175
+ "learning_rate": 1.8891222681391853e-05,
176
+ "loss": 0.8297,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.18,
181
+ "learning_rate": 1.879473751206489e-05,
182
+ "loss": 0.8635,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.19,
187
+ "learning_rate": 1.869449552616367e-05,
188
+ "loss": 0.7964,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.2,
193
+ "learning_rate": 1.8590539543698852e-05,
194
+ "loss": 0.8409,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.2,
199
+ "learning_rate": 1.8482913971175737e-05,
200
+ "loss": 0.8342,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.21,
205
+ "learning_rate": 1.8371664782625287e-05,
206
+ "loss": 0.9455,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.22,
211
+ "learning_rate": 1.825683949996556e-05,
212
+ "loss": 0.9033,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.22,
217
+ "learning_rate": 1.813848717270195e-05,
218
+ "loss": 0.9191,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.23,
223
+ "learning_rate": 1.8016658356974885e-05,
224
+ "loss": 0.9343,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.24,
229
+ "learning_rate": 1.789140509396394e-05,
230
+ "loss": 0.8241,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.24,
235
+ "learning_rate": 1.7762780887657576e-05,
236
+ "loss": 0.92,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.25,
241
+ "learning_rate": 1.7630840681998068e-05,
242
+ "loss": 0.8653,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.25,
247
+ "learning_rate": 1.7495640837411265e-05,
248
+ "loss": 0.8933,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.26,
253
+ "learning_rate": 1.735723910673132e-05,
254
+ "loss": 0.8766,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.27,
259
+ "learning_rate": 1.7215694610530624e-05,
260
+ "loss": 0.8103,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.27,
265
+ "learning_rate": 1.7071067811865477e-05,
266
+ "loss": 0.874,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.28,
271
+ "learning_rate": 1.6923420490448298e-05,
272
+ "loss": 0.8465,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.29,
277
+ "learning_rate": 1.6772815716257414e-05,
278
+ "loss": 0.9982,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.29,
283
+ "learning_rate": 1.6619317822595666e-05,
284
+ "loss": 0.7975,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.3,
289
+ "learning_rate": 1.646299237860941e-05,
290
+ "loss": 0.866,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.31,
295
+ "learning_rate": 1.6303906161279554e-05,
296
+ "loss": 0.8556,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.31,
301
+ "learning_rate": 1.6142127126896682e-05,
302
+ "loss": 0.9404,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.32,
307
+ "learning_rate": 1.597772438203241e-05,
308
+ "loss": 0.8321,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.32,
313
+ "learning_rate": 1.5810768154019386e-05,
314
+ "loss": 0.8533,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.33,
319
+ "learning_rate": 1.5641329760952514e-05,
320
+ "loss": 0.8929,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.34,
325
+ "learning_rate": 1.5469481581224274e-05,
326
+ "loss": 0.8647,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.34,
331
+ "learning_rate": 1.529529702260709e-05,
332
+ "loss": 0.8673,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.35,
337
+ "learning_rate": 1.5118850490896012e-05,
338
+ "loss": 0.8801,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.36,
343
+ "learning_rate": 1.4940217358125042e-05,
344
+ "loss": 0.9484,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.36,
349
+ "learning_rate": 1.4759473930370738e-05,
350
+ "loss": 0.7127,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.37,
355
+ "learning_rate": 1.4576697415156818e-05,
356
+ "loss": 0.9191,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.38,
361
+ "learning_rate": 1.4391965888473705e-05,
362
+ "loss": 0.816,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.38,
367
+ "learning_rate": 1.4205358261427076e-05,
368
+ "loss": 0.8402,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.39,
373
+ "learning_rate": 1.4016954246529697e-05,
374
+ "loss": 0.8325,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.39,
379
+ "learning_rate": 1.3826834323650899e-05,
380
+ "loss": 0.8293,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.4,
385
+ "learning_rate": 1.3635079705638298e-05,
386
+ "loss": 0.9403,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.41,
391
+ "learning_rate": 1.3441772303626387e-05,
392
+ "loss": 0.8097,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.41,
397
+ "learning_rate": 1.3246994692046837e-05,
398
+ "loss": 0.9047,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.42,
403
+ "learning_rate": 1.305083007335549e-05,
404
+ "loss": 0.7984,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.43,
409
+ "learning_rate": 1.2853362242491054e-05,
410
+ "loss": 0.8471,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.43,
415
+ "learning_rate": 1.2654675551080724e-05,
416
+ "loss": 0.8512,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.44,
421
+ "learning_rate": 1.2454854871407993e-05,
422
+ "loss": 0.8096,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.45,
427
+ "learning_rate": 1.2253985560158064e-05,
428
+ "loss": 0.8018,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.45,
433
+ "learning_rate": 1.2052153421956343e-05,
434
+ "loss": 0.8577,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.46,
439
+ "learning_rate": 1.1849444672715587e-05,
440
+ "loss": 0.8162,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.46,
445
+ "learning_rate": 1.164594590280734e-05,
446
+ "loss": 0.8753,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.47,
451
+ "learning_rate": 1.1441744040073469e-05,
452
+ "loss": 0.8272,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.48,
457
+ "learning_rate": 1.123692631269348e-05,
458
+ "loss": 0.7928,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.48,
463
+ "learning_rate": 1.103158021192357e-05,
464
+ "loss": 0.7455,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.49,
469
+ "learning_rate": 1.0825793454723325e-05,
470
+ "loss": 0.8327,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.5,
475
+ "learning_rate": 1.0619653946285948e-05,
476
+ "loss": 0.8059,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.5,
481
+ "learning_rate": 1.0413249742488132e-05,
482
+ "loss": 0.8331,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.51,
487
+ "learning_rate": 1.0206669012275546e-05,
488
+ "loss": 0.8438,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.52,
493
+ "learning_rate": 1e-05,
494
+ "loss": 0.8964,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.52,
499
+ "learning_rate": 9.79333098772446e-06,
500
+ "loss": 0.8688,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.53,
505
+ "learning_rate": 9.586750257511868e-06,
506
+ "loss": 0.8589,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.54,
511
+ "learning_rate": 9.380346053714055e-06,
512
+ "loss": 0.831,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.54,
517
+ "learning_rate": 9.174206545276678e-06,
518
+ "loss": 0.7501,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.55,
523
+ "learning_rate": 8.968419788076431e-06,
524
+ "loss": 0.8769,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.55,
529
+ "learning_rate": 8.763073687306523e-06,
530
+ "loss": 0.9562,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.56,
535
+ "learning_rate": 8.558255959926533e-06,
536
+ "loss": 0.872,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.57,
541
+ "learning_rate": 8.35405409719266e-06,
542
+ "loss": 0.7628,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.57,
547
+ "learning_rate": 8.150555327284417e-06,
548
+ "loss": 0.8795,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.58,
553
+ "learning_rate": 7.947846578043658e-06,
554
+ "loss": 0.8724,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.59,
559
+ "learning_rate": 7.746014439841941e-06,
560
+ "loss": 0.8727,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.59,
565
+ "learning_rate": 7.545145128592009e-06,
566
+ "loss": 0.8453,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.6,
571
+ "learning_rate": 7.34532444891928e-06,
572
+ "loss": 0.7799,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.61,
577
+ "learning_rate": 7.14663775750895e-06,
578
+ "loss": 0.8688,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.61,
583
+ "learning_rate": 6.949169926644513e-06,
584
+ "loss": 0.8608,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.62,
589
+ "learning_rate": 6.7530053079531664e-06,
590
+ "loss": 0.8739,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.62,
595
+ "learning_rate": 6.558227696373617e-06,
596
+ "loss": 0.8461,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.63,
601
+ "learning_rate": 6.364920294361701e-06,
602
+ "loss": 0.847,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.64,
607
+ "learning_rate": 6.173165676349103e-06,
608
+ "loss": 0.8698,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.64,
613
+ "learning_rate": 5.983045753470308e-06,
614
+ "loss": 0.8466,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.65,
619
+ "learning_rate": 5.794641738572925e-06,
620
+ "loss": 0.8662,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.66,
625
+ "learning_rate": 5.608034111526298e-06,
626
+ "loss": 0.8859,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.66,
631
+ "learning_rate": 5.423302584843186e-06,
632
+ "loss": 0.7262,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.67,
637
+ "learning_rate": 5.240526069629265e-06,
638
+ "loss": 0.8928,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.68,
643
+ "learning_rate": 5.059782641874962e-06,
644
+ "loss": 0.9302,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.68,
649
+ "learning_rate": 4.881149509103993e-06,
650
+ "loss": 0.8222,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.69,
655
+ "learning_rate": 4.704702977392914e-06,
656
+ "loss": 0.7354,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.69,
661
+ "learning_rate": 4.530518418775734e-06,
662
+ "loss": 0.8246,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.7,
667
+ "learning_rate": 4.35867023904749e-06,
668
+ "loss": 0.8968,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.71,
673
+ "learning_rate": 4.189231845980618e-06,
674
+ "loss": 0.8138,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.71,
679
+ "learning_rate": 4.0222756179675915e-06,
680
+ "loss": 0.8306,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.72,
685
+ "learning_rate": 3.857872873103322e-06,
686
+ "loss": 0.8275,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.73,
691
+ "learning_rate": 3.69609383872045e-06,
692
+ "loss": 0.8884,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.73,
697
+ "learning_rate": 3.5370076213905904e-06,
698
+ "loss": 0.7864,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.74,
703
+ "learning_rate": 3.380682177404335e-06,
704
+ "loss": 0.9299,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.75,
709
+ "learning_rate": 3.2271842837425917e-06,
710
+ "loss": 0.7418,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.75,
715
+ "learning_rate": 3.0765795095517026e-06,
716
+ "loss": 0.8454,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.76,
721
+ "learning_rate": 2.9289321881345257e-06,
722
+ "loss": 0.9107,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.76,
727
+ "learning_rate": 2.7843053894693805e-06,
728
+ "loss": 0.8149,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.77,
733
+ "learning_rate": 2.642760893268684e-06,
734
+ "loss": 0.8049,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.78,
739
+ "learning_rate": 2.504359162588741e-06,
740
+ "loss": 0.8318,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.78,
745
+ "learning_rate": 2.369159318001937e-06,
746
+ "loss": 0.7918,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.79,
751
+ "learning_rate": 2.237219112342426e-06,
752
+ "loss": 0.8116,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.8,
757
+ "learning_rate": 2.1085949060360654e-06,
758
+ "loss": 0.9814,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.8,
763
+ "learning_rate": 1.983341643025117e-06,
764
+ "loss": 0.8234,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.81,
769
+ "learning_rate": 1.861512827298051e-06,
770
+ "loss": 0.8349,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.82,
775
+ "learning_rate": 1.743160500034443e-06,
776
+ "loss": 0.7845,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.82,
781
+ "learning_rate": 1.6283352173747148e-06,
782
+ "loss": 0.7994,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.83,
787
+ "learning_rate": 1.5170860288242638e-06,
788
+ "loss": 0.7918,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.83,
793
+ "learning_rate": 1.409460456301147e-06,
794
+ "loss": 0.8669,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.84,
799
+ "learning_rate": 1.305504473836331e-06,
800
+ "loss": 0.8403,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.85,
805
+ "learning_rate": 1.2052624879351105e-06,
806
+ "loss": 0.8024,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.85,
811
+ "learning_rate": 1.1087773186081474e-06,
812
+ "loss": 0.8434,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.86,
817
+ "learning_rate": 1.0160901810802114e-06,
818
+ "loss": 0.8117,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.87,
823
+ "learning_rate": 9.272406681844015e-07,
824
+ "loss": 0.8466,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.87,
829
+ "learning_rate": 8.42266733449425e-07,
830
+ "loss": 0.8432,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.88,
835
+ "learning_rate": 7.612046748871327e-07,
836
+ "loss": 0.8248,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.89,
841
+ "learning_rate": 6.840891194872112e-07,
842
+ "loss": 0.8652,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.89,
847
+ "learning_rate": 6.109530084257043e-07,
848
+ "loss": 0.804,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.9,
853
+ "learning_rate": 5.418275829936537e-07,
854
+ "loss": 0.9036,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.9,
859
+ "learning_rate": 4.7674237125185597e-07,
860
+ "loss": 0.8085,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.91,
865
+ "learning_rate": 4.1572517541747294e-07,
866
+ "loss": 0.8281,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.92,
871
+ "learning_rate": 3.588020599878639e-07,
872
+ "loss": 0.8945,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.92,
877
+ "learning_rate": 3.059973406066963e-07,
878
+ "loss": 0.8357,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.93,
883
+ "learning_rate": 2.573335736771254e-07,
884
+ "loss": 0.8258,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.94,
889
+ "learning_rate": 2.1283154672645522e-07,
890
+ "loss": 0.8044,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.94,
895
+ "learning_rate": 1.7251026952640583e-07,
896
+ "loss": 0.8358,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.95,
901
+ "learning_rate": 1.3638696597277678e-07,
902
+ "loss": 0.8028,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.96,
907
+ "learning_rate": 1.0447706672797264e-07,
908
+ "loss": 0.8254,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.96,
913
+ "learning_rate": 7.679420262954984e-08,
914
+ "loss": 0.838,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.97,
919
+ "learning_rate": 5.3350198867574424e-08,
920
+ "loss": 0.8531,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 0.97,
925
+ "learning_rate": 3.4155069933301535e-08,
926
+ "loss": 0.9063,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 0.98,
931
+ "learning_rate": 1.9217015341318478e-08,
932
+ "loss": 0.8737,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 0.99,
937
+ "learning_rate": 8.542416126989805e-09,
938
+ "loss": 0.7867,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 0.99,
943
+ "learning_rate": 2.1358321206899067e-09,
944
+ "loss": 0.7725,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 1.0,
949
+ "learning_rate": 0.0,
950
+ "loss": 0.9406,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 1.0,
