JoeyLin1 commited on
Commit
977cadb
·
1 Parent(s): e810f48
added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<point_end>": 32002,
3
+ "<point_patch>": 32000,
4
+ "<point_start>": 32001
5
+ }
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "DEFAULT_POINT_END_TOKEN": "<point_end>",
3
+ "DEFAULT_POINT_PATCH_TOKEN": "<point_patch>",
4
+ "DEFAULT_POINT_START_TOKEN": "<point_start>",
5
+ "_name_or_path": "/code/syr/PointLLM/checkpoints/PointLLM_7B_v1.2",
6
+ "architectures": [
7
+ "PointLLMLlamaForCausalLM"
8
+ ],
9
+ "bos_token_id": 1,
10
+ "eos_token_id": 2,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 4096,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 11008,
15
+ "max_position_embeddings": 2048,
16
+ "mm_use_point_start_end": true,
17
+ "model_type": "pointllm",
18
+ "num_attention_heads": 32,
19
+ "num_hidden_layers": 32,
20
+ "pad_token_id": 0,
21
+ "point_backbone": "PointBERT",
22
+ "point_backbone_ckpt": "",
23
+ "point_backbone_config_name": "PointTransformer_8192point_2layer",
24
+ "rms_norm_eps": 1e-06,
25
+ "tie_word_embeddings": false,
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.28.0.dev0",
28
+ "use_cache": false,
29
+ "use_color": true,
30
+ "vocab_size": 32003
31
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.28.0.dev0"
7
+ }
point_bert_v1.2.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a6e2160e27526abac9f11ec822fdea1ead6fcb87085108ba92c3063ce0b10b0
3
+ size 87494929
point_proj.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c06b38bbcba1acc5d5e14aa1e027dbebcb07cab92388c0b0a2c218eba26abcf
3
+ size 567884645
pytorch_model-00001-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8db1aa66e449394b9f51216f8a6887eb5d0cca0c57307bfa1c227918e452760
3
+ size 9878039225
pytorch_model-00002-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b65bd1237f17ab93d996ca3427a4fb2b316a816a991684d9bf63881b8359535
3
+ size 9894801501
pytorch_model-00003-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5df935c1b1f7f80c2e4e85bf6b74b608e3e5b4df7cafea1614e2c2ec72e72e87
3
+ size 7312084483
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,496 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 27084755472
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00003-of-00003.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00003.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
13
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
14
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
15
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
16
+ "model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
17
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
18
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
19
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
20
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
21
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
22
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
23
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
24
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
25
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
26
+ "model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
27
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
28
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
29
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
30
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
31
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
32
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
33
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
34
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
35
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
36
+ "model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
37
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
38
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
39
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
40
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
41
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
42
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
43
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
44
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
45
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
46
+ "model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
47
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
48
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
49
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
50
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
51
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
52
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
53
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
54
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
55
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
56
+ "model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
57
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
58
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
59
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
60
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
61
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
62
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