955
+ "step": 157,
956
+ "total_flos": 1.848582743428956e+17,
957
+ "train_loss": 0.8735485073107823,
958
+ "train_runtime": 618.1012,
959
+ "train_samples_per_second": 8.089,
960
+ "train_steps_per_second": 0.254
961
+ }
962
+ ],
963
+ "logging_steps": 1.0,
964
+ "max_steps": 157,
965
+ "num_input_tokens_seen": 0,
966
+ "num_train_epochs": 1,
967
+ "save_steps": 1000,
968
+ "total_flos": 1.848582743428956e+17,
969
+ "train_batch_size": 8,
970
+ "trial_name": null,
971
+ "trial_params": null
972
+ }
ckpt/llava-v1.6-mistral-7b-STIC-Iter1_lora/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: liuhaotian/llava-v1.6-mistral-7b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
ckpt/llava-v1.6-mistral-7b-STIC-Iter1_lora/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "liuhaotian/llava-v1.6-mistral-7b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 128,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "gate_proj",
24
+ "down_proj",
25
+ "o_proj",
26
+ "up_proj",
27
+ "q_proj",
28
+ "k_proj",
29
+ "v_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
ckpt/llava-v1.6-mistral-7b-STIC-Iter1_lora/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6fcb33d76292e8ff9b990a50dc619fd704a613edf089f004d72d497e5b2534e
3
+ size 708923528
ckpt/llava-v1.6-mistral-7b-STIC-Iter1_lora/config.json ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "liuhaotian/llava-v1.6-mistral-7b",
3
+ "architectures": [
4
+ "LlavaMistralForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "freeze_mm_mlp_adapter": false,
11
+ "freeze_mm_vision_resampler": false,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 4096,
14
+ "image_aspect_ratio": "pad",
15
+ "image_crop_resolution": 224,
16
+ "image_grid_pinpoints": [
17
+ [
18
+ 336,
19
+ 672
20
+ ],
21
+ [
22
+ 672,
23
+ 336
24
+ ],
25
+ [
26
+ 672,
27
+ 672
28
+ ],
29
+ [
30
+ 1008,
31
+ 336
32
+ ],
33
+ [
34
+ 336,
35
+ 1008
36
+ ]
37
+ ],
38
+ "image_split_resolution": 224,
39
+ "initializer_range": 0.02,
40
+ "intermediate_size": 14336,
41
+ "max_position_embeddings": 32768,
42
+ "mm_hidden_size": 1024,
43
+ "mm_patch_merge_type": "flat",
44
+ "mm_projector_lr": 2e-05,
45
+ "mm_projector_type": "mlp2x_gelu",
46
+ "mm_resampler_type": null,
47
+ "mm_use_im_patch_token": false,
48
+ "mm_use_im_start_end": false,
49
+ "mm_vision_select_feature": "patch",
50
+ "mm_vision_select_layer": -2,
51
+ "mm_vision_tower": "openai/clip-vit-large-patch14-336",
52
+ "mm_vision_tower_lr": 2e-06,
53
+ "model_type": "llava_llama",
54
+ "num_attention_heads": 32,
55
+ "num_hidden_layers": 32,
56
+ "num_key_value_heads": 8,
57
+ "pretraining_tp": 1,
58
+ "rms_norm_eps": 1e-05,
59
+ "rope_scaling": null,
60
+ "rope_theta": 1000000.0,
61
+ "sliding_window": null,
62
+ "tie_word_embeddings": false,
63
+ "tokenizer_model_max_length": 2048,
64
+ "tokenizer_padding_side": "right",
65
+ "torch_dtype": "bfloat16",
66
+ "transformers_version": "4.37.2",
67
+ "tune_mm_mlp_adapter": false,
68
+ "tune_mm_vision_resampler": false,
69
+ "unfreeze_mm_vision_tower": true,
70
+ "use_cache": true,
71
+ "use_mm_proj": true,
72
+ "vocab_size": 32000
73
+ }
ckpt/llava-v1.6-mistral-7b-STIC-Iter1_lora/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60fb82c3660319e6d0b239950b20c28181e97f1ade117dc0660b40e2ad94a89b
3
+ size 912
ckpt/llava-v1.6-mistral-7b-STIC-Iter1_lora/trainer_state.json ADDED
@@ -0,0 +1,972 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 157,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 4.000000000000001e-06,
14
+ "loss": 1.5785,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 8.000000000000001e-06,
20
+ "loss": 1.4715,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.02,
25
+ "learning_rate": 1.2e-05,
26
+ "loss": 1.2647,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.03,
31
+ "learning_rate": 1.6000000000000003e-05,
32
+ "loss": 1.1428,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.03,
37
+ "learning_rate": 2e-05,
38
+ "loss": 1.0595,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.04,
43
+ "learning_rate": 1.9997864167879313e-05,
44
+ "loss": 0.9761,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.04,
49
+ "learning_rate": 1.999145758387301e-05,
50
+ "loss": 1.1309,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.05,
55
+ "learning_rate": 1.9980782984658682e-05,
56
+ "loss": 1.1512,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.06,
61
+ "learning_rate": 1.99658449300667e-05,
62
+ "loss": 0.8451,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.06,
67
+ "learning_rate": 1.994664980113243e-05,
68
+ "loss": 0.9051,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.07,
73
+ "learning_rate": 1.992320579737045e-05,
74
+ "loss": 0.8885,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.08,
79
+ "learning_rate": 1.9895522933272028e-05,
80
+ "loss": 0.8928,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.08,
85
+ "learning_rate": 1.9863613034027224e-05,
86
+ "loss": 0.8923,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.09,
91
+ "learning_rate": 1.9827489730473597e-05,
92
+ "loss": 0.951,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.1,
97
+ "learning_rate": 1.9787168453273546e-05,
98
+ "loss": 0.9338,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.1,
103
+ "learning_rate": 1.9742666426322877e-05,
104
+ "loss": 0.8979,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.11,
109
+ "learning_rate": 1.9694002659393306e-05,
110
+ "loss": 0.8001,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.11,
115
+ "learning_rate": 1.9641197940012136e-05,
116
+ "loss": 0.9024,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.12,
121
+ "learning_rate": 1.958427482458253e-05,
122
+ "loss": 0.9052,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.13,
127
+ "learning_rate": 1.9523257628748148e-05,
128
+ "loss": 0.8975,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.13,
133
+ "learning_rate": 1.9458172417006347e-05,
134
+ "loss": 0.9262,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.14,
139
+ "learning_rate": 1.9389046991574298e-05,
140
+ "loss": 0.8366,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.15,
145
+ "learning_rate": 1.9315910880512792e-05,
146
+ "loss": 0.9157,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.15,
151
+ "learning_rate": 1.9238795325112867e-05,
152
+ "loss": 0.8821,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.16,
157
+ "learning_rate": 1.9157733266550577e-05,
158
+ "loss": 0.8154,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.17,
163
+ "learning_rate": 1.9072759331815602e-05,
164
+ "loss": 0.97,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.17,
169
+ "learning_rate": 1.898390981891979e-05,
170
+ "loss": 0.8211,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.18,
175
+ "learning_rate": 1.8891222681391853e-05,
176
+ "loss": 0.8308,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.18,
181
+ "learning_rate": 1.879473751206489e-05,
182
+ "loss": 0.8671,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.19,
187
+ "learning_rate": 1.869449552616367e-05,
188
+ "loss": 0.8054,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.2,
193
+ "learning_rate": 1.8590539543698852e-05,
194
+ "loss": 0.8215,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.2,
199
+ "learning_rate": 1.8482913971175737e-05,
200
+ "loss": 0.8451,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.21,
205
+ "learning_rate": 1.8371664782625287e-05,
206
+ "loss": 0.9579,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.22,
211
+ "learning_rate": 1.825683949996556e-05,
212
+ "loss": 0.8815,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.22,
217
+ "learning_rate": 1.813848717270195e-05,
218
+ "loss": 0.9276,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.23,
223
+ "learning_rate": 1.8016658356974885e-05,
224
+ "loss": 0.9327,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.24,
229
+ "learning_rate": 1.789140509396394e-05,
230
+ "loss": 0.8515,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.24,
235
+ "learning_rate": 1.7762780887657576e-05,
236
+ "loss": 0.9245,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.25,
241
+ "learning_rate": 1.7630840681998068e-05,
242
+ "loss": 0.8686,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.25,
247
+ "learning_rate": 1.7495640837411265e-05,
248
+ "loss": 0.8865,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.26,
253
+ "learning_rate": 1.735723910673132e-05,
254
+ "loss": 0.8799,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.27,
259
+ "learning_rate": 1.7215694610530624e-05,
260
+ "loss": 0.7973,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.27,
265
+ "learning_rate": 1.7071067811865477e-05,
266
+ "loss": 0.8798,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.28,
271
+ "learning_rate": 1.6923420490448298e-05,
272
+ "loss": 0.8601,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.29,
277
+ "learning_rate": 1.6772815716257414e-05,
278
+ "loss": 0.983,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.29,
283
+ "learning_rate": 1.6619317822595666e-05,
284
+ "loss": 0.8132,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.3,
289
+ "learning_rate": 1.646299237860941e-05,
290
+ "loss": 0.8731,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.31,
295
+ "learning_rate": 1.6303906161279554e-05,
296
+ "loss": 0.8627,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.31,
301
+ "learning_rate": 1.6142127126896682e-05,
302
+ "loss": 0.9437,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.32,
307
+ "learning_rate": 1.597772438203241e-05,
308
+ "loss": 0.8387,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.32,
313
+ "learning_rate": 1.5810768154019386e-05,
314
+ "loss": 0.871,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.33,
319
+ "learning_rate": 1.5641329760952514e-05,
320
+ "loss": 0.8742,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.34,
325
+ "learning_rate": 1.5469481581224274e-05,
326
+ "loss": 0.8681,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.34,
331
+ "learning_rate": 1.529529702260709e-05,
332
+ "loss": 0.8718,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.35,
337
+ "learning_rate": 1.5118850490896012e-05,
338
+ "loss": 0.8804,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.36,
343
+ "learning_rate": 1.4940217358125042e-05,
344
+ "loss": 0.9424,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.36,
349
+ "learning_rate": 1.4759473930370738e-05,
350
+ "loss": 0.7149,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.37,
355
+ "learning_rate": 1.4576697415156818e-05,
356
+ "loss": 0.9085,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.38,
361
+ "learning_rate": 1.4391965888473705e-05,
362
+ "loss": 0.8235,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.38,
367
+ "learning_rate": 1.4205358261427076e-05,
368
+ "loss": 0.8361,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.39,
373
+ "learning_rate": 1.4016954246529697e-05,
374
+ "loss": 0.8283,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.39,
379
+ "learning_rate": 1.3826834323650899e-05,
380
+ "loss": 0.831,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.4,
385
+ "learning_rate": 1.3635079705638298e-05,
386
+ "loss": 0.9272,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.41,
391
+ "learning_rate": 1.3441772303626387e-05,
392
+ "loss": 0.8163,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.41,
397
+ "learning_rate": 1.3246994692046837e-05,
398
+ "loss": 0.9022,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.42,
403
+ "learning_rate": 1.305083007335549e-05,
404
+ "loss": 0.8155,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.43,
409
+ "learning_rate": 1.2853362242491054e-05,
410
+ "loss": 0.8482,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.43,
415
+ "learning_rate": 1.2654675551080724e-05,
416
+ "loss": 0.8445,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.44,
421
+ "learning_rate": 1.2454854871407993e-05,
422
+ "loss": 0.8116,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.45,
427
+ "learning_rate": 1.2253985560158064e-05,
428
+ "loss": 0.8018,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.45,
433
+ "learning_rate": 1.2052153421956343e-05,
434
+ "loss": 0.8519,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.46,
439
+ "learning_rate": 1.1849444672715587e-05,
440
+ "loss": 0.834,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.46,
445
+ "learning_rate": 1.164594590280734e-05,
446
+ "loss": 0.8733,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.47,
451
+ "learning_rate": 1.1441744040073469e-05,
452
+ "loss": 0.8164,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.48,
457
+ "learning_rate": 1.123692631269348e-05,
458
+ "loss": 0.7852,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.48,
463
+ "learning_rate": 1.103158021192357e-05,
464
+ "loss": 0.7621,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.49,
469
+ "learning_rate": 1.0825793454723325e-05,
470
+ "loss": 0.831,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.5,
475
+ "learning_rate": 1.0619653946285948e-05,
476
+ "loss": 0.8202,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.5,
481
+ "learning_rate": 1.0413249742488132e-05,
482
+ "loss": 0.8359,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.51,
487
+ "learning_rate": 1.0206669012275546e-05,
488
+ "loss": 0.8675,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.52,
493
+ "learning_rate": 1e-05,
494
+ "loss": 0.8936,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.52,
499
+ "learning_rate": 9.79333098772446e-06,
500
+ "loss": 0.8964,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.53,
505
+ "learning_rate": 9.586750257511868e-06,
506
+ "loss": 0.8691,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.54,
511
+ "learning_rate": 9.380346053714055e-06,
512
+ "loss": 0.8405,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.54,
517
+ "learning_rate": 9.174206545276678e-06,
518
+ "loss": 0.7521,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.55,
523
+ "learning_rate": 8.968419788076431e-06,
524
+ "loss": 0.8911,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.55,
529
+ "learning_rate": 8.763073687306523e-06,
530
+ "loss": 0.9457,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.56,
535
+ "learning_rate": 8.558255959926533e-06,
536
+ "loss": 0.8582,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.57,
541
+ "learning_rate": 8.35405409719266e-06,
542
+ "loss": 0.7549,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.57,
547
+ "learning_rate": 8.150555327284417e-06,
548
+ "loss": 0.9221,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.58,
553
+ "learning_rate": 7.947846578043658e-06,
554
+ "loss": 0.8823,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.59,
559
+ "learning_rate": 7.746014439841941e-06,
560
+ "loss": 0.8874,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.59,
565
+ "learning_rate": 7.545145128592009e-06,
566
+ "loss": 0.8461,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.6,
571
+ "learning_rate": 7.34532444891928e-06,
572
+ "loss": 0.7844,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.61,
577
+ "learning_rate": 7.14663775750895e-06,
578
+ "loss": 0.8769,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.61,
583
+ "learning_rate": 6.949169926644513e-06,
584
+ "loss": 0.8543,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.62,
589
+ "learning_rate": 6.7530053079531664e-06,
590
+ "loss": 0.8799,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.62,
595
+ "learning_rate": 6.558227696373617e-06,
596
+ "loss": 0.8386,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.63,
601
+ "learning_rate": 6.364920294361701e-06,
602
+ "loss": 0.8621,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.64,
607
+ "learning_rate": 6.173165676349103e-06,
608
+ "loss": 0.8576,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.64,
613
+ "learning_rate": 5.983045753470308e-06,
614
+ "loss": 0.8518,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.65,
619
+ "learning_rate": 5.794641738572925e-06,
620
+ "loss": 0.8532,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.66,
625
+ "learning_rate": 5.608034111526298e-06,
626
+ "loss": 0.8984,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.66,
631
+ "learning_rate": 5.423302584843186e-06,
632
+ "loss": 0.7299,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.67,
637
+ "learning_rate": 5.240526069629265e-06,
638
+ "loss": 0.8913,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.68,
643
+ "learning_rate": 5.059782641874962e-06,
644
+ "loss": 0.9104,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.68,
649
+ "learning_rate": 4.881149509103993e-06,
650
+ "loss": 0.8203,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.69,
655
+ "learning_rate": 4.704702977392914e-06,
656
+ "loss": 0.734,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.69,
661
+ "learning_rate": 4.530518418775734e-06,
662
+ "loss": 0.8011,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.7,
667
+ "learning_rate": 4.35867023904749e-06,
668
+ "loss": 0.8944,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.71,
673
+ "learning_rate": 4.189231845980618e-06,
674
+ "loss": 0.8006,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.71,
679
+ "learning_rate": 4.0222756179675915e-06,
680
+ "loss": 0.8161,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.72,
685
+ "learning_rate": 3.857872873103322e-06,
686
+ "loss": 0.8747,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.73,
691
+ "learning_rate": 3.69609383872045e-06,
692
+ "loss": 0.8827,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.73,
697
+ "learning_rate": 3.5370076213905904e-06,
698
+ "loss": 0.7817,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.74,
703
+ "learning_rate": 3.380682177404335e-06,
704
+ "loss": 0.9346,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.75,
709
+ "learning_rate": 3.2271842837425917e-06,
710
+ "loss": 0.7557,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.75,
715
+ "learning_rate": 3.0765795095517026e-06,
716
+ "loss": 0.855,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.76,
721
+ "learning_rate": 2.9289321881345257e-06,
722
+ "loss": 0.9043,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.76,
727
+ "learning_rate": 2.7843053894693805e-06,
728
+ "loss": 0.815,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.77,
733
+ "learning_rate": 2.642760893268684e-06,
734
+ "loss": 0.7945,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.78,
739
+ "learning_rate": 2.504359162588741e-06,
740
+ "loss": 0.8348,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.78,
745
+ "learning_rate": 2.369159318001937e-06,
746
+ "loss": 0.8028,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.79,
751
+ "learning_rate": 2.237219112342426e-06,
752
+ "loss": 0.8007,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.8,
757
+ "learning_rate": 2.1085949060360654e-06,
758
+ "loss": 0.9846,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.8,
763
+ "learning_rate": 1.983341643025117e-06,
764
+ "loss": 0.8312,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.81,
769
+ "learning_rate": 1.861512827298051e-06,
770
+ "loss": 0.838,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.82,
775
+ "learning_rate": 1.743160500034443e-06,
776
+ "loss": 0.7631,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.82,
781
+ "learning_rate": 1.6283352173747148e-06,
782
+ "loss": 0.8003,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.83,
787
+ "learning_rate": 1.5170860288242638e-06,
788
+ "loss": 0.8033,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.83,
793
+ "learning_rate": 1.409460456301147e-06,
794
+ "loss": 0.8626,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.84,
799
+ "learning_rate": 1.305504473836331e-06,
800
+ "loss": 0.8439,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.85,
805
+ "learning_rate": 1.2052624879351105e-06,
806
+ "loss": 0.8484,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.85,
811
+ "learning_rate": 1.1087773186081474e-06,
812
+ "loss": 0.8451,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.86,
817
+ "learning_rate": 1.0160901810802114e-06,
818
+ "loss": 0.8174,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.87,
823
+ "learning_rate": 9.272406681844015e-07,
824
+ "loss": 0.8448,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.87,
829
+ "learning_rate": 8.42266733449425e-07,
830
+ "loss": 0.8174,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.88,
835
+ "learning_rate": 7.612046748871327e-07,
836
+ "loss": 0.823,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.89,
841
+ "learning_rate": 6.840891194872112e-07,
842
+ "loss": 0.8671,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.89,
847
+ "learning_rate": 6.109530084257043e-07,
848
+ "loss": 0.8058,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.9,
853
+ "learning_rate": 5.418275829936537e-07,
854
+ "loss": 0.9194,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.9,
859
+ "learning_rate": 4.7674237125185597e-07,
860
+ "loss": 0.8112,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.91,
865
+ "learning_rate": 4.1572517541747294e-07,
866
+ "loss": 0.8337,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.92,
871
+ "learning_rate": 3.588020599878639e-07,
872
+ "loss": 0.9022,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.92,
877
+ "learning_rate": 3.059973406066963e-07,
878
+ "loss": 0.8505,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.93,
883
+ "learning_rate": 2.573335736771254e-07,
884
+ "loss": 0.8192,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.94,
889
+ "learning_rate": 2.1283154672645522e-07,
890
+ "loss": 0.7939,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.94,
895
+ "learning_rate": 1.7251026952640583e-07,
896
+ "loss": 0.8407,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.95,
901
+ "learning_rate": 1.3638696597277678e-07,
902
+ "loss": 0.8031,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.96,
907
+ "learning_rate": 1.0447706672797264e-07,
908
+ "loss": 0.8162,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.96,
913
+ "learning_rate": 7.679420262954984e-08,
914
+ "loss": 0.8415,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.97,
919
+ "learning_rate": 5.3350198867574424e-08,
920
+ "loss": 0.8578,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 0.97,
925
+ "learning_rate": 3.4155069933301535e-08,
926
+ "loss": 0.9013,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 0.98,
931
+ "learning_rate": 1.9217015341318478e-08,
932
+ "loss": 0.8782,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 0.99,
937
+ "learning_rate": 8.542416126989805e-09,
938
+ "loss": 0.7967,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 0.99,
943
+ "learning_rate": 2.1358321206899067e-09,
944
+ "loss": 0.7693,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 1.0,
949
+ "learning_rate": 0.0,
950
+ "loss": 0.9033,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 1.0,
955
+ "step": 157,
956
+ "total_flos": 1.8496968613009818e+17,
957
+ "train_loss": 0.8729076776534889,
958
+ "train_runtime": 624.4234,
959
+ "train_samples_per_second": 8.007,
960
+ "train_steps_per_second": 0.251
961
+ }
962
+ ],
963
+ "logging_steps": 1.0,
964
+ "max_steps": 157,
965
+ "num_input_tokens_seen": 0,
966
+ "num_train_epochs": 1,
967
+ "save_steps": 1000,
968
+ "total_flos": 1.8496968613009818e+17,
969
+ "train_batch_size": 8,
970
+ "trial_name": null,
971
+ "trial_params": null
972
+ }
ckpt/llava-v1.6-mistral-7b-STIC-Iter1_lora_2ep/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: liuhaotian/llava-v1.6-mistral-7b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
ckpt/llava-v1.6-mistral-7b-STIC-Iter1_lora_2ep/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "liuhaotian/llava-v1.6-mistral-7b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 128,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "gate_proj",
24
+ "down_proj",
25
+ "q_proj",
26
+ "k_proj",
27
+ "o_proj",
28
+ "up_proj",
29
+ "v_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
ckpt/llava-v1.6-mistral-7b-STIC-Iter1_lora_2ep/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e79679ad6ed209b49fa9fc42508a33192c4757ffc1a1c14c03fdcf4ea8ab10cc
3
+ size 708923528
ckpt/llava-v1.6-mistral-7b-STIC-Iter1_lora_2ep/config.json ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "liuhaotian/llava-v1.6-mistral-7b",
3
+ "architectures": [
4
+ "LlavaMistralForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "freeze_mm_mlp_adapter": false,
11
+ "freeze_mm_vision_resampler": false,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 4096,
14
+ "image_aspect_ratio": "pad",
15
+ "image_crop_resolution": 224,
16
+ "image_grid_pinpoints": [
17
+ [
18
+ 336,
19
+ 672
20
+ ],
21
+ [
22
+ 672,
23
+ 336
24
+ ],
25
+ [
26
+ 672,
27
+ 672
28
+ ],
29
+ [
30
+ 1008,
31
+ 336
32
+ ],
33
+ [
34
+ 336,
35
+ 1008
36
+ ]
37
+ ],
38
+ "image_split_resolution": 224,
39
+ "initializer_range": 0.02,
40
+ "intermediate_size": 14336,
41
+ "max_position_embeddings": 32768,
42
+ "mm_hidden_size": 1024,
43
+ "mm_patch_merge_type": "flat",
44
+ "mm_projector_lr": 2e-05,
45
+ "mm_projector_type": "mlp2x_gelu",
46
+ "mm_resampler_type": null,
47
+ "mm_use_im_patch_token": false,
48
+ "mm_use_im_start_end": false,
49
+ "mm_vision_select_feature": "patch",
50
+ "mm_vision_select_layer": -2,
51
+ "mm_vision_tower": "openai/clip-vit-large-patch14-336",
52
+ "mm_vision_tower_lr": 2e-06,
53
+ "model_type": "llava_llama",
54
+ "num_attention_heads": 32,
55
+ "num_hidden_layers": 32,
56
+ "num_key_value_heads": 8,
57
+ "pretraining_tp": 1,
58
+ "rms_norm_eps": 1e-05,
59
+ "rope_scaling": null,
60
+ "rope_theta": 1000000.0,
61
+ "sliding_window": null,
62
+ "tie_word_embeddings": false,
63
+ "tokenizer_model_max_length": 2048,
64
+ "tokenizer_padding_side": "right",
65
+ "torch_dtype": "bfloat16",
66
+ "transformers_version": "4.37.2",
67
+ "tune_mm_mlp_adapter": false,
68
+ "tune_mm_vision_resampler": false,
69
+ "unfreeze_mm_vision_tower": true,
70
+ "use_cache": true,
71
+ "use_mm_proj": true,
72
+ "vocab_size": 32000
73
+ }
ckpt/llava-v1.6-mistral-7b-STIC-Iter1_lora_2ep/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60fb82c3660319e6d0b239950b20c28181e97f1ade117dc0660b40e2ad94a89b
3
+ size 912
ckpt/llava-v1.6-mistral-7b-STIC-Iter1_lora_2ep/trainer_state.json ADDED
@@ -0,0 +1,1914 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.0,
5
+ "eval_steps": 500,
6
+ "global_step": 314,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 2.0000000000000003e-06,
14
+ "loss": 1.5818,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 4.000000000000001e-06,
20
+ "loss": 1.4755,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.02,
25
+ "learning_rate": 6e-06,
26
+ "loss": 1.3095,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.03,
31
+ "learning_rate": 8.000000000000001e-06,
32
+ "loss": 1.2063,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.03,
37
+ "learning_rate": 1e-05,
38
+ "loss": 1.1368,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.04,
43
+ "learning_rate": 1.2e-05,
44
+ "loss": 1.0209,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.04,
49
+ "learning_rate": 1.4e-05,
50
+ "loss": 1.185,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.05,
55
+ "learning_rate": 1.6000000000000003e-05,
56
+ "loss": 1.2063,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.06,
61
+ "learning_rate": 1.8e-05,
62
+ "loss": 0.8748,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.06,
67
+ "learning_rate": 2e-05,
68
+ "loss": 0.9318,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.07,
73
+ "learning_rate": 1.999946602771351e-05,
74
+ "loss": 0.9099,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.08,
79
+ "learning_rate": 1.9997864167879313e-05,
80
+ "loss": 0.9067,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.08,
85
+ "learning_rate": 1.999519459156716e-05,
86
+ "loss": 0.9027,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.09,
91
+ "learning_rate": 1.999145758387301e-05,
92
+ "loss": 0.9631,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.1,
97
+ "learning_rate": 1.998665354388857e-05,
98
+ "loss": 0.943,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.1,
103
+ "learning_rate": 1.9980782984658682e-05,
104
+ "loss": 0.9084,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.11,
109
+ "learning_rate": 1.9973846533126533e-05,
110
+ "loss": 0.8094,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.11,
115
+ "learning_rate": 1.99658449300667e-05,
116
+ "loss": 0.9148,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.12,
121
+ "learning_rate": 1.9956779030006038e-05,
122
+ "loss": 0.9141,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.13,
127
+ "learning_rate": 1.994664980113243e-05,
128
+ "loss": 0.9059,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.13,
133
+ "learning_rate": 1.9935458325191365e-05,
134
+ "loss": 0.9316,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.14,
139
+ "learning_rate": 1.992320579737045e-05,
140
+ "loss": 0.847,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.15,
145
+ "learning_rate": 1.9909893526171745e-05,
146
+ "loss": 0.9222,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.15,
151
+ "learning_rate": 1.9895522933272028e-05,
152
+ "loss": 0.8904,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.16,
157
+ "learning_rate": 1.9880095553370967e-05,
158
+ "loss": 0.8193,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.17,
163
+ "learning_rate": 1.9863613034027224e-05,
164
+ "loss": 0.9747,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.17,
169
+ "learning_rate": 1.9846077135482513e-05,
170
+ "loss": 0.8248,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.18,
175
+ "learning_rate": 1.9827489730473597e-05,
176
+ "loss": 0.8356,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.18,
181
+ "learning_rate": 1.9807852804032306e-05,
182
+ "loss": 0.87,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.19,
187
+ "learning_rate": 1.9787168453273546e-05,
188
+ "loss": 0.8082,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.2,
193
+ "learning_rate": 1.9765438887171327e-05,
194
+ "loss": 0.8245,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.2,
199
+ "learning_rate": 1.9742666426322877e-05,
200
+ "loss": 0.8473,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.21,
205
+ "learning_rate": 1.9718853502700783e-05,
206
+ "loss": 0.9611,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.22,
211
+ "learning_rate": 1.9694002659393306e-05,
212
+ "loss": 0.8855,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.22,
217
+ "learning_rate": 1.966811655033277e-05,
218
+ "loss": 0.9304,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.23,
223
+ "learning_rate": 1.9641197940012136e-05,
224
+ "loss": 0.9339,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.24,
229
+ "learning_rate": 1.96132497031898e-05,
230
+ "loss": 0.8534,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.24,
235
+ "learning_rate": 1.958427482458253e-05,
236
+ "loss": 0.9269,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.25,
241
+ "learning_rate": 1.9554276398546767e-05,
242
+ "loss": 0.8699,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.25,
247
+ "learning_rate": 1.9523257628748148e-05,
248
+ "loss": 0.8889,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.26,
253
+ "learning_rate": 1.9491221827819348e-05,
254
+ "loss": 0.8806,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.27,
259
+ "learning_rate": 1.9458172417006347e-05,
260
+ "loss": 0.7995,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.27,
265
+ "learning_rate": 1.942411292580304e-05,
266
+ "loss": 0.8818,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.28,
271
+ "learning_rate": 1.9389046991574298e-05,
272
+ "loss": 0.8597,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.29,
277
+ "learning_rate": 1.935297835916754e-05,
278
+ "loss": 0.9841,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.29,
283
+ "learning_rate": 1.9315910880512792e-05,
284
+ "loss": 0.813,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.3,
289
+ "learning_rate": 1.927784851421132e-05,
290
+ "loss": 0.8739,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.31,
295
+ "learning_rate": 1.9238795325112867e-05,
296
+ "loss": 0.864,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.31,
301