63
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
64
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
65
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
66
+ "model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
67
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
68
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
69
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
70
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
71
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
72
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
73
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
74
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
75
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
76
+ "model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
77
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
78
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
79
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
80
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
81
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
82
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
83
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
84
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
85
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
86
+ "model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
87
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
88
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
89
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
90
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
91
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
92
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
93
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
94
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
95
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
96
+ "model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
97
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
98
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
99
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
100
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
101
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
102
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
103
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
104
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
105
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
106
+ "model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
107
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
108
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
109
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
110
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
111
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
112
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
113
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
114
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
115
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
116
+ "model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
117
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
118
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
119
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
120
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
121
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
122
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
123
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
124
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
125
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
126
+ "model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
127
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
128
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
129
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
130
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
131
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
132
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
133
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
134
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
135
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
136
+ "model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
137
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
138
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
139
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
140
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
141
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
142
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
143
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
144
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
145
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
146
+ "model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
147
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
148
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
149
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
150
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
151
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
152
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
153
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
154
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
155
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
156
+ "model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
157
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
158
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
159
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
160
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
161
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
162
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
163
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
164
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
165
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
166
+ "model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
167
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
168
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
169
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
170
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
171
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
172
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
173
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
174
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
175
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
176
+ "model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
177
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
178
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
179
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
180
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
181
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
182
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
183
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
184
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
185
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
186
+ "model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
187
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
188
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
189
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
190
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
191
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
192
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
193
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
194
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
195
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
196
+ "model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
197
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
198
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
199
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
200
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
201
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
202
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
203
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
204
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
205
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
206
+ "model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
207
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
208
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
209
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
210
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
211
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
212
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
213
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
214
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
215
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
216
+ "model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
217
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
218
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
219
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
220
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
221
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
222
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
223
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
224
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
225
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
226
+ "model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
227
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
228
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
229
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
230
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
231
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
232
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
233
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
234
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
235
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
236
+ "model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
237
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
238
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
239
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
240
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
241
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
242