+ "learning_rate": 1.9198755483881585e-05,
302
+ "loss": 0.9453,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.32,
307
+ "learning_rate": 1.9157733266550577e-05,
308
+ "loss": 0.8378,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.32,
313
+ "learning_rate": 1.911573305406528e-05,
314
+ "loss": 0.8705,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.33,
319
+ "learning_rate": 1.9072759331815602e-05,
320
+ "loss": 0.8748,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.34,
325
+ "learning_rate": 1.902881668915688e-05,
326
+ "loss": 0.8694,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.34,
331
+ "learning_rate": 1.898390981891979e-05,
332
+ "loss": 0.8718,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.35,
337
+ "learning_rate": 1.8938043516909173e-05,
338
+ "loss": 0.88,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.36,
343
+ "learning_rate": 1.8891222681391853e-05,
344
+ "loss": 0.9423,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.36,
349
+ "learning_rate": 1.8843452312573557e-05,
350
+ "loss": 0.7148,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.37,
355
+ "learning_rate": 1.879473751206489e-05,
356
+ "loss": 0.9104,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.38,
361
+ "learning_rate": 1.8745083482336547e-05,
362
+ "loss": 0.8233,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.38,
367
+ "learning_rate": 1.869449552616367e-05,
368
+ "loss": 0.8367,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.39,
373
+ "learning_rate": 1.8642979046059595e-05,
374
+ "loss": 0.8282,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.39,
379
+ "learning_rate": 1.8590539543698852e-05,
380
+ "loss": 0.8311,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.4,
385
+ "learning_rate": 1.853718261932964e-05,
386
+ "loss": 0.929,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.41,
391
+ "learning_rate": 1.8482913971175737e-05,
392
+ "loss": 0.8166,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.41,
397
+ "learning_rate": 1.8427739394827976e-05,
398
+ "loss": 0.9019,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.42,
403
+ "learning_rate": 1.8371664782625287e-05,
404
+ "loss": 0.8145,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.43,
409
+ "learning_rate": 1.8314696123025456e-05,
410
+ "loss": 0.8465,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.43,
415
+ "learning_rate": 1.825683949996556e-05,
416
+ "loss": 0.8442,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.44,
421
+ "learning_rate": 1.819810109221227e-05,
422
+ "loss": 0.8103,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.45,
427
+ "learning_rate": 1.813848717270195e-05,
428
+ "loss": 0.8019,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.45,
433
+ "learning_rate": 1.8078004107870797e-05,
434
+ "loss": 0.8514,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.46,
439
+ "learning_rate": 1.8016658356974885e-05,
440
+ "loss": 0.8341,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.46,
445
+ "learning_rate": 1.7954456471400393e-05,
446
+ "loss": 0.8727,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.47,
451
+ "learning_rate": 1.789140509396394e-05,
452
+ "loss": 0.8152,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.48,
457
+ "learning_rate": 1.7827510958203147e-05,
458
+ "loss": 0.785,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.48,
463
+ "learning_rate": 1.7762780887657576e-05,
464
+ "loss": 0.7608,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.49,
469
+ "learning_rate": 1.769722179513998e-05,
470
+ "loss": 0.83,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.5,
475
+ "learning_rate": 1.7630840681998068e-05,
476
+ "loss": 0.8157,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.5,
481
+ "learning_rate": 1.7563644637366786e-05,
482
+ "loss": 0.835,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.51,
487
+ "learning_rate": 1.7495640837411265e-05,
488
+ "loss": 0.8646,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.52,
493
+ "learning_rate": 1.74268365445604e-05,
494
+ "loss": 0.8946,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.52,
499
+ "learning_rate": 1.735723910673132e-05,
500
+ "loss": 0.8949,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.53,
505
+ "learning_rate": 1.7286855956544616e-05,
506
+ "loss": 0.8676,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.54,
511
+ "learning_rate": 1.7215694610530624e-05,
512
+ "loss": 0.8363,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.54,
517
+ "learning_rate": 1.7143762668326667e-05,
518
+ "loss": 0.7519,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.55,
523
+ "learning_rate": 1.7071067811865477e-05,
524
+ "loss": 0.8902,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.55,
529
+ "learning_rate": 1.69976178045548e-05,
530
+ "loss": 0.9433,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.56,
535
+ "learning_rate": 1.6923420490448298e-05,
536
+ "loss": 0.8566,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.57,
541
+ "learning_rate": 1.6848483793407874e-05,
542
+ "loss": 0.7547,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.57,
547
+ "learning_rate": 1.6772815716257414e-05,
548
+ "loss": 0.9211,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.58,
553
+ "learning_rate": 1.6696424339928153e-05,
554
+ "loss": 0.8832,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.59,
559
+ "learning_rate": 1.6619317822595666e-05,
560
+ "loss": 0.8847,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.59,
565
+ "learning_rate": 1.6541504398808633e-05,
566
+ "loss": 0.8423,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.6,
571
+ "learning_rate": 1.646299237860941e-05,
572
+ "loss": 0.7827,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.61,
577
+ "learning_rate": 1.638379014664659e-05,
578
+ "loss": 0.8779,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.61,
583
+ "learning_rate": 1.6303906161279554e-05,
584
+ "loss": 0.8516,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.62,
589
+ "learning_rate": 1.6223348953675163e-05,
590
+ "loss": 0.8793,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.62,
595
+ "learning_rate": 1.6142127126896682e-05,
596
+ "loss": 0.8393,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.63,
601
+ "learning_rate": 1.6060249354985023e-05,
602
+ "loss": 0.8612,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.64,
607
+ "learning_rate": 1.597772438203241e-05,
608
+ "loss": 0.8567,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.64,
613
+ "learning_rate": 1.5894561021248535e-05,
614
+ "loss": 0.8511,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.65,
619
+ "learning_rate": 1.5810768154019386e-05,
620
+ "loss": 0.8521,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.66,
625
+ "learning_rate": 1.5726354728958736e-05,
626
+ "loss": 0.8961,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.66,
631
+ "learning_rate": 1.5641329760952514e-05,
632
+ "loss": 0.7285,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.67,
637
+ "learning_rate": 1.5555702330196024e-05,
638
+ "loss": 0.8936,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.68,
643
+ "learning_rate": 1.5469481581224274e-05,
644
+ "loss": 0.9089,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.68,
649
+ "learning_rate": 1.5382676721935344e-05,
650
+ "loss": 0.8203,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.69,
655
+ "learning_rate": 1.529529702260709e-05,
656
+ "loss": 0.7302,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.69,
661
+ "learning_rate": 1.5207351814907068e-05,
662
+ "loss": 0.7977,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.7,
667
+ "learning_rate": 1.5118850490896012e-05,
668
+ "loss": 0.8916,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.71,
673
+ "learning_rate": 1.5029802502024788e-05,
674
+ "loss": 0.7983,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.71,
679
+ "learning_rate": 1.4940217358125042e-05,
680
+ "loss": 0.8178,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.72,
685
+ "learning_rate": 1.4850104626393598e-05,
686
+ "loss": 0.8737,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.73,
691
+ "learning_rate": 1.4759473930370738e-05,
692
+ "loss": 0.8758,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.73,
697
+ "learning_rate": 1.4668334948912455e-05,
698
+ "loss": 0.7809,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.74,
703
+ "learning_rate": 1.4576697415156818e-05,
704
+ "loss": 0.9323,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.75,
709
+ "learning_rate": 1.4484571115484508e-05,
710
+ "loss": 0.7564,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.75,
715
+ "learning_rate": 1.4391965888473705e-05,
716
+ "loss": 0.8519,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.76,
721
+ "learning_rate": 1.429889162384937e-05,
722
+ "loss": 0.8999,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.76,
727
+ "learning_rate": 1.4205358261427076e-05,
728
+ "loss": 0.8166,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.77,
733
+ "learning_rate": 1.4111375790051511e-05,
734
+ "loss": 0.7898,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.78,
739
+ "learning_rate": 1.4016954246529697e-05,
740
+ "loss": 0.8342,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.78,
745
+ "learning_rate": 1.392210371455913e-05,
746
+ "loss": 0.8015,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.79,
751
+ "learning_rate": 1.3826834323650899e-05,
752
+ "loss": 0.7963,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.8,
757
+ "learning_rate": 1.3731156248047903e-05,
758
+ "loss": 0.9803,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.8,
763
+ "learning_rate": 1.3635079705638298e-05,
764
+ "loss": 0.8302,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.81,
769
+ "learning_rate": 1.3538614956864297e-05,
770
+ "loss": 0.8336,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.82,
775
+ "learning_rate": 1.3441772303626387e-05,
776
+ "loss": 0.7617,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.82,
781
+ "learning_rate": 1.3344562088183166e-05,
782
+ "loss": 0.8005,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.83,
787
+ "learning_rate": 1.3246994692046837e-05,
788
+ "loss": 0.8004,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.83,
793
+ "learning_rate": 1.3149080534874519e-05,
794
+ "loss": 0.8525,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.84,
799
+ "learning_rate": 1.305083007335549e-05,
800
+ "loss": 0.8398,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.85,
805
+ "learning_rate": 1.2952253800094467e-05,
806
+ "loss": 0.8423,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.85,
811
+ "learning_rate": 1.2853362242491054e-05,
812
+ "loss": 0.8409,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.86,
817
+ "learning_rate": 1.2754165961615482e-05,
818
+ "loss": 0.8101,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.87,
823
+ "learning_rate": 1.2654675551080724e-05,
824
+ "loss": 0.8427,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.87,
829
+ "learning_rate": 1.2554901635911188e-05,
830
+ "loss": 0.8152,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.88,
835
+ "learning_rate": 1.2454854871407993e-05,
836
+ "loss": 0.8222,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.89,
841
+ "learning_rate": 1.2354545942011058e-05,
842
+ "loss": 0.8637,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.89,
847
+ "learning_rate": 1.2253985560158064e-05,
848
+ "loss": 0.804,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.9,
853
+ "learning_rate": 1.2153184465140413e-05,
854
+ "loss": 0.9133,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.9,
859
+ "learning_rate": 1.2052153421956343e-05,
860
+ "loss": 0.805,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.91,
865
+ "learning_rate": 1.1950903220161286e-05,
866
+ "loss": 0.8318,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.92,
871
+ "learning_rate": 1.1849444672715587e-05,
872
+ "loss": 0.8944,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.92,
877
+ "learning_rate": 1.1747788614829758e-05,
878
+ "loss": 0.844,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.93,
883
+ "learning_rate": 1.164594590280734e-05,
884
+ "loss": 0.8142,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.94,
889
+ "learning_rate": 1.1543927412885489e-05,
890
+ "loss": 0.7869,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.94,
895
+ "learning_rate": 1.1441744040073469e-05,
896
+ "loss": 0.8344,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.95,
901
+ "learning_rate": 1.1339406696989128e-05,
902
+ "loss": 0.7961,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.96,
907
+ "learning_rate": 1.123692631269348e-05,
908
+ "loss": 0.8034,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.96,
913
+ "learning_rate": 1.1134313831523547e-05,
914
+ "loss": 0.8347,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.97,
919
+ "learning_rate": 1.103158021192357e-05,
920
+ "loss": 0.8523,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 0.97,
925
+ "learning_rate": 1.0928736425274702e-05,
926
+ "loss": 0.8964,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 0.98,
931
+ "learning_rate": 1.0825793454723325e-05,
932
+ "loss": 0.8771,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 0.99,
937
+ "learning_rate": 1.0722762294008107e-05,
938
+ "loss": 0.7916,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 0.99,
943
+ "learning_rate": 1.0619653946285948e-05,
944
+ "loss": 0.7654,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 1.0,
949
+ "learning_rate": 1.0516479422956882e-05,
950
+ "loss": 0.9166,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 1.01,
955
+ "learning_rate": 1.0413249742488132e-05,
956
+ "loss": 0.7424,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 1.01,
961
+ "learning_rate": 1.0309975929237408e-05,
962
+ "loss": 0.7315,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 1.02,
967
+ "learning_rate": 1.0206669012275546e-05,
968
+ "loss": 0.713,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 1.03,
973
+ "learning_rate": 1.0103340024208674e-05,
974
+ "loss": 0.652,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 1.03,
979
+ "learning_rate": 1e-05,
980
+ "loss": 0.7137,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 1.04,
985
+ "learning_rate": 9.89665997579133e-06,
986
+ "loss": 0.6697,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 1.04,
991
+ "learning_rate": 9.79333098772446e-06,
992
+ "loss": 0.7271,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 1.05,
997
+ "learning_rate": 9.690024070762597e-06,
998
+ "loss": 0.7771,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 1.06,
1003
+ "learning_rate": 9.586750257511868e-06,
1004
+ "loss": 0.8035,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 1.06,
1009
+ "learning_rate": 9.483520577043121e-06,
1010
+ "loss": 0.75,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 1.07,
1015
+ "learning_rate": 9.380346053714055e-06,
1016
+ "loss": 0.7385,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 1.08,
1021
+ "learning_rate": 9.277237705991895e-06,
1022
+ "loss": 0.8113,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 1.08,
1027
+ "learning_rate": 9.174206545276678e-06,
1028
+ "loss": 0.6981,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 1.09,
1033
+ "learning_rate": 9.0712635747253e-06,
1034
+ "loss": 0.7025,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 1.1,
1039
+ "learning_rate": 8.968419788076431e-06,
1040
+ "loss": 0.7553,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 1.1,
1045
+ "learning_rate": 8.865686168476458e-06,
1046
+ "loss": 0.664,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 1.11,
1051
+ "learning_rate": 8.763073687306523e-06,
1052
+ "loss": 0.7415,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 1.11,
1057
+ "learning_rate": 8.660593303010876e-06,
1058
+ "loss": 0.7462,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 1.12,
1063
+ "learning_rate": 8.558255959926533e-06,
1064
+ "loss": 0.7285,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 1.13,
1069
+ "learning_rate": 8.456072587114516e-06,
1070
+ "loss": 0.7491,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 1.13,