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
243
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
244
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
245
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
246
+ "model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
247
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
248
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
249
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
250
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
251
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
252
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
253
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
254
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
255
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
256
+ "model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
257
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
258
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
259
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
260
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
261
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
262
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
263
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
264
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
265
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
266
+ "model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
267
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
268
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
269
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
270
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
271
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
272
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
273
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
274
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
275
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
276
+ "model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
277
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
278
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
279
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
280
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
281
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
282
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
283
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
284
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
285
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
286
+ "model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
287
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
288
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
289
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
290
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
291
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
292
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
293
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
294
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
295
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
296
+ "model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
297
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
298
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
299
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
300
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
301
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
302
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
303
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
304
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
305
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
306
+ "model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
307
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
308
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
309
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
310
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
311
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
312
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
313
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
314
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
315
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
316
+ "model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
317
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
318
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
319
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
320
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
321
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
322
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
323
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
324
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
325
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
326
+ "model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
327
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
328
+ "model.norm.weight": "pytorch_model-00003-of-00003.bin",
329
+ "model.point_backbone.blocks.blocks.0.attn.proj.bias": "pytorch_model-00003-of-00003.bin",
330
+ "model.point_backbone.blocks.blocks.0.attn.proj.weight": "pytorch_model-00003-of-00003.bin",
331
+ "model.point_backbone.blocks.blocks.0.attn.qkv.weight": "pytorch_model-00003-of-00003.bin",
332
+ "model.point_backbone.blocks.blocks.0.mlp.fc1.bias": "pytorch_model-00003-of-00003.bin",
333
+ "model.point_backbone.blocks.blocks.0.mlp.fc1.weight": "pytorch_model-00003-of-00003.bin",
334
+ "model.point_backbone.blocks.blocks.0.mlp.fc2.bias": "pytorch_model-00003-of-00003.bin",
335
+ "model.point_backbone.blocks.blocks.0.mlp.fc2.weight": "pytorch_model-00003-of-00003.bin",
336
+ "model.point_backbone.blocks.blocks.0.norm1.bias": "pytorch_model-00003-of-00003.bin",
337
+ "model.point_backbone.blocks.blocks.0.norm1.weight": "pytorch_model-00003-of-00003.bin",
338
+ "model.point_backbone.blocks.blocks.0.norm2.bias": "pytorch_model-00003-of-00003.bin",
339
+ "model.point_backbone.blocks.blocks.0.norm2.weight": "pytorch_model-00003-of-00003.bin",
340
+ "model.point_backbone.blocks.blocks.1.attn.proj.bias": "pytorch_model-00003-of-00003.bin",
341
+ "model.point_backbone.blocks.blocks.1.attn.proj.weight": "pytorch_model-00003-of-00003.bin",
342
+ "model.point_backbone.blocks.blocks.1.attn.qkv.weight": "pytorch_model-00003-of-00003.bin",
343
+ "model.point_backbone.blocks.blocks.1.mlp.fc1.bias": "pytorch_model-00003-of-00003.bin",
344
+ "model.point_backbone.blocks.blocks.1.mlp.fc1.weight": "pytorch_model-00003-of-00003.bin",
345
+ "model.point_backbone.blocks.blocks.1.mlp.fc2.bias": "pytorch_model-00003-of-00003.bin",
346
+ "model.point_backbone.blocks.blocks.1.mlp.fc2.weight": "pytorch_model-00003-of-00003.bin",
347
+ "model.point_backbone.blocks.blocks.1.norm1.bias": "pytorch_model-00003-of-00003.bin",
348
+ "model.point_backbone.blocks.blocks.1.norm1.weight": "pytorch_model-00003-of-00003.bin",
349
+ "model.point_backbone.blocks.blocks.1.norm2.bias": "pytorch_model-00003-of-00003.bin",
350
+ "model.point_backbone.blocks.blocks.1.norm2.weight": "pytorch_model-00003-of-00003.bin",
351
+ "model.point_backbone.blocks.blocks.10.attn.proj.bias": "pytorch_model-00003-of-00003.bin",
352
+ "model.point_backbone.blocks.blocks.10.attn.proj.weight": "pytorch_model-00003-of-00003.bin",
353
+ "model.point_backbone.blocks.blocks.10.attn.qkv.weight": "pytorch_model-00003-of-00003.bin",
354
+ "model.point_backbone.blocks.blocks.10.mlp.fc1.bias": "pytorch_model-00003-of-00003.bin",
355
+ "model.point_backbone.blocks.blocks.10.mlp.fc1.weight": "pytorch_model-00003-of-00003.bin",
356
+ "model.point_backbone.blocks.blocks.10.mlp.fc2.bias": "pytorch_model-00003-of-00003.bin",
357
+ "model.point_backbone.blocks.blocks.10.mlp.fc2.weight": "pytorch_model-00003-of-00003.bin",
358
+ "model.point_backbone.blocks.blocks.10.norm1.bias": "pytorch_model-00003-of-00003.bin",
359
+ "model.point_backbone.blocks.blocks.10.norm1.weight": "pytorch_model-00003-of-00003.bin",
360
+ "model.point_backbone.blocks.blocks.10.norm2.bias": "pytorch_model-00003-of-00003.bin",
361
+ "model.point_backbone.blocks.blocks.10.norm2.weight": "pytorch_model-00003-of-00003.bin",
362
+ "model.point_backbone.blocks.blocks.11.attn.proj.bias": "pytorch_model-00003-of-00003.bin",
363
+ "model.point_backbone.blocks.blocks.11.attn.proj.weight": "pytorch_model-00003-of-00003.bin",
364
+ "model.point_backbone.blocks.blocks.11.attn.qkv.weight": "pytorch_model-00003-of-00003.bin",
365
+ "model.point_backbone.blocks.blocks.11.mlp.fc1.bias": "pytorch_model-00003-of-00003.bin",
366
+ "model.point_backbone.blocks.blocks.11.mlp.fc1.weight": "pytorch_model-00003-of-00003.bin",
367
+ "model.point_backbone.blocks.blocks.11.mlp.fc2.bias": "pytorch_model-00003-of-00003.bin",
368
+ "model.point_backbone.blocks.blocks.11.mlp.fc2.weight": "pytorch_model-00003-of-00003.bin",
369
+ "model.point_backbone.blocks.blocks.11.norm1.bias": "pytorch_model-00003-of-00003.bin",
370
+ "model.point_backbone.blocks.blocks.11.norm1.weight": "pytorch_model-00003-of-00003.bin",
371
+ "model.point_backbone.blocks.blocks.11.norm2.bias": "pytorch_model-00003-of-00003.bin",
372
+ "model.point_backbone.blocks.blocks.11.norm2.weight": "pytorch_model-00003-of-00003.bin",
373
+ "model.point_backbone.blocks.blocks.2.attn.proj.bias": "pytorch_model-00003-of-00003.bin",
374
+ "model.point_backbone.blocks.blocks.2.attn.proj.weight": "pytorch_model-00003-of-00003.bin",
375
+ "model.point_backbone.blocks.blocks.2.attn.qkv.weight": "pytorch_model-00003-of-00003.bin",
376
+ "model.point_backbone.blocks.blocks.2.mlp.fc1.bias": "pytorch_model-00003-of-00003.bin",
377
+ "model.point_backbone.blocks.blocks.2.mlp.fc1.weight": "pytorch_model-00003-of-00003.bin",
378
+ "model.point_backbone.blocks.blocks.2.mlp.fc2.bias": "pytorch_model-00003-of-00003.bin",
379
+ "model.point_backbone.blocks.blocks.2.mlp.fc2.weight": "pytorch_model-00003-of-00003.bin",
380
+ "model.point_backbone.blocks.blocks.2.norm1.bias": "pytorch_model-00003-of-00003.bin",
381
+ "model.point_backbone.blocks.blocks.2.norm1.weight": "pytorch_model-00003-of-00003.bin",
382
+ "model.point_backbone.blocks.blocks.2.norm2.bias": "pytorch_model-00003-of-00003.bin",
383
+ "model.point_backbone.blocks.blocks.2.norm2.weight": "pytorch_model-00003-of-00003.bin",
384
+ "model.point_backbone.blocks.blocks.3.attn.proj.bias": "pytorch_model-00003-of-00003.bin",
385