1075
+ "learning_rate": 8.35405409719266e-06,
1076
+ "loss": 0.6176,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 1.14,
1081
+ "learning_rate": 8.252211385170242e-06,
1082
+ "loss": 0.8309,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 1.15,
1087
+ "learning_rate": 8.150555327284417e-06,
1088
+ "loss": 0.733,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 1.15,
1093
+ "learning_rate": 8.04909677983872e-06,
1094
+ "loss": 0.7528,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 1.16,
1099
+ "learning_rate": 7.947846578043658e-06,
1100
+ "loss": 0.7584,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 1.17,
1105
+ "learning_rate": 7.846815534859592e-06,
1106
+ "loss": 0.7583,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 1.17,
1111
+ "learning_rate": 7.746014439841941e-06,
1112
+ "loss": 0.7922,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 1.18,
1117
+ "learning_rate": 7.645454057988942e-06,
1118
+ "loss": 0.765,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 1.18,
1123
+ "learning_rate": 7.545145128592009e-06,
1124
+ "loss": 0.8083,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 1.19,
1129
+ "learning_rate": 7.445098364088815e-06,
1130
+ "loss": 0.7482,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 1.2,
1135
+ "learning_rate": 7.34532444891928e-06,
1136
+ "loss": 0.7737,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 1.2,
1141
+ "learning_rate": 7.245834038384523e-06,
1142
+ "loss": 0.6522,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 1.21,
1147
+ "learning_rate": 7.14663775750895e-06,
1148
+ "loss": 0.7313,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 1.22,
1153
+ "learning_rate": 7.0477461999055365e-06,
1154
+ "loss": 0.7913,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 1.22,
1159
+ "learning_rate": 6.949169926644513e-06,
1160
+ "loss": 0.699,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 1.23,
1165
+ "learning_rate": 6.8509194651254825e-06,
1166
+ "loss": 0.7575,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 1.24,
1171
+ "learning_rate": 6.7530053079531664e-06,
1172
+ "loss": 0.7397,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 1.24,
1177
+ "learning_rate": 6.655437911816838e-06,
1178
+ "loss": 0.7587,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 1.25,
1183
+ "learning_rate": 6.558227696373617e-06,
1184
+ "loss": 0.6678,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 1.25,
1189
+ "learning_rate": 6.461385043135704e-06,
1190
+ "loss": 0.7761,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 1.26,
1195
+ "learning_rate": 6.364920294361701e-06,
1196
+ "loss": 0.7318,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 1.27,
1201
+ "learning_rate": 6.2688437519521e-06,
1202
+ "loss": 0.7532,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 1.27,
1207
+ "learning_rate": 6.173165676349103e-06,
1208
+ "loss": 0.7517,
1209
+ "step": 200
1210
+ },
1211
+ {
1212
+ "epoch": 1.28,
1213
+ "learning_rate": 6.077896285440874e-06,
1214
+ "loss": 0.6801,
1215
+ "step": 201
1216
+ },
1217
+ {
1218
+ "epoch": 1.29,
1219
+ "learning_rate": 5.983045753470308e-06,
1220
+ "loss": 0.7787,
1221
+ "step": 202
1222
+ },
1223
+ {
1224
+ "epoch": 1.29,
1225
+ "learning_rate": 5.888624209948495e-06,
1226
+ "loss": 0.7673,
1227
+ "step": 203
1228
+ },
1229
+ {
1230
+ "epoch": 1.3,
1231
+ "learning_rate": 5.794641738572925e-06,
1232
+ "loss": 0.781,
1233
+ "step": 204
1234
+ },
1235
+ {
1236
+ "epoch": 1.31,
1237
+ "learning_rate": 5.701108376150635e-06,
1238
+ "loss": 0.7651,
1239
+ "step": 205
1240
+ },
1241
+ {
1242
+ "epoch": 1.31,
1243
+ "learning_rate": 5.608034111526298e-06,
1244
+ "loss": 0.756,
1245
+ "step": 206
1246
+ },
1247
+ {
1248
+ "epoch": 1.32,
1249
+ "learning_rate": 5.515428884515495e-06,
1250
+ "loss": 0.8037,
1251
+ "step": 207
1252
+ },
1253
+ {
1254
+ "epoch": 1.32,
1255
+ "learning_rate": 5.423302584843186e-06,
1256
+ "loss": 0.7231,
1257
+ "step": 208
1258
+ },
1259
+ {
1260
+ "epoch": 1.33,
1261
+ "learning_rate": 5.331665051087549e-06,
1262
+ "loss": 0.6989,
1263
+ "step": 209
1264
+ },
1265
+ {
1266
+ "epoch": 1.34,
1267
+ "learning_rate": 5.240526069629265e-06,
1268
+ "loss": 0.7202,
1269
+ "step": 210
1270
+ },
1271
+ {
1272
+ "epoch": 1.34,
1273
+ "learning_rate": 5.149895373606405e-06,
1274
+ "loss": 0.8339,
1275
+ "step": 211
1276
+ },
1277
+ {
1278
+ "epoch": 1.35,
1279
+ "learning_rate": 5.059782641874962e-06,
1280
+ "loss": 0.7997,
1281
+ "step": 212
1282
+ },
1283
+ {
1284
+ "epoch": 1.36,
1285
+ "learning_rate": 4.970197497975216e-06,
1286
+ "loss": 0.7051,
1287
+ "step": 213
1288
+ },
1289
+ {
1290
+ "epoch": 1.36,
1291
+ "learning_rate": 4.881149509103993e-06,
1292
+ "loss": 0.7325,
1293
+ "step": 214
1294
+ },
1295
+ {
1296
+ "epoch": 1.37,
1297
+ "learning_rate": 4.7926481850929376e-06,
1298
+ "loss": 0.8355,
1299
+ "step": 215
1300
+ },
1301
+ {
1302
+ "epoch": 1.38,
1303
+ "learning_rate": 4.704702977392914e-06,
1304
+ "loss": 0.7599,
1305
+ "step": 216
1306
+ },
1307
+ {
1308
+ "epoch": 1.38,
1309
+ "learning_rate": 4.617323278064657e-06,
1310
+ "loss": 0.7146,
1311
+ "step": 217
1312
+ },
1313
+ {
1314
+ "epoch": 1.39,
1315
+ "learning_rate": 4.530518418775734e-06,
1316
+ "loss": 0.7002,
1317
+ "step": 218
1318
+ },
1319
+ {
1320
+ "epoch": 1.39,
1321
+ "learning_rate": 4.444297669803981e-06,
1322
+ "loss": 0.7764,
1323
+ "step": 219
1324
+ },
1325
+ {
1326
+ "epoch": 1.4,
1327
+ "learning_rate": 4.35867023904749e-06,
1328
+ "loss": 0.8028,
1329
+ "step": 220
1330
+ },
1331
+ {
1332
+ "epoch": 1.41,
1333
+ "learning_rate": 4.2736452710412645e-06,
1334
+ "loss": 0.7582,
1335
+ "step": 221
1336
+ },
1337
+ {
1338
+ "epoch": 1.41,
1339
+ "learning_rate": 4.189231845980618e-06,
1340
+ "loss": 0.7331,
1341
+ "step": 222
1342
+ },
1343
+ {
1344
+ "epoch": 1.42,
1345
+ "learning_rate": 4.105438978751465e-06,
1346
+ "loss": 0.7278,
1347
+ "step": 223
1348
+ },
1349
+ {
1350
+ "epoch": 1.43,
1351
+ "learning_rate": 4.0222756179675915e-06,
1352
+ "loss": 0.7189,
1353
+ "step": 224
1354
+ },
1355
+ {
1356
+ "epoch": 1.43,
1357
+ "learning_rate": 3.939750645014977e-06,
1358
+ "loss": 0.7571,
1359
+ "step": 225
1360
+ },
1361
+ {
1362
+ "epoch": 1.44,
1363
+ "learning_rate": 3.857872873103322e-06,
1364
+ "loss": 0.8225,
1365
+ "step": 226
1366
+ },
1367
+ {
1368
+ "epoch": 1.45,
1369
+ "learning_rate": 3.776651046324843e-06,
1370
+ "loss": 0.7085,
1371
+ "step": 227
1372
+ },
1373
+ {
1374
+ "epoch": 1.45,
1375
+ "learning_rate": 3.69609383872045e-06,
1376
+ "loss": 0.6993,
1377
+ "step": 228
1378
+ },
1379
+ {
1380
+ "epoch": 1.46,
1381
+ "learning_rate": 3.6162098533534095e-06,
1382
+ "loss": 0.7832,
1383
+ "step": 229
1384
+ },
1385
+ {
1386
+ "epoch": 1.46,
1387
+ "learning_rate": 3.5370076213905904e-06,
1388
+ "loss": 0.6988,
1389
+ "step": 230
1390
+ },
1391
+ {
1392
+ "epoch": 1.47,
1393
+ "learning_rate": 3.4584956011913693e-06,
1394
+ "loss": 0.7421,
1395
+ "step": 231
1396
+ },
1397
+ {
1398
+ "epoch": 1.48,
1399
+ "learning_rate": 3.380682177404335e-06,
1400
+ "loss": 0.8109,
1401
+ "step": 232
1402
+ },
1403
+ {
1404
+ "epoch": 1.48,
1405
+ "learning_rate": 3.3035756600718515e-06,
1406
+ "loss": 0.6832,
1407
+ "step": 233
1408
+ },
1409
+ {
1410
+ "epoch": 1.49,
1411
+ "learning_rate": 3.2271842837425917e-06,
1412
+ "loss": 0.7749,
1413
+ "step": 234
1414
+ },
1415
+ {
1416
+ "epoch": 1.5,
1417
+ "learning_rate": 3.151516206592128e-06,
1418
+ "loss": 0.6914,
1419
+ "step": 235
1420
+ },
1421
+ {
1422
+ "epoch": 1.5,
1423
+ "learning_rate": 3.0765795095517026e-06,
1424
+ "loss": 0.693,
1425
+ "step": 236
1426
+ },
1427
+ {
1428
+ "epoch": 1.51,
1429
+ "learning_rate": 3.0023821954452036e-06,
1430
+ "loss": 0.7797,
1431
+ "step": 237
1432
+ },
1433
+ {
1434
+ "epoch": 1.52,
1435
+ "learning_rate": 2.9289321881345257e-06,
1436
+ "loss": 0.6528,
1437
+ "step": 238
1438
+ },
1439
+ {
1440
+ "epoch": 1.52,
1441
+ "learning_rate": 2.856237331673336e-06,
1442
+ "loss": 0.7217,
1443
+ "step": 239
1444
+ },
1445
+ {
1446
+ "epoch": 1.53,
1447
+ "learning_rate": 2.7843053894693805e-06,
1448
+ "loss": 0.738,
1449
+ "step": 240
1450
+ },
1451
+ {
1452
+ "epoch": 1.54,
1453
+ "learning_rate": 2.713144043455388e-06,
1454
+ "loss": 0.6506,
1455
+ "step": 241
1456
+ },
1457
+ {
1458
+ "epoch": 1.54,
1459
+ "learning_rate": 2.642760893268684e-06,
1460
+ "loss": 0.7358,
1461
+ "step": 242
1462
+ },
1463
+ {
1464
+ "epoch": 1.55,
1465
+ "learning_rate": 2.573163455439601e-06,
1466
+ "loss": 0.6081,
1467
+ "step": 243
1468
+ },
1469
+ {
1470
+ "epoch": 1.55,
1471
+ "learning_rate": 2.504359162588741e-06,
1472
+ "loss": 0.7771,
1473
+ "step": 244
1474
+ },
1475
+ {
1476
+ "epoch": 1.56,
1477
+ "learning_rate": 2.4363553626332157e-06,
1478
+ "loss": 0.7458,
1479
+ "step": 245
1480
+ },
1481
+ {
1482
+ "epoch": 1.57,
1483
+ "learning_rate": 2.369159318001937e-06,
1484
+ "loss": 0.7548,
1485
+ "step": 246
1486
+ },
1487
+ {
1488
+ "epoch": 1.57,
1489
+ "learning_rate": 2.3027782048600247e-06,
1490
+ "loss": 0.8367,
1491
+ "step": 247
1492
+ },
1493
+ {
1494
+ "epoch": 1.58,
1495
+ "learning_rate": 2.237219112342426e-06,
1496
+ "loss": 0.7165,
1497
+ "step": 248
1498
+ },
1499
+ {
1500
+ "epoch": 1.59,
1501
+ "learning_rate": 2.172489041796856e-06,
1502
+ "loss": 0.7262,
1503
+ "step": 249
1504
+ },
1505
+ {
1506
+ "epoch": 1.59,
1507
+ "learning_rate": 2.1085949060360654e-06,
1508
+ "loss": 0.6275,
1509
+ "step": 250
1510
+ },
1511
+ {
1512
+ "epoch": 1.6,
1513
+ "learning_rate": 2.045543528599607e-06,
1514
+ "loss": 0.676,
1515
+ "step": 251
1516
+ },
1517
+ {
1518
+ "epoch": 1.61,
1519
+ "learning_rate": 1.983341643025117e-06,
1520
+ "loss": 0.7728,
1521
+ "step": 252
1522
+ },
1523
+ {
1524
+ "epoch": 1.61,
1525
+ "learning_rate": 1.921995892129208e-06,
1526
+ "loss": 0.7293,
1527
+ "step": 253
1528
+ },
1529
+ {
1530
+ "epoch": 1.62,
1531
+ "learning_rate": 1.861512827298051e-06,
1532
+ "loss": 0.7412,
1533
+ "step": 254
1534
+ },
1535
+ {
1536
+ "epoch": 1.62,
1537
+ "learning_rate": 1.8018989077877368e-06,
1538
+ "loss": 0.7636,
1539
+ "step": 255
1540
+ },
1541
+ {
1542
+ "epoch": 1.63,
1543
+ "learning_rate": 1.743160500034443e-06,
1544
+ "loss": 0.6914,
1545
+ "step": 256
1546
+ },
1547
+ {
1548
+ "epoch": 1.64,
1549
+ "learning_rate": 1.6853038769745466e-06,
1550
+ "loss": 0.7537,
1551
+ "step": 257
1552
+ },
1553
+ {
1554
+ "epoch": 1.64,
1555
+ "learning_rate": 1.6283352173747148e-06,
1556
+ "loss": 0.6998,
1557
+ "step": 258
1558
+ },
1559
+ {
1560
+ "epoch": 1.65,
1561
+ "learning_rate": 1.5722606051720268e-06,
1562
+ "loss": 0.7397,
1563
+ "step": 259
1564
+ },
1565
+ {
1566
+ "epoch": 1.66,
1567
+ "learning_rate": 1.5170860288242638e-06,
1568
+ "loss": 0.7952,
1569
+ "step": 260
1570
+ },
1571
+ {
1572
+ "epoch": 1.66,
1573
+ "learning_rate": 1.4628173806703594e-06,
1574
+ "loss": 0.8124,
1575
+ "step": 261
1576
+ },
1577
+ {
1578
+ "epoch": 1.67,
1579
+ "learning_rate": 1.409460456301147e-06,
1580
+ "loss": 0.7264,
1581
+ "step": 262
1582
+ },
1583
+ {
1584
+ "epoch": 1.68,
1585
+ "learning_rate": 1.3570209539404067e-06,
1586
+ "loss": 0.7245,
1587
+ "step": 263
1588
+ },
1589
+ {
1590
+ "epoch": 1.68,
1591
+ "learning_rate": 1.305504473836331e-06,
1592
+ "loss": 0.7775,
1593
+ "step": 264
1594
+ },
1595
+ {
1596
+ "epoch": 1.69,
1597
+ "learning_rate": 1.2549165176634582e-06,
1598
+ "loss": 0.7452,
1599
+ "step": 265
1600
+ },
1601
+ {
1602
+ "epoch": 1.69,
1603
+ "learning_rate": 1.2052624879351105e-06,
1604
+ "loss": 0.7577,
1605
+ "step": 266
1606
+ },
1607
+ {
1608
+ "epoch": 1.7,
1609
+ "learning_rate": 1.1565476874264448e-06,
1610
+ "loss": 0.7348,
1611
+ "step": 267
1612
+ },
1613
+ {
1614
+ "epoch": 1.71,
1615
+ "learning_rate": 1.1087773186081474e-06,
1616
+ "loss": 0.7747,
1617
+ "step": 268
1618
+ },
1619
+ {
1620
+ "epoch": 1.71,
1621
+ "learning_rate": 1.0619564830908303e-06,
1622
+ "loss": 0.7856,
1623
+ "step": 269
1624
+ },
1625
+ {
1626
+ "epoch": 1.72,
1627
+ "learning_rate": 1.0160901810802114e-06,
1628
+ "loss": 0.7297,
1629
+ "step": 270
1630
+ },
1631
+ {
1632
+ "epoch": 1.73,
1633
+ "learning_rate": 9.711833108431234e-07,
1634
+ "loss": 0.7543,
1635
+ "step": 271
1636
+ },
1637
+ {
1638
+ "epoch": 1.73,
1639
+ "learning_rate": 9.272406681844015e-07,
1640
+ "loss": 0.7633,
1641
+ "step": 272
1642
+ },
1643
+ {
1644
+ "epoch": 1.74,
1645
+ "learning_rate": 8.842669459347186e-07,
1646
+ "loss": 0.7307,
1647
+ "step": 273
1648
+ },
1649
+ {
1650
+ "epoch": 1.75,
1651
+ "learning_rate": 8.42266733449425e-07,
1652
+ "loss": 0.783,
1653
+ "step": 274
1654
+ },
1655
+ {
1656
+ "epoch": 1.75,
1657
+ "learning_rate": 8.012445161184179e-07,
1658
+ "loss": 0.7203,
1659
+ "step": 275
1660
+ },
1661
+ {
1662
+ "epoch": 1.76,
1663
+ "learning_rate": 7.612046748871327e-07,
1664
+ "loss": 0.7233,
1665
+ "step": 276
1666
+ },
1667
+ {
1668
+ "epoch": 1.76,
1669
+ "learning_rate": 7.221514857886857e-07,
1670
+ "loss": 0.7003,
1671
+ "step": 277
1672
+ },
1673
+ {
1674
+ "epoch": 1.77,
1675
+ "learning_rate": 6.840891194872112e-07,
1676
+ "loss": 0.7572,
1677
+ "step": 278
1678
+ },
1679
+ {
1680
+ "epoch": 1.78,
1681
+ "learning_rate": 6.470216408324626e-07,
1682
+ "loss": 0.6534,
1683
+ "step": 279
1684
+ },
1685
+ {
1686
+ "epoch": 1.78,
1687
+ "learning_rate": 6.109530084257043e-07,
1688
+ "loss": 0.7857,
1689
+ "step": 280
1690
+ },
1691
+ {
1692
+ "epoch": 1.79,
1693
+ "learning_rate": 5.758870741969635e-07,
1694
+ "loss": 0.7527,
1695
+ "step": 281
1696
+ },
1697
+ {
1698
+ "epoch": 1.8,
1699
+ "learning_rate": 5.418275829936537e-07,
1700
+ "loss": 0.7571,
1701
+ "step": 282
1702
+ },
1703
+ {
1704
+ "epoch": 1.8,
1705
+ "learning_rate": 5.087781721806539e-07,
1706
+ "loss": 0.7525,
1707
+ "step": 283
1708
+ },
1709
+ {
1710
+ "epoch": 1.81,
1711
+ "learning_rate": 4.7674237125185597e-07,
1712
+ "loss": 0.7605,
1713
+ "step": 284
1714
+ },
1715
+ {
1716
+ "epoch": 1.82,
1717
+ "learning_rate": 4.45723601453234e-07,
1718
+ "loss": 0.6809,
1719
+ "step": 285
1720
+ },
1721
+ {
1722
+ "epoch": 1.82,
1723
+ "learning_rate": 4.1572517541747294e-07,
1724
+ "loss": 0.7616,
1725
+ "step": 286
1726
+ },
1727
+ {
1728
+ "epoch": 1.83,
1729
+ "learning_rate": 3.867502968102055e-07,
1730
+ "loss": 0.6778,
1731
+ "step": 287
1732
+ },
1733
+ {
1734
+ "epoch": 1.83,
1735
+ "learning_rate": 3.588020599878639e-07,
1736
+ "loss": 0.7501,
1737
+ "step": 288
1738
+ },
1739
+ {
1740
+ "epoch": 1.84,
1741
+ "learning_rate": 3.3188344966723516e-07,
1742
+ "loss": 0.6761,
1743
+ "step": 289
1744
+ },
1745
+ {
1746
+ "epoch": 1.85,
1747
+ "learning_rate": 3.059973406066963e-07,
1748
+ "loss": 0.7752,
1749
+ "step": 290
1750
+ },
1751
+ {
1752
+ "epoch": 1.85,
1753
+ "learning_rate": 2.811464972992195e-07,
1754
+ "loss": 0.7076,
1755
+ "step": 291
1756
+ },
1757
+ {
1758
+ "epoch": 1.86,
1759
+ "learning_rate": 2.573335736771254e-07,
1760
+ "loss": 0.7071,
1761
+ "step": 292
1762
+ },
1763
+ {
1764
+ "epoch": 1.87,
1765
+ "learning_rate": 2.3456111282867178e-07,
1766
+ "loss": 0.7576,
1767
+ "step": 293
1768
+ },
1769
+ {
1770
+ "epoch": 1.87,
1771
+ "learning_rate": 2.1283154672645522e-07,
1772
+ "loss": 0.7305,
1773
+ "step": 294
1774
+ },
1775
+ {
1776
+ "epoch": 1.88,
1777
+ "learning_rate": 1.921471959676957e-07,
1778
+ "loss": 0.6966,
1779
+ "step": 295
1780
+ },
1781
+ {
1782
+ "epoch": 1.89,
1783
+ "learning_rate": 1.7251026952640583e-07,
1784
+ "loss": 0.8391,
1785
+ "step": 296
1786
+ },
1787
+ {
1788
+ "epoch": 1.89,
1789
+ "learning_rate": 1.539228645174895e-07,
1790
+ "loss": 0.8079,
1791
+ "step": 297
1792
+ },
1793
+ {
1794
+ "epoch": 1.9,
1795
+ "learning_rate": 1.3638696597277678e-07,
1796
+ "loss": 0.8451,
1797
+ "step": 298
1798
+ },
1799
+ {
1800
+ "epoch": 1.9,
1801
+ "learning_rate": 1.1990444662903445e-07,
1802
+ "loss": 0.788,
1803
+ "step": 299
1804
+ },
1805
+ {
1806
+ "epoch": 1.91,
1807
+ "learning_rate": 1.0447706672797264e-07,
1808
+ "loss": 0.7608,
1809
+ "step": 300
1810
+ },
1811
+ {
1812
+ "epoch": 1.92,
1813
+ "learning_rate": 9.010647382825421e-08,
1814
+ "loss": 0.78,
1815
+ "step": 301
1816
+ },
1817
+ {
1818
+ "epoch": 1.92,
1819
+ "learning_rate": 7.679420262954984e-08,
1820
+ "loss": 0.6972,
1821
+ "step": 302
1822
+ },
1823
+ {
1824
+ "epoch": 1.93,