+ "model.point_backbone.blocks.blocks.3.attn.proj.weight": "pytorch_model-00003-of-00003.bin",
386
+ "model.point_backbone.blocks.blocks.3.attn.qkv.weight": "pytorch_model-00003-of-00003.bin",
387
+ "model.point_backbone.blocks.blocks.3.mlp.fc1.bias": "pytorch_model-00003-of-00003.bin",
388
+ "model.point_backbone.blocks.blocks.3.mlp.fc1.weight": "pytorch_model-00003-of-00003.bin",
389
+ "model.point_backbone.blocks.blocks.3.mlp.fc2.bias": "pytorch_model-00003-of-00003.bin",
390
+ "model.point_backbone.blocks.blocks.3.mlp.fc2.weight": "pytorch_model-00003-of-00003.bin",
391
+ "model.point_backbone.blocks.blocks.3.norm1.bias": "pytorch_model-00003-of-00003.bin",
392
+ "model.point_backbone.blocks.blocks.3.norm1.weight": "pytorch_model-00003-of-00003.bin",
393
+ "model.point_backbone.blocks.blocks.3.norm2.bias": "pytorch_model-00003-of-00003.bin",
394
+ "model.point_backbone.blocks.blocks.3.norm2.weight": "pytorch_model-00003-of-00003.bin",
395
+ "model.point_backbone.blocks.blocks.4.attn.proj.bias": "pytorch_model-00003-of-00003.bin",
396
+ "model.point_backbone.blocks.blocks.4.attn.proj.weight": "pytorch_model-00003-of-00003.bin",
397
+ "model.point_backbone.blocks.blocks.4.attn.qkv.weight": "pytorch_model-00003-of-00003.bin",
398
+ "model.point_backbone.blocks.blocks.4.mlp.fc1.bias": "pytorch_model-00003-of-00003.bin",
399
+ "model.point_backbone.blocks.blocks.4.mlp.fc1.weight": "pytorch_model-00003-of-00003.bin",
400
+ "model.point_backbone.blocks.blocks.4.mlp.fc2.bias": "pytorch_model-00003-of-00003.bin",
401
+ "model.point_backbone.blocks.blocks.4.mlp.fc2.weight": "pytorch_model-00003-of-00003.bin",
402
+ "model.point_backbone.blocks.blocks.4.norm1.bias": "pytorch_model-00003-of-00003.bin",
403
+ "model.point_backbone.blocks.blocks.4.norm1.weight": "pytorch_model-00003-of-00003.bin",
404
+ "model.point_backbone.blocks.blocks.4.norm2.bias": "pytorch_model-00003-of-00003.bin",
405
+ "model.point_backbone.blocks.blocks.4.norm2.weight": "pytorch_model-00003-of-00003.bin",
406
+ "model.point_backbone.blocks.blocks.5.attn.proj.bias": "pytorch_model-00003-of-00003.bin",
407
+ "model.point_backbone.blocks.blocks.5.attn.proj.weight": "pytorch_model-00003-of-00003.bin",
408
+ "model.point_backbone.blocks.blocks.5.attn.qkv.weight": "pytorch_model-00003-of-00003.bin",
409
+ "model.point_backbone.blocks.blocks.5.mlp.fc1.bias": "pytorch_model-00003-of-00003.bin",
410
+ "model.point_backbone.blocks.blocks.5.mlp.fc1.weight": "pytorch_model-00003-of-00003.bin",
411
+ "model.point_backbone.blocks.blocks.5.mlp.fc2.bias": "pytorch_model-00003-of-00003.bin",
412
+ "model.point_backbone.blocks.blocks.5.mlp.fc2.weight": "pytorch_model-00003-of-00003.bin",
413
+ "model.point_backbone.blocks.blocks.5.norm1.bias": "pytorch_model-00003-of-00003.bin",
414
+ "model.point_backbone.blocks.blocks.5.norm1.weight": "pytorch_model-00003-of-00003.bin",
415
+ "model.point_backbone.blocks.blocks.5.norm2.bias": "pytorch_model-00003-of-00003.bin",
416
+ "model.point_backbone.blocks.blocks.5.norm2.weight": "pytorch_model-00003-of-00003.bin",
417
+ "model.point_backbone.blocks.blocks.6.attn.proj.bias": "pytorch_model-00003-of-00003.bin",
418
+ "model.point_backbone.blocks.blocks.6.attn.proj.weight": "pytorch_model-00003-of-00003.bin",
419
+ "model.point_backbone.blocks.blocks.6.attn.qkv.weight": "pytorch_model-00003-of-00003.bin",
420
+ "model.point_backbone.blocks.blocks.6.mlp.fc1.bias": "pytorch_model-00003-of-00003.bin",
421
+ "model.point_backbone.blocks.blocks.6.mlp.fc1.weight": "pytorch_model-00003-of-00003.bin",
422
+ "model.point_backbone.blocks.blocks.6.mlp.fc2.bias": "pytorch_model-00003-of-00003.bin",
423
+ "model.point_backbone.blocks.blocks.6.mlp.fc2.weight": "pytorch_model-00003-of-00003.bin",
424
+ "model.point_backbone.blocks.blocks.6.norm1.bias": "pytorch_model-00003-of-00003.bin",
425
+ "model.point_backbone.blocks.blocks.6.norm1.weight": "pytorch_model-00003-of-00003.bin",
426
+ "model.point_backbone.blocks.blocks.6.norm2.bias": "pytorch_model-00003-of-00003.bin",
427
+ "model.point_backbone.blocks.blocks.6.norm2.weight": "pytorch_model-00003-of-00003.bin",
428
+ "model.point_backbone.blocks.blocks.7.attn.proj.bias": "pytorch_model-00003-of-00003.bin",
429
+ "model.point_backbone.blocks.blocks.7.attn.proj.weight": "pytorch_model-00003-of-00003.bin",
430
+ "model.point_backbone.blocks.blocks.7.attn.qkv.weight": "pytorch_model-00003-of-00003.bin",
431
+ "model.point_backbone.blocks.blocks.7.mlp.fc1.bias": "pytorch_model-00003-of-00003.bin",
432
+ "model.point_backbone.blocks.blocks.7.mlp.fc1.weight": "pytorch_model-00003-of-00003.bin",
433
+ "model.point_backbone.blocks.blocks.7.mlp.fc2.bias": "pytorch_model-00003-of-00003.bin",
434
+ "model.point_backbone.blocks.blocks.7.mlp.fc2.weight": "pytorch_model-00003-of-00003.bin",
435
+ "model.point_backbone.blocks.blocks.7.norm1.bias": "pytorch_model-00003-of-00003.bin",
436
+ "model.point_backbone.blocks.blocks.7.norm1.weight": "pytorch_model-00003-of-00003.bin",
437
+ "model.point_backbone.blocks.blocks.7.norm2.bias": "pytorch_model-00003-of-00003.bin",
438
+ "model.point_backbone.blocks.blocks.7.norm2.weight": "pytorch_model-00003-of-00003.bin",
439
+ "model.point_backbone.blocks.blocks.8.attn.proj.bias": "pytorch_model-00003-of-00003.bin",
440
+ "model.point_backbone.blocks.blocks.8.attn.proj.weight": "pytorch_model-00003-of-00003.bin",
441
+ "model.point_backbone.blocks.blocks.8.attn.qkv.weight": "pytorch_model-00003-of-00003.bin",
442
+ "model.point_backbone.blocks.blocks.8.mlp.fc1.bias": "pytorch_model-00003-of-00003.bin",
443
+ "model.point_backbone.blocks.blocks.8.mlp.fc1.weight": "pytorch_model-00003-of-00003.bin",
444
+ "model.point_backbone.blocks.blocks.8.mlp.fc2.bias": "pytorch_model-00003-of-00003.bin",
445
+ "model.point_backbone.blocks.blocks.8.mlp.fc2.weight": "pytorch_model-00003-of-00003.bin",
446
+ "model.point_backbone.blocks.blocks.8.norm1.bias": "pytorch_model-00003-of-00003.bin",
447
+ "model.point_backbone.blocks.blocks.8.norm1.weight": "pytorch_model-00003-of-00003.bin",
448
+ "model.point_backbone.blocks.blocks.8.norm2.bias": "pytorch_model-00003-of-00003.bin",
449
+ "model.point_backbone.blocks.blocks.8.norm2.weight": "pytorch_model-00003-of-00003.bin",
450
+ "model.point_backbone.blocks.blocks.9.attn.proj.bias": "pytorch_model-00003-of-00003.bin",
451
+ "model.point_backbone.blocks.blocks.9.attn.proj.weight": "pytorch_model-00003-of-00003.bin",
452
+ "model.point_backbone.blocks.blocks.9.attn.qkv.weight": "pytorch_model-00003-of-00003.bin",
453
+ "model.point_backbone.blocks.blocks.9.mlp.fc1.bias": "pytorch_model-00003-of-00003.bin",
454
+ "model.point_backbone.blocks.blocks.9.mlp.fc1.weight": "pytorch_model-00003-of-00003.bin",
455
+ "model.point_backbone.blocks.blocks.9.mlp.fc2.bias": "pytorch_model-00003-of-00003.bin",
456
+ "model.point_backbone.blocks.blocks.9.mlp.fc2.weight": "pytorch_model-00003-of-00003.bin",
457
+ "model.point_backbone.blocks.blocks.9.norm1.bias": "pytorch_model-00003-of-00003.bin",
458
+ "model.point_backbone.blocks.blocks.9.norm1.weight": "pytorch_model-00003-of-00003.bin",
459
+ "model.point_backbone.blocks.blocks.9.norm2.bias": "pytorch_model-00003-of-00003.bin",
460
+ "model.point_backbone.blocks.blocks.9.norm2.weight": "pytorch_model-00003-of-00003.bin",
461
+ "model.point_backbone.cls_pos": "pytorch_model-00003-of-00003.bin",
462
+ "model.point_backbone.cls_token": "pytorch_model-00003-of-00003.bin",
463
+ "model.point_backbone.encoder.first_conv.0.bias": "pytorch_model-00003-of-00003.bin",
464
+ "model.point_backbone.encoder.first_conv.0.weight": "pytorch_model-00003-of-00003.bin",
465
+ "model.point_backbone.encoder.first_conv.1.bias": "pytorch_model-00003-of-00003.bin",
466
+ "model.point_backbone.encoder.first_conv.1.num_batches_tracked": "pytorch_model-00003-of-00003.bin",
467
+ "model.point_backbone.encoder.first_conv.1.running_mean": "pytorch_model-00003-of-00003.bin",
468
+ "model.point_backbone.encoder.first_conv.1.running_var": "pytorch_model-00003-of-00003.bin",
469
+ "model.point_backbone.encoder.first_conv.1.weight": "pytorch_model-00003-of-00003.bin",
470
+ "model.point_backbone.encoder.first_conv.3.bias": "pytorch_model-00003-of-00003.bin",
471
+ "model.point_backbone.encoder.first_conv.3.weight": "pytorch_model-00003-of-00003.bin",
472
+ "model.point_backbone.encoder.second_conv.0.bias": "pytorch_model-00003-of-00003.bin",
473
+ "model.point_backbone.encoder.second_conv.0.weight": "pytorch_model-00003-of-00003.bin",
474
+ "model.point_backbone.encoder.second_conv.1.bias": "pytorch_model-00003-of-00003.bin",
475
+ "model.point_backbone.encoder.second_conv.1.num_batches_tracked": "pytorch_model-00003-of-00003.bin",
476
+ "model.point_backbone.encoder.second_conv.1.running_mean": "pytorch_model-00003-of-00003.bin",
477
+ "model.point_backbone.encoder.second_conv.1.running_var": "pytorch_model-00003-of-00003.bin",
478
+ "model.point_backbone.encoder.second_conv.1.weight": "pytorch_model-00003-of-00003.bin",
479
+ "model.point_backbone.encoder.second_conv.3.bias": "pytorch_model-00003-of-00003.bin",
480
+ "model.point_backbone.encoder.second_conv.3.weight": "pytorch_model-00003-of-00003.bin",
481
+ "model.point_backbone.norm.bias": "pytorch_model-00003-of-00003.bin",
482
+ "model.point_backbone.norm.weight": "pytorch_model-00003-of-00003.bin",
483
+ "model.point_backbone.pos_embed.0.bias": "pytorch_model-00003-of-00003.bin",
484
+ "model.point_backbone.pos_embed.0.weight": "pytorch_model-00003-of-00003.bin",
485
+ "model.point_backbone.pos_embed.2.bias": "pytorch_model-00003-of-00003.bin",
486
+ "model.point_backbone.pos_embed.2.weight": "pytorch_model-00003-of-00003.bin",
487
+ "model.point_backbone.reduce_dim.bias": "pytorch_model-00003-of-00003.bin",
488
+ "model.point_backbone.reduce_dim.weight": "pytorch_model-00003-of-00003.bin",
489
+ "model.point_proj.0.bias": "pytorch_model-00003-of-00003.bin",
490
+ "model.point_proj.0.weight": "pytorch_model-00003-of-00003.bin",
491
+ "model.point_proj.2.bias": "pytorch_model-00003-of-00003.bin",
492
+ "model.point_proj.2.weight": "pytorch_model-00003-of-00003.bin",
493
+ "model.point_proj.4.bias": "pytorch_model-00003-of-00003.bin",
494
+ "model.point_proj.4.weight": "pytorch_model-00003-of-00003.bin"
495
+ }
496
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<unk>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": true,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "__type": "AddedToken",
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": true,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ "clean_up_tokenization_spaces": false,