1825
+ "learning_rate": 6.454167480863694e-08,
1826
+ "loss": 0.7271,
1827
+ "step": 303
1828
+ },
1829
+ {
1830
+ "epoch": 1.94,
1831
+ "learning_rate": 5.3350198867574424e-08,
1832
+ "loss": 0.7114,
1833
+ "step": 304
1834
+ },
1835
+ {
1836
+ "epoch": 1.94,
1837
+ "learning_rate": 4.32209699939623e-08,
1838
+ "loss": 0.7364,
1839
+ "step": 305
1840
+ },
1841
+ {
1842
+ "epoch": 1.95,
1843
+ "learning_rate": 3.4155069933301535e-08,
1844
+ "loss": 0.6567,
1845
+ "step": 306
1846
+ },
1847
+ {
1848
+ "epoch": 1.96,
1849
+ "learning_rate": 2.6153466873468646e-08,
1850
+ "loss": 0.7657,
1851
+ "step": 307
1852
+ },
1853
+ {
1854
+ "epoch": 1.96,
1855
+ "learning_rate": 1.9217015341318478e-08,
1856
+ "loss": 0.7657,
1857
+ "step": 308
1858
+ },
1859
+ {
1860
+ "epoch": 1.97,
1861
+ "learning_rate": 1.3346456111430484e-08,
1862
+ "loss": 0.7456,
1863
+ "step": 309
1864
+ },
1865
+ {
1866
+ "epoch": 1.97,
1867
+ "learning_rate": 8.542416126989805e-09,
1868
+ "loss": 0.743,
1869
+ "step": 310
1870
+ },
1871
+ {
1872
+ "epoch": 1.98,
1873
+ "learning_rate": 4.80540843283972e-09,
1874
+ "loss": 0.8056,
1875
+ "step": 311
1876
+ },
1877
+ {
1878
+ "epoch": 1.99,
1879
+ "learning_rate": 2.1358321206899067e-09,
1880
+ "loss": 0.7316,
1881
+ "step": 312
1882
+ },
1883
+ {
1884
+ "epoch": 1.99,
1885
+ "learning_rate": 5.339722864927677e-10,
1886
+ "loss": 0.7186,
1887
+ "step": 313
1888
+ },
1889
+ {
1890
+ "epoch": 2.0,
1891
+ "learning_rate": 0.0,
1892
+ "loss": 0.6761,
1893
+ "step": 314
1894
+ },
1895
+ {
1896
+ "epoch": 2.0,
1897
+ "step": 314,
1898
+ "total_flos": 3.703872705758495e+17,
1899
+ "train_loss": 0.8081462842643641,
1900
+ "train_runtime": 1231.9663,
1901
+ "train_samples_per_second": 8.117,
1902
+ "train_steps_per_second": 0.255
1903
+ }
1904
+ ],
1905
+ "logging_steps": 1.0,
1906
+ "max_steps": 314,
1907
+ "num_input_tokens_seen": 0,
1908
+ "num_train_epochs": 2,
1909
+ "save_steps": 1000,
1910
+ "total_flos": 3.703872705758495e+17,
1911
+ "train_batch_size": 8,
1912
+ "trial_name": null,
1913
+ "trial_params": null
1914
+ }
ckpt/llava-v1.6-mistral-7b-STIC-Iter2_lora/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: liuhaotian/llava-v1.6-mistral-7b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
ckpt/llava-v1.6-mistral-7b-STIC-Iter2_lora/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "liuhaotian/llava-v1.6-mistral-7b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 128,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "q_proj",
25
+ "gate_proj",
26
+ "up_proj",
27
+ "o_proj",
28
+ "k_proj",
29
+ "down_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
ckpt/llava-v1.6-mistral-7b-STIC-Iter2_lora/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f68bcc304cc1c4bc35380106b600735a47a400179deb5e9776bba374f9a70e7
3
+ size 708923528
ckpt/llava-v1.6-mistral-7b-STIC-Iter2_lora/config.json ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "liuhaotian/llava-v1.6-mistral-7b",
3
+ "architectures": [
4
+ "LlavaMistralForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "freeze_mm_mlp_adapter": false,
11
+ "freeze_mm_vision_resampler": false,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 4096,
14
+ "image_aspect_ratio": "pad",
15
+ "image_crop_resolution": 224,
16
+ "image_grid_pinpoints": [
17
+ [
18
+ 336,
19
+ 672
20
+ ],
21
+ [
22
+ 672,
23
+ 336
24
+ ],
25
+ [
26
+ 672,
27
+ 672
28
+ ],
29
+ [
30
+ 1008,
31
+ 336
32
+ ],
33
+ [
34
+ 336,
35
+ 1008
36
+ ]
37
+ ],
38
+ "image_split_resolution": 224,
39
+ "initializer_range": 0.02,
40
+ "intermediate_size": 14336,
41
+ "max_position_embeddings": 32768,
42
+ "mm_hidden_size": 1024,
43
+ "mm_patch_merge_type": "flat",
44
+ "mm_projector_lr": 2e-05,
45
+ "mm_projector_type": "mlp2x_gelu",
46
+ "mm_resampler_type": null,
47
+ "mm_use_im_patch_token": false,
48
+ "mm_use_im_start_end": false,
49
+ "mm_vision_select_feature": "patch",
50
+ "mm_vision_select_layer": -2,
51
+ "mm_vision_tower": "openai/clip-vit-large-patch14-336",
52
+ "mm_vision_tower_lr": 2e-06,
53
+ "model_type": "llava_llama",
54
+ "num_attention_heads": 32,
55
+ "num_hidden_layers": 32,
56
+ "num_key_value_heads": 8,
57
+ "pretraining_tp": 1,
58
+ "rms_norm_eps": 1e-05,
59
+ "rope_scaling": null,
60
+ "rope_theta": 1000000.0,
61
+ "sliding_window": null,
62
+ "tie_word_embeddings": false,
63
+ "tokenizer_model_max_length": 2048,
64
+ "tokenizer_padding_side": "right",
65
+ "torch_dtype": "bfloat16",
66
+ "transformers_version": "4.37.2",
67
+ "tune_mm_mlp_adapter": false,
68
+ "tune_mm_vision_resampler": false,
69
+ "unfreeze_mm_vision_tower": true,
70
+ "use_cache": true,
71
+ "use_mm_proj": true,
72
+ "vocab_size": 32000
73
+ }
ckpt/llava-v1.6-mistral-7b-STIC-Iter2_lora/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60fb82c3660319e6d0b239950b20c28181e97f1ade117dc0660b40e2ad94a89b
3
+ size 912
ckpt/llava-v1.6-mistral-7b-STIC-Iter2_lora/trainer_state.json ADDED
@@ -0,0 +1,972 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 157,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 4.000000000000001e-06,
14
+ "loss": 1.6098,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 8.000000000000001e-06,
20
+ "loss": 1.5733,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.02,
25
+ "learning_rate": 1.2e-05,
26
+ "loss": 1.2851,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.03,
31
+ "learning_rate": 1.6000000000000003e-05,
32
+ "loss": 1.1375,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.03,
37
+ "learning_rate": 2e-05,
38
+ "loss": 1.0769,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.04,
43
+ "learning_rate": 1.9997864167879313e-05,
44
+ "loss": 1.0143,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.04,
49
+ "learning_rate": 1.999145758387301e-05,
50
+ "loss": 1.1692,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.05,
55
+ "learning_rate": 1.9980782984658682e-05,
56
+ "loss": 1.1487,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.06,
61
+ "learning_rate": 1.99658449300667e-05,
62
+ "loss": 0.8639,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.06,
67
+ "learning_rate": 1.994664980113243e-05,
68
+ "loss": 0.9225,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.07,
73
+ "learning_rate": 1.992320579737045e-05,
74
+ "loss": 0.9068,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.08,
79
+ "learning_rate": 1.9895522933272028e-05,
80
+ "loss": 0.9024,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.08,
85
+ "learning_rate": 1.9863613034027224e-05,
86
+ "loss": 0.9073,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.09,
91
+ "learning_rate": 1.9827489730473597e-05,
92
+ "loss": 0.9532,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.1,
97
+ "learning_rate": 1.9787168453273546e-05,
98
+ "loss": 0.9257,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.1,
103
+ "learning_rate": 1.9742666426322877e-05,
104
+ "loss": 0.9074,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.11,
109
+ "learning_rate": 1.9694002659393306e-05,
110
+ "loss": 0.8018,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.11,
115
+ "learning_rate": 1.9641197940012136e-05,
116
+ "loss": 0.8862,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.12,
121
+ "learning_rate": 1.958427482458253e-05,
122
+ "loss": 0.9051,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.13,
127
+ "learning_rate": 1.9523257628748148e-05,
128
+ "loss": 0.8819,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.13,
133
+ "learning_rate": 1.9458172417006347e-05,
134
+ "loss": 0.9292,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.14,
139
+ "learning_rate": 1.9389046991574298e-05,
140
+ "loss": 0.8439,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.15,
145
+ "learning_rate": 1.9315910880512792e-05,
146
+ "loss": 0.8997,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.15,
151
+ "learning_rate": 1.9238795325112867e-05,
152
+ "loss": 0.8851,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.16,
157
+ "learning_rate": 1.9157733266550577e-05,
158
+ "loss": 0.8378,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.17,
163
+ "learning_rate": 1.9072759331815602e-05,
164
+ "loss": 0.9623,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.17,
169
+ "learning_rate": 1.898390981891979e-05,
170
+ "loss": 0.8123,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.18,
175
+ "learning_rate": 1.8891222681391853e-05,
176
+ "loss": 0.8365,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.18,
181
+ "learning_rate": 1.879473751206489e-05,
182
+ "loss": 0.8701,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.19,
187
+ "learning_rate": 1.869449552616367e-05,
188
+ "loss": 0.7937,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.2,
193
+ "learning_rate": 1.8590539543698852e-05,
194
+ "loss": 0.8309,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.2,
199
+ "learning_rate": 1.8482913971175737e-05,
200
+ "loss": 0.8487,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.21,
205
+ "learning_rate": 1.8371664782625287e-05,
206
+ "loss": 0.9729,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.22,
211
+ "learning_rate": 1.825683949996556e-05,
212
+ "loss": 0.8914,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.22,
217
+ "learning_rate": 1.813848717270195e-05,
218
+ "loss": 0.9184,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.23,
223
+ "learning_rate": 1.8016658356974885e-05,
224
+ "loss": 0.9261,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.24,
229
+ "learning_rate": 1.789140509396394e-05,
230
+ "loss": 0.8347,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.24,
235
+ "learning_rate": 1.7762780887657576e-05,
236
+ "loss": 0.9141,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.25,
241
+ "learning_rate": 1.7630840681998068e-05,
242
+ "loss": 0.872,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.25,
247
+ "learning_rate": 1.7495640837411265e-05,
248
+ "loss": 0.8933,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.26,
253
+ "learning_rate": 1.735723910673132e-05,
254
+ "loss": 0.8687,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.27,
259
+ "learning_rate": 1.7215694610530624e-05,
260
+ "loss": 0.8399,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.27,
265
+ "learning_rate": 1.7071067811865477e-05,
266
+ "loss": 0.8749,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.28,
271
+ "learning_rate": 1.6923420490448298e-05,
272
+ "loss": 0.8652,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.29,
277
+ "learning_rate": 1.6772815716257414e-05,
278
+ "loss": 0.9969,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.29,
283
+ "learning_rate": 1.6619317822595666e-05,
284
+ "loss": 0.7979,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.3,
289
+ "learning_rate": 1.646299237860941e-05,
290
+ "loss": 0.856,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.31,
295
+ "learning_rate": 1.6303906161279554e-05,
296
+ "loss": 0.8577,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.31,
301
+ "learning_rate": 1.6142127126896682e-05,
302
+ "loss": 0.9292,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.32,
307
+ "learning_rate": 1.597772438203241e-05,
308
+ "loss": 0.8323,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.32,
313
+ "learning_rate": 1.5810768154019386e-05,
314
+ "loss": 0.8608,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.33,
319
+ "learning_rate": 1.5641329760952514e-05,
320
+ "loss": 0.8946,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.34,
325
+ "learning_rate": 1.5469481581224274e-05,
326
+ "loss": 0.8686,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.34,
331
+ "learning_rate": 1.529529702260709e-05,
332
+ "loss": 0.8746,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.35,
337
+ "learning_rate": 1.5118850490896012e-05,
338
+ "loss": 0.8895,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.36,
343
+ "learning_rate": 1.4940217358125042e-05,
344
+ "loss": 0.9424,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.36,
349
+ "learning_rate": 1.4759473930370738e-05,
350
+ "loss": 0.7137,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.37,
355
+ "learning_rate": 1.4576697415156818e-05,
356
+ "loss": 0.9028,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.38,
361
+ "learning_rate": 1.4391965888473705e-05,
362
+ "loss": 0.8119,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.38,
367
+ "learning_rate": 1.4205358261427076e-05,
368
+ "loss": 0.8175,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.39,
373
+ "learning_rate": 1.4016954246529697e-05,
374
+ "loss": 0.8363,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.39,
379
+ "learning_rate": 1.3826834323650899e-05,
380
+ "loss": 0.8283,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.4,
385
+ "learning_rate": 1.3635079705638298e-05,
386
+ "loss": 0.9444,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.41,
391
+ "learning_rate": 1.3441772303626387e-05,
392
+ "loss": 0.8184,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.41,
397
+ "learning_rate": 1.3246994692046837e-05,
398
+ "loss": 0.9004,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.42,
403
+ "learning_rate": 1.305083007335549e-05,
404
+ "loss": 0.8012,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.43,
409
+ "learning_rate": 1.2853362242491054e-05,
410
+ "loss": 0.871,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.43,
415
+ "learning_rate": 1.2654675551080724e-05,
416
+ "loss": 0.8469,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.44,
421
+ "learning_rate": 1.2454854871407993e-05,
422
+ "loss": 0.8052,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.45,
427
+ "learning_rate": 1.2253985560158064e-05,
428
+ "loss": 0.8099,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.45,
433
+ "learning_rate": 1.2052153421956343e-05,
434
+ "loss": 0.86,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.46,
439
+ "learning_rate": 1.1849444672715587e-05,
440
+ "loss": 0.8346,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.46,
445
+ "learning_rate": 1.164594590280734e-05,
446
+ "loss": 0.877,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.47,
451
+ "learning_rate": 1.1441744040073469e-05,
452
+ "loss": 0.8152,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.48,
457
+ "learning_rate": 1.123692631269348e-05,
458
+ "loss": 0.7888,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.48,
463
+ "learning_rate": 1.103158021192357e-05,
464
+ "loss": 0.7216,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.49,
469
+ "learning_rate": 1.0825793454723325e-05,
470
+ "loss": 0.8323,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.5,
475
+ "learning_rate": 1.0619653946285948e-05,
476
+ "loss": 0.8151,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.5,
481
+ "learning_rate": 1.0413249742488132e-05,
482
+ "loss": 0.8319,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.51,
487
+ "learning_rate": 1.0206669012275546e-05,
488
+ "loss": 0.8373,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.52,
493
+ "learning_rate": 1e-05,
494
+ "loss": 0.8947,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.52,
499
+ "learning_rate": 9.79333098772446e-06,
500
+ "loss": 0.8909,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.53,
505
+ "learning_rate": 9.586750257511868e-06,
506
+ "loss": 0.8647,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.54,
511
+ "learning_rate": 9.380346053714055e-06,
512
+ "loss": 0.8208,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.54,
517
+ "learning_rate": 9.174206545276678e-06,
518
+ "loss": 0.7598,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.55,
523
+ "learning_rate": 8.968419788076431e-06,
524
+ "loss": 0.8762,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.55,
529
+ "learning_rate": 8.763073687306523e-06,
530
+ "loss": 0.9331,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.56,
535
+ "learning_rate": 8.558255959926533e-06,
536
+ "loss": 0.8625,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.57,
541
+ "learning_rate": 8.35405409719266e-06,
542
+ "loss": 0.7557,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.57,
547
+ "learning_rate": 8.150555327284417e-06,
548
+ "loss": 0.8942,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.58,
553
+ "learning_rate": 7.947846578043658e-06,