11
+ "eos_token": {
12
+ "__type": "AddedToken",
13
+ "content": "</s>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false
18
+ },
19
+ "model_max_length": 2048,
20
+ "pad_token": null,
21
+ "padding_side": "right",
22
+ "special_tokens_map_file": "/mnt/afs/xurunsen/projects/datasets/LLaMA/ChatPoint-7b-v1.1_init_color/special_tokens_map.json",
23
+ "tokenizer_class": "LlamaTokenizer",
24
+ "unk_token": {
25
+ "__type": "AddedToken",
26
+ "content": "<unk>",
27
+ "lstrip": false,
28
+ "normalized": true,
29
+ "rstrip": false,
30
+ "single_word": false
31
+ }
32
+ }
train.log ADDED
The diff for this file is too large to render. See raw diff
 
trainer_state.json ADDED
@@ -0,0 +1,3751 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9984926138076575,
5
+ "global_step": 621,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.0,
12
+ "learning_rate": 1.5789473684210526e-06,
13
+ "loss": 2.6289,
14
+ "step": 1
15
+ },
16
+ {
17
+ "epoch": 0.0,
18
+ "learning_rate": 3.157894736842105e-06,
19
+ "loss": 2.6619,
20
+ "step": 2
21
+ },
22
+ {
23
+ "epoch": 0.0,
24
+ "learning_rate": 4.736842105263158e-06,
25
+ "loss": 2.2648,
26
+ "step": 3
27
+ },
28
+ {
29
+ "epoch": 0.01,
30
+ "learning_rate": 6.31578947368421e-06,
31
+ "loss": 1.8016,
32
+ "step": 4
33
+ },
34
+ {
35
+ "epoch": 0.01,
36
+ "learning_rate": 7.894736842105263e-06,
37
+ "loss": 1.5006,
38
+ "step": 5
39
+ },
40
+ {
41
+ "epoch": 0.01,
42
+ "learning_rate": 9.473684210526315e-06,
43
+ "loss": 1.2957,
44
+ "step": 6
45
+ },
46
+ {
47
+ "epoch": 0.01,
48
+ "learning_rate": 1.1052631578947368e-05,
49
+ "loss": 1.1769,
50
+ "step": 7
51
+ },
52
+ {
53
+ "epoch": 0.01,
54
+ "learning_rate": 1.263157894736842e-05,
55
+ "loss": 1.0785,
56
+ "step": 8
57
+ },
58
+ {
59
+ "epoch": 0.01,
60
+ "learning_rate": 1.4210526315789473e-05,
61
+ "loss": 1.0298,
62
+ "step": 9
63
+ },
64
+ {
65
+ "epoch": 0.02,
66
+ "learning_rate": 1.5789473684210526e-05,
67
+ "loss": 0.9725,
68
+ "step": 10
69
+ },
70
+ {
71
+ "epoch": 0.02,
72
+ "learning_rate": 1.736842105263158e-05,
73
+ "loss": 0.9271,
74
+ "step": 11
75
+ },
76
+ {
77
+ "epoch": 0.02,
78
+ "learning_rate": 1.894736842105263e-05,
79
+ "loss": 0.9122,
80
+ "step": 12
81
+ },
82
+ {
83
+ "epoch": 0.02,
84
+ "learning_rate": 2.0526315789473685e-05,
85
+ "loss": 0.887,
86
+ "step": 13
87
+ },
88
+ {
89
+ "epoch": 0.02,
90
+ "learning_rate": 2.2105263157894736e-05,
91
+ "loss": 0.8558,
92
+ "step": 14
93
+ },
94
+ {
95
+ "epoch": 0.02,
96
+ "learning_rate": 2.368421052631579e-05,
97
+ "loss": 0.8786,
98
+ "step": 15
99
+ },
100
+ {
101
+ "epoch": 0.03,
102
+ "learning_rate": 2.526315789473684e-05,
103
+ "loss": 0.8406,
104
+ "step": 16
105
+ },
106
+ {
107
+ "epoch": 0.03,
108
+ "learning_rate": 2.6842105263157896e-05,
109
+ "loss": 0.8047,
110
+ "step": 17
111
+ },
112
+ {
113
+ "epoch": 0.03,
114
+ "learning_rate": 2.8421052631578946e-05,
115
+ "loss": 0.8004,
116
+ "step": 18
117
+ },
118
+ {
119
+ "epoch": 0.03,
120
+ "learning_rate": 3e-05,
121
+ "loss": 0.7882,
122
+ "step": 19
123
+ },
124
+ {
125
+ "epoch": 0.03,
126
+ "learning_rate": 2.9999795747660024e-05,
127
+ "loss": 0.8009,
128
+ "step": 20
129
+ },
130
+ {
131
+ "epoch": 0.03,
132
+ "learning_rate": 2.9999182996202625e-05,
133
+ "loss": 0.8061,
134
+ "step": 21
135
+ },
136
+ {
137
+ "epoch": 0.04,
138
+ "learning_rate": 2.999816176231527e-05,
139
+ "loss": 0.7763,
140
+ "step": 22
141
+ },
142
+ {
143
+ "epoch": 0.04,
144
+ "learning_rate": 2.9996732073809866e-05,
145
+ "loss": 0.7949,
146
+ "step": 23
147
+ },
148
+ {
149
+ "epoch": 0.04,
150
+ "learning_rate": 2.9994893969622058e-05,
151
+ "loss": 0.7974,
152
+ "step": 24
153
+ },
154
+ {
155
+ "epoch": 0.04,
156
+ "learning_rate": 2.999264749981011e-05,
157
+ "loss": 0.7833,
158
+ "step": 25
159
+ },
160
+ {
161
+ "epoch": 0.04,
162
+ "learning_rate": 2.998999272555359e-05,
163
+ "loss": 0.7655,
164
+ "step": 26
165
+ },
166
+ {
167
+ "epoch": 0.04,
168
+ "learning_rate": 2.9986929719151682e-05,
169
+ "loss": 0.7665,
170
+ "step": 27
171
+ },
172
+ {
173
+ "epoch": 0.05,
174
+ "learning_rate": 2.998345856402121e-05,
175
+ "loss": 0.7666,
176
+ "step": 28
177
+ },
178
+ {
179
+ "epoch": 0.05,
180
+ "learning_rate": 2.9979579354694385e-05,
181
+ "loss": 0.7497,
182
+ "step": 29
183
+ },
184
+ {
185
+ "epoch": 0.05,
186
+ "learning_rate": 2.9975292196816215e-05,
187
+ "loss": 0.7739,
188
+ "step": 30
189
+ },
190
+ {
191
+ "epoch": 0.05,
192
+ "learning_rate": 2.9970597207141642e-05,
193
+ "loss": 0.7741,
194
+ "step": 31
195
+ },
196
+ {
197
+ "epoch": 0.05,
198
+ "learning_rate": 2.996549451353235e-05,
199
+ "loss": 0.7744,
200
+ "step": 32
201
+ },
202
+ {
203
+ "epoch": 0.05,
204
+ "learning_rate": 2.9959984254953276e-05,
205
+ "loss": 0.7812,
206
+ "step": 33
207
+ },
208
+ {
209
+ "epoch": 0.05,
210
+ "learning_rate": 2.995406658146886e-05,
211
+ "loss": 0.7558,
212
+ "step": 34
213
+ },
214
+ {
215
+ "epoch": 0.06,
216
+ "learning_rate": 2.9947741654238918e-05,
217
+ "loss": 0.7499,
218
+ "step": 35
219
+ },
220
+ {
221
+ "epoch": 0.06,
222
+ "learning_rate": 2.9941009645514273e-05,
223
+ "loss": 0.759,
224
+ "step": 36
225
+ },
226
+ {
227
+ "epoch": 0.06,
228
+ "learning_rate": 2.993387073863