554
+ "loss": 0.875,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.59,
559
+ "learning_rate": 7.746014439841941e-06,
560
+ "loss": 0.8809,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.59,
565
+ "learning_rate": 7.545145128592009e-06,
566
+ "loss": 0.8403,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.6,
571
+ "learning_rate": 7.34532444891928e-06,
572
+ "loss": 0.7851,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.61,
577
+ "learning_rate": 7.14663775750895e-06,
578
+ "loss": 0.8728,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.61,
583
+ "learning_rate": 6.949169926644513e-06,
584
+ "loss": 0.8558,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.62,
589
+ "learning_rate": 6.7530053079531664e-06,
590
+ "loss": 0.8646,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.62,
595
+ "learning_rate": 6.558227696373617e-06,
596
+ "loss": 0.8275,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.63,
601
+ "learning_rate": 6.364920294361701e-06,
602
+ "loss": 0.8532,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.64,
607
+ "learning_rate": 6.173165676349103e-06,
608
+ "loss": 0.8733,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.64,
613
+ "learning_rate": 5.983045753470308e-06,
614
+ "loss": 0.8611,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.65,
619
+ "learning_rate": 5.794641738572925e-06,
620
+ "loss": 0.8558,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.66,
625
+ "learning_rate": 5.608034111526298e-06,
626
+ "loss": 0.9209,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.66,
631
+ "learning_rate": 5.423302584843186e-06,
632
+ "loss": 0.7208,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.67,
637
+ "learning_rate": 5.240526069629265e-06,
638
+ "loss": 0.8901,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.68,
643
+ "learning_rate": 5.059782641874962e-06,
644
+ "loss": 0.9083,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.68,
649
+ "learning_rate": 4.881149509103993e-06,
650
+ "loss": 0.826,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.69,
655
+ "learning_rate": 4.704702977392914e-06,
656
+ "loss": 0.7325,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.69,
661
+ "learning_rate": 4.530518418775734e-06,
662
+ "loss": 0.8093,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.7,
667
+ "learning_rate": 4.35867023904749e-06,
668
+ "loss": 0.9089,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.71,
673
+ "learning_rate": 4.189231845980618e-06,
674
+ "loss": 0.83,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.71,
679
+ "learning_rate": 4.0222756179675915e-06,
680
+ "loss": 0.8137,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.72,
685
+ "learning_rate": 3.857872873103322e-06,
686
+ "loss": 0.8297,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.73,
691
+ "learning_rate": 3.69609383872045e-06,
692
+ "loss": 0.8895,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.73,
697
+ "learning_rate": 3.5370076213905904e-06,
698
+ "loss": 0.7774,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.74,
703
+ "learning_rate": 3.380682177404335e-06,
704
+ "loss": 0.9295,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.75,
709
+ "learning_rate": 3.2271842837425917e-06,
710
+ "loss": 0.7561,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.75,
715
+ "learning_rate": 3.0765795095517026e-06,
716
+ "loss": 0.8494,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.76,
721
+ "learning_rate": 2.9289321881345257e-06,
722
+ "loss": 0.9142,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.76,
727
+ "learning_rate": 2.7843053894693805e-06,
728
+ "loss": 0.7994,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.77,
733
+ "learning_rate": 2.642760893268684e-06,
734
+ "loss": 0.8009,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.78,
739
+ "learning_rate": 2.504359162588741e-06,
740
+ "loss": 0.8307,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.78,
745
+ "learning_rate": 2.369159318001937e-06,
746
+ "loss": 0.8,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.79,
751
+ "learning_rate": 2.237219112342426e-06,
752
+ "loss": 0.8025,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.8,
757
+ "learning_rate": 2.1085949060360654e-06,
758
+ "loss": 0.9829,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.8,
763
+ "learning_rate": 1.983341643025117e-06,
764
+ "loss": 0.8293,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.81,
769
+ "learning_rate": 1.861512827298051e-06,
770
+ "loss": 0.8357,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.82,
775
+ "learning_rate": 1.743160500034443e-06,
776
+ "loss": 0.7661,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.82,
781
+ "learning_rate": 1.6283352173747148e-06,
782
+ "loss": 0.8046,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.83,
787
+ "learning_rate": 1.5170860288242638e-06,
788
+ "loss": 0.8106,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.83,
793
+ "learning_rate": 1.409460456301147e-06,
794
+ "loss": 0.8807,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.84,
799
+ "learning_rate": 1.305504473836331e-06,
800
+ "loss": 0.8421,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.85,
805
+ "learning_rate": 1.2052624879351105e-06,
806
+ "loss": 0.8058,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.85,
811
+ "learning_rate": 1.1087773186081474e-06,
812
+ "loss": 0.8288,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.86,
817
+ "learning_rate": 1.0160901810802114e-06,
818
+ "loss": 0.7971,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.87,
823
+ "learning_rate": 9.272406681844015e-07,
824
+ "loss": 0.8441,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.87,
829
+ "learning_rate": 8.42266733449425e-07,
830
+ "loss": 0.822,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.88,
835
+ "learning_rate": 7.612046748871327e-07,
836
+ "loss": 0.8253,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.89,
841
+ "learning_rate": 6.840891194872112e-07,
842
+ "loss": 0.872,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.89,
847
+ "learning_rate": 6.109530084257043e-07,
848
+ "loss": 0.8035,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.9,
853
+ "learning_rate": 5.418275829936537e-07,
854
+ "loss": 0.9119,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.9,
859
+ "learning_rate": 4.7674237125185597e-07,
860
+ "loss": 0.8145,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.91,
865
+ "learning_rate": 4.1572517541747294e-07,
866
+ "loss": 0.8241,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.92,
871
+ "learning_rate": 3.588020599878639e-07,
872
+ "loss": 0.8933,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.92,
877
+ "learning_rate": 3.059973406066963e-07,
878
+ "loss": 0.8401,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.93,
883
+ "learning_rate": 2.573335736771254e-07,
884
+ "loss": 0.8143,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.94,
889
+ "learning_rate": 2.1283154672645522e-07,
890
+ "loss": 0.7924,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.94,
895
+ "learning_rate": 1.7251026952640583e-07,
896
+ "loss": 0.8443,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.95,
901
+ "learning_rate": 1.3638696597277678e-07,
902
+ "loss": 0.8043,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.96,
907
+ "learning_rate": 1.0447706672797264e-07,
908
+ "loss": 0.8204,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.96,
913
+ "learning_rate": 7.679420262954984e-08,
914
+ "loss": 0.8437,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.97,
919
+ "learning_rate": 5.3350198867574424e-08,
920
+ "loss": 0.8593,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 0.97,
925
+ "learning_rate": 3.4155069933301535e-08,
926
+ "loss": 0.9213,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 0.98,
931
+ "learning_rate": 1.9217015341318478e-08,
932
+ "loss": 0.9096,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 0.99,
937
+ "learning_rate": 8.542416126989805e-09,
938
+ "loss": 0.7958,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 0.99,
943
+ "learning_rate": 2.1358321206899067e-09,
944
+ "loss": 0.7545,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 1.0,
949
+ "learning_rate": 0.0,
950
+ "loss": 0.9536,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 1.0,
955
+ "step": 157,
956
+ "total_flos": 1.8231670013217997e+17,
957
+ "train_loss": 0.8739432217968497,
958
+ "train_runtime": 689.0914,
959
+ "train_samples_per_second": 7.256,
960
+ "train_steps_per_second": 0.228
961
+ }
962
+ ],
963
+ "logging_steps": 1.0,
964
+ "max_steps": 157,
965
+ "num_input_tokens_seen": 0,
966
+ "num_train_epochs": 1,
967
+ "save_steps": 1000,
968
+ "total_flos": 1.8231670013217997e+17,
969
+ "train_batch_size": 8,
970
+ "trial_name": null,
971
+ "trial_params": null
972
+ }
ckpt/llava-v1.6-mistral-7b-STIC-gt-judge_lora/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: liuhaotian/llava-v1.6-mistral-7b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
ckpt/llava-v1.6-mistral-7b-STIC-gt-judge_lora/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "liuhaotian/llava-v1.6-mistral-7b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 128,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "down_proj",
24
+ "q_proj",
25
+ "gate_proj",
26
+ "v_proj",
27
+ "k_proj",
28
+ "o_proj",
29
+ "up_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
ckpt/llava-v1.6-mistral-7b-STIC-gt-judge_lora/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:471104284001187bd3ec82fdd1a65b0f40e66ecaf27f46854f3d7a03017fffc4
3
+ size 708923528
ckpt/llava-v1.6-mistral-7b-STIC-gt-judge_lora/config.json ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "liuhaotian/llava-v1.6-mistral-7b",
3
+ "architectures": [
4
+ "LlavaMistralForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "freeze_mm_mlp_adapter": false,
11
+ "freeze_mm_vision_resampler": false,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 4096,
14
+ "image_aspect_ratio": "pad",
15
+ "image_crop_resolution": 224,
16
+ "image_grid_pinpoints": [
17
+ [
18
+ 336,
19
+ 672
20
+ ],
21
+ [
22
+ 672,
23
+ 336
24
+ ],
25
+ [
26
+ 672,
27
+ 672
28
+ ],
29
+ [
30
+ 1008,
31
+ 336
32
+ ],
33
+ [
34
+ 336,
35
+ 1008
36
+ ]
37
+ ],
38
+ "image_split_resolution": 224,
39
+ "initializer_range": 0.02,
40
+ "intermediate_size": 14336,
41
+ "max_position_embeddings": 32768,
42
+ "mm_hidden_size": 1024,
43
+ "mm_patch_merge_type": "flat",
44
+ "mm_projector_lr": 2e-05,
45
+ "mm_projector_type": "mlp2x_gelu",
46
+ "mm_resampler_type": null,
47
+ "mm_use_im_patch_token": false,
48
+ "mm_use_im_start_end": false,
49
+ "mm_vision_select_feature": "patch",
50
+ "mm_vision_select_layer": -2,
51
+ "mm_vision_tower": "openai/clip-vit-large-patch14-336",
52
+ "mm_vision_tower_lr": 2e-06,
53
+ "model_type": "llava_llama",
54
+ "num_attention_heads": 32,
55
+ "num_hidden_layers": 32,
56
+ "num_key_value_heads": 8,
57
+ "pretraining_tp": 1,
58
+ "rms_norm_eps": 1e-05,
59
+ "rope_scaling": null,
60
+ "rope_theta": 1000000.0,
61
+ "sliding_window": null,
62
+ "tie_word_embeddings": false,
63
+ "tokenizer_model_max_length": 2048,
64
+ "tokenizer_padding_side": "right",
65
+ "torch_dtype": "bfloat16",
66
+ "transformers_version": "4.37.2",
67
+ "tune_mm_mlp_adapter": false,
68
+ "tune_mm_vision_resampler": false,
69
+ "unfreeze_mm_vision_tower": true,
70
+ "use_cache": true,
71
+ "use_mm_proj": true,
72
+ "vocab_size": 32000
73
+ }
ckpt/llava-v1.6-mistral-7b-STIC-gt-judge_lora/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60fb82c3660319e6d0b239950b20c28181e97f1ade117dc0660b40e2ad94a89b
3
+ size 912
ckpt/llava-v1.6-mistral-7b-STIC-gt-judge_lora/trainer_state.json ADDED
@@ -0,0 +1,972 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 157,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 4.000000000000001e-06,
14
+ "loss": 1.5382,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 8.000000000000001e-06,
20
+ "loss": 1.506,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.02,
25
+ "learning_rate": 1.2e-05,
26
+ "loss": 1.2118,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.03,
31
+ "learning_rate": 1.6000000000000003e-05,
32
+ "loss": 1.084,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.03,
37
+ "learning_rate": 2e-05,
38
+ "loss": 1.0008,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.04,
43
+ "learning_rate": 1.9997864167879313e-05,
44
+ "loss": 0.9599,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.04,
49
+ "learning_rate": 1.999145758387301e-05,
50
+ "loss": 1.0582,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.05,
55
+ "learning_rate": 1.9980782984658682e-05,
56
+ "loss": 1.1419,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.06,
61
+ "learning_rate": 1.99658449300667e-05,
62
+ "loss": 0.8421,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.06,
67
+ "learning_rate": 1.994664980113243e-05,
68
+ "loss": 0.8986,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.07,
73
+ "learning_rate": 1.992320579737045e-05,
74
+ "loss": 0.8873,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.08,
79
+ "learning_rate": 1.9895522933272028e-05,
80
+ "loss": 0.8599,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.08,
85
+ "learning_rate": 1.9863613034027224e-05,
86
+ "loss": 0.8807,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.09,
91
+ "learning_rate": 1.9827489730473597e-05,
92
+ "loss": 0.9474,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.1,
97
+ "learning_rate": 1.9787168453273546e-05,
98
+ "loss": 0.9125,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.1,
103
+ "learning_rate": 1.9742666426322877e-05,
104
+ "loss": 0.8908,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.11,
109
+ "learning_rate": 1.9694002659393306e-05,
110
+ "loss": 0.7831,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.11,
115
+ "learning_rate": 1.9641197940012136e-05,
116
+ "loss": 0.884,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.12,
121
+ "learning_rate": 1.958427482458253e-05,
122
+ "loss": 0.8917,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.13,
127
+ "learning_rate": 1.9523257628748148e-05,
128
+ "loss": 0.8823,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.13,
133
+ "learning_rate": 1.9458172417006347e-05,
134
+ "loss": 0.912,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.14,
139
+ "learning_rate": 1.9389046991574298e-05,
140
+ "loss": 0.8415,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.15,
145
+ "learning_rate": 1.9315910880512792e-05,
146
+ "loss": 0.8825,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.15,
151
+ "learning_rate": 1.9238795325112867e-05,
152
+ "loss": 0.8784,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.16,
157
+ "learning_rate": 1.9157733266550577e-05,
158
+ "loss": 0.8056,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.17,
163
+ "learning_rate": 1.9072759331815602e-05,
164
+ "loss": 0.9612,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.17,
169
+ "learning_rate": 1.898390981891979e-05,
170
+ "loss": 0.8093,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.18,
175
+ "learning_rate": 1.8891222681391853e-05,
176
+ "loss": 0.8302,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.18,
181
+ "learning_rate": 1.879473751206489e-05,
182
+ "loss": 0.8629,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.19,
187
+ "learning_rate": 1.869449552616367e-05,
188
+ "loss": 0.7995,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.2,
193
+ "learning_rate": 1.8590539543698852e-05,
194
+ "loss": 0.8228,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.2,
199
+ "learning_rate": 1.8482913971175737e-05,
200
+ "loss": 0.839,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.21,
205
+ "learning_rate": 1.8371664782625287e-05,
206
+ "loss": 0.9464,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.22,
211
+ "learning_rate": 1.825683949996556e-05,
212
+ "loss": 0.886,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.22,
217
+ "learning_rate": 1.813848717270195e-05,
218
+ "loss": 0.9189,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.23,
223
+ "learning_rate": 1.8016658356974885e-05,
224
+ "loss": 0.9177,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.24,
229
+ "learning_rate": 1.789140509396394e-05,
230
+ "loss": 0.823,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.24,
235
+ "learning_rate": 1.7762780887657576e-05,
236
+ "loss": 0.9148,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.25,
241
+ "learning_rate": 1.7630840681998068e-05,
242
+ "loss": 0.8686,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.25,
247
+ "learning_rate": 1.7495640837411265e-05,
248
+ "loss": 0.8897,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.26,
253
+ "learning_rate": 1.735723910673132e-05,
254
+ "loss": 0.8753,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.27,
259
+ "learning_rate": 1.7215694610530624e-05,
260
+ "loss": 0.8067,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.27,
265
+ "learning_rate": 1.7071067811865477e-05,
266
+ "loss": 0.8739,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.28,
271
+ "learning_rate": 1.6923420490448298e-05,
272
+ "loss": 0.8466,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.29,
277
+ "learning_rate": 1.6772815716257414e-05,
278
+ "loss": 0.982,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.29,
283
+ "learning_rate": 1.6619317822595666e-05,
284
+ "loss": 0.7998,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.3,
289
+ "learning_rate": 1.646299237860941e-05,
290
+ "loss": 0.8506,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.31,
295
+ "learning_rate": 1.6303906161279554e-05,
296
+ "loss": 0.8621,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.31,
301
+ "learning_rate": 1.6142127126896682e-05,
302
+ "loss": 0.9342,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.32,
307
+ "learning_rate": 1.597772438203241e-05,
308
+ "loss": 0.8281,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.32,
313
+ "learning_rate": 1.5810768154019386e-05,
314
+ "loss": 0.8616,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.33,
319
+ "learning_rate": 1.5641329760952514e-05,
320
+ "loss": 0.8912,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.34,
325
+ "learning_rate": 1.5469481581224274e-05,
326
+ "loss": 0.8665,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.34,
331
+ "learning_rate": 1.529529702260709e-05,
332
+ "loss": 0.8727,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.35,
337
+ "learning_rate": 1.5118850490896012e-05,
338
+ "loss": 0.8772,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.36,
343
+ "learning_rate": 1.4940217358125042e-05,
344
+ "loss": 0.9444,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.36,
349
+ "learning_rate": 1.4759473930370738e-05,
350
+ "loss": 0.7163,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.37,
355
+ "learning_rate": 1.4576697415156818e-05,
356
+ "loss": 0.9036,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.38,
361
+ "learning_rate": 1.4391965888473705e-05,
362
+ "loss": 0.8144,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.38,
367
+ "learning_rate": 1.4205358261427076e-05,
368
+ "loss": 0.8295,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.39,
373
+ "learning_rate": 1.4016954246529697e-05,
374
+ "loss": 0.8279,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.39,
379
+ "learning_rate": 1.3826834323650899e-05,
380
+ "loss": 0.8258,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.4,
385
+ "learning_rate": 1.3635079705638298e-05,
386
+ "loss": 0.9333,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.41,
391
+ "learning_rate": 1.3441772303626387e-05,
392
+ "loss": 0.8169,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.41,
397
+ "learning_rate": 1.3246994692046837e-05,
398
+ "loss": 0.9032,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.42,
403
+ "learning_rate": 1.305083007335549e-05,
404
+ "loss": 0.8181,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.43,
409
+ "learning_rate": 1.2853362242491054e-05,
410
+ "loss": 0.8489,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.43,
415
+ "learning_rate": 1.2654675551080724e-05,
416
+ "loss": 0.8451,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.44,
421
+ "learning_rate": 1.2454854871407993e-05,
422
+ "loss": 0.8081,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.45,
427
+ "learning_rate": 1.2253985560158064e-05,
428
+ "loss": 0.8028,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.45,
433
+ "learning_rate": 1.2052153421956343e-05,
434
+ "loss": 0.8597,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.46,
439
+ "learning_rate": 1.1849444672715587e-05,
440
+ "loss": 0.8268,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.46,
445
+ "learning_rate": 1.164594590280734e-05,
446
+ "loss": 0.87,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.47,
451
+ "learning_rate": 1.1441744040073469e-05,
452
+ "loss": 0.8127,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.48,
457
+ "learning_rate": 1.123692631269348e-05,
458
+ "loss": 0.7773,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.48,
463
+ "learning_rate": 1.103158021192357e-05,
464
+ "loss": 0.7448,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.49,
469
+ "learning_rate": 1.0825793454723325e-05,
470
+ "loss": 0.8295,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.5,
475
+ "learning_rate": 1.0619653946285948e-05,
476
+ "loss": 0.8038,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.5,
481
+ "learning_rate": 1.0413249742488132e-05,
482
+ "loss": 0.8257,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.51,
487
+ "learning_rate": 1.0206669012275546e-05,
488
+ "loss": 0.8469,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.52,
493
+ "learning_rate": 1e-05,
494
+ "loss": 0.8865,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.52,
499
+ "learning_rate": 9.79333098772446e-06,
500
+ "loss": 0.8739,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.53,
505
+ "learning_rate": 9.586750257511868e-06,
506
+ "loss": 0.856,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.54,
511
+ "learning_rate": 9.380346053714055e-06,
512
+ "loss": 0.8284,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.54,
517
+ "learning_rate": 9.174206545276678e-06,
518
+ "loss": 0.7522,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.55,
523
+ "learning_rate": 8.968419788076431e-06,
524
+ "loss": 0.8738,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.55,
529
+ "learning_rate": 8.763073687306523e-06,
530
+ "loss": 0.9324,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.56,
535
+ "learning_rate": 8.558255959926533e-06,
536
+ "loss": 0.8677,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.57,
541
+ "learning_rate": 8.35405409719266e-06,
542
+ "loss": 0.7557,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.57,
547
+ "learning_rate": 8.150555327284417e-06,
548
+ "loss": 0.8837,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.58,
553
+ "learning_rate": 7.947846578043658e-06,
554
+ "loss": 0.877,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.59,
559
+ "learning_rate": 7.746014439841941e-06,
560
+ "loss": 0.8742,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.59,
565
+ "learning_rate": 7.545145128592009e-06,
566
+ "loss": 0.8435,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.6,
571
+ "learning_rate": 7.34532444891928e-06,
572
+ "loss": 0.7781,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.61,
577
+ "learning_rate": 7.14663775750895e-06,
578
+ "loss": 0.8691,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.61,
583
+ "learning_rate": 6.949169926644513e-06,
584
+ "loss": 0.8451,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.62,
589
+ "learning_rate": 6.7530053079531664e-06,
590
+ "loss": 0.8682,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.62,
595
+ "learning_rate": 6.558227696373617e-06,
596
+ "loss": 0.8353,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.63,
601
+ "learning_rate": 6.364920294361701e-06,
602
+ "loss": 0.8576,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.64,
607
+ "learning_rate": 6.173165676349103e-06,
608
+ "loss": 0.8705,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.64,
613
+ "learning_rate": 5.983045753470308e-06,
614
+ "loss": 0.8492,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.65,
619
+ "learning_rate": 5.794641738572925e-06,
620
+ "loss": 0.8508,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.66,
625
+ "learning_rate": 5.608034111526298e-06,
626
+ "loss": 0.8925,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.66,
631
+ "learning_rate": 5.423302584843186e-06,
632
+ "loss": 0.718,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.67,
637
+ "learning_rate": 5.240526069629265e-06,
638
+ "loss": 0.8913,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.68,
643
+ "learning_rate": 5.059782641874962e-06,
644
+ "loss": 0.9157,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.68,
649
+ "learning_rate": 4.881149509103993e-06,
650
+ "loss": 0.8225,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.69,
655
+ "learning_rate": 4.704702977392914e-06,
656
+ "loss": 0.7329,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.69,
661
+ "learning_rate": 4.530518418775734e-06,
662
+ "loss": 0.8174,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.7,
667
+ "learning_rate": 4.35867023904749e-06,
668
+ "loss": 0.8929,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.71,
673
+ "learning_rate": 4.189231845980618e-06,
674
+ "loss": 0.8091,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.71,
679
+ "learning_rate": 4.0222756179675915e-06,
680
+ "loss": 0.82,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.72,
685
+ "learning_rate": 3.857872873103322e-06,
686
+ "loss": 0.8235,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.73,
691
+ "learning_rate": 3.69609383872045e-06,
692
+ "loss": 0.8822,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.73,
697
+ "learning_rate": 3.5370076213905904e-06,
698
+ "loss": 0.7844,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.74,
703
+ "learning_rate": 3.380682177404335e-06,
704
+ "loss": 0.931,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.75,
709
+ "learning_rate": 3.2271842837425917e-06,
710
+ "loss": 0.7476,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.75,
715
+ "learning_rate": 3.0765795095517026e-06,
716
+ "loss": 0.8429,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.76,
721
+ "learning_rate": 2.9289321881345257e-06,
722
+ "loss": 0.9111,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.76,
727
+ "learning_rate": 2.7843053894693805e-06,
728
+ "loss": 0.8021,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.77,
733
+ "learning_rate": 2.642760893268684e-06,
734
+ "loss": 0.7955,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.78,
739
+ "learning_rate": 2.504359162588741e-06,
740
+ "loss": 0.8339,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.78,
745
+ "learning_rate": 2.369159318001937e-06,
746
+ "loss": 0.8006,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.79,
751
+ "learning_rate": 2.237219112342426e-06,
752
+ "loss": 0.8096,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.8,
757
+ "learning_rate": 2.1085949060360654e-06,
758
+ "loss": 0.9806,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.8,
763
+ "learning_rate": 1.983341643025117e-06,
764
+ "loss": 0.8267,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.81,
769
+ "learning_rate": 1.861512827298051e-06,
770
+ "loss": 0.8283,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.82,
775
+ "learning_rate": 1.743160500034443e-06,
776
+ "loss": 0.7769,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.82,
781
+ "learning_rate": 1.6283352173747148e-06,
782
+ "loss": 0.7939,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.83,
787
+ "learning_rate": 1.5170860288242638e-06,
788
+ "loss": 0.8015,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.83,
793
+ "learning_rate": 1.409460456301147e-06,
794
+ "loss": 0.8694,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.84,
799
+ "learning_rate": 1.305504473836331e-06,
800
+ "loss": 0.8399,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.85,
805
+ "learning_rate": 1.2052624879351105e-06,
806
+ "loss": 0.7826,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.85,
811
+ "learning_rate": 1.1087773186081474e-06,
812
+ "loss": 0.8359,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.86,
817
+ "learning_rate": 1.0160901810802114e-06,
818
+ "loss": 0.8184,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.87,
823
+ "learning_rate": 9.272406681844015e-07,
824
+ "loss": 0.8445,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.87,
829
+ "learning_rate": 8.42266733449425e-07,
830
+ "loss": 0.818,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.88,
835
+ "learning_rate": 7.612046748871327e-07,
836
+ "loss": 0.827,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.89,
841
+ "learning_rate": 6.840891194872112e-07,
842
+ "loss": 0.8569,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.89,
847
+ "learning_rate": 6.109530084257043e-07,
848
+ "loss": 0.8015,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.9,
853
+ "learning_rate": 5.418275829936537e-07,
854
+ "loss": 0.9009,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.9,
859
+ "learning_rate": 4.7674237125185597e-07,
860
+ "loss": 0.8092,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.91,
865
+ "learning_rate": 4.1572517541747294e-07,
866
+ "loss": 0.8287,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.92,
871
+ "learning_rate": 3.588020599878639e-07,
872
+ "loss": 0.8932,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.92,
877
+ "learning_rate": 3.059973406066963e-07,
878
+ "loss": 0.8399,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.93,
883
+ "learning_rate": 2.573335736771254e-07,
884
+ "loss": 0.8044,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.94,
889
+ "learning_rate": 2.1283154672645522e-07,
890
+ "loss": 0.7954,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.94,
895
+ "learning_rate": 1.7251026952640583e-07,
896
+ "loss": 0.8432,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.95,
901
+ "learning_rate": 1.3638696597277678e-07,
902
+ "loss": 0.8004,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.96,
907
+ "learning_rate": 1.0447706672797264e-07,
908
+ "loss": 0.8279,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.96,
913
+ "learning_rate": 7.679420262954984e-08,
914
+ "loss": 0.8352,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.97,
919
+ "learning_rate": 5.3350198867574424e-08,
920
+ "loss": 0.8495,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 0.97,
925
+ "learning_rate": 3.4155069933301535e-08,
926
+ "loss": 0.8961,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 0.98,
931
+ "learning_rate": 1.9217015341318478e-08,
932
+ "loss": 0.8712,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 0.99,
937
+ "learning_rate": 8.542416126989805e-09,
938
+ "loss": 0.7869,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 0.99,
943
+ "learning_rate": 2.1358321206899067e-09,
944
+ "loss": 0.785,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 1.0,
949
+ "learning_rate": 0.0,
950
+ "loss": 0.8928,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 1.0,
955
+ "step": 157,
956
+ "total_flos": 1.2573132258803712e+17,
957
+ "train_loss": 0.8656197345940171,
958
+ "train_runtime": 499.8196,
959
+ "train_samples_per_second": 10.004,
960
+ "train_steps_per_second": 0.314
961
+ }
962
+ ],
963
+ "logging_steps": 1.0,
964
+ "max_steps": 157,
965
+ "num_input_tokens_seen": 0,
966
+ "num_train_epochs": 1,
967
+ "save_steps": 1000,
968
+ "total_flos": 1.2573132258803712e+17,
969
+ "train_batch_size": 8,
970
+ "trial_name": null,
971
+ "trial_params": null
972
+ }
ckpt/llava-v1.6-mistral-7b-STIC-judge_lora/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: liuhaotian/llava-v1.6-mistral-7b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
ckpt/llava-v1.6-mistral-7b-STIC-judge_lora/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "liuhaotian/llava-v1.6-mistral-7b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 128,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "gate_proj",
24
+ "down_proj",
25
+ "o_proj",
26
+ "k_proj",
27
+ "v_proj",
28
+ "q_proj",
29
+ "up_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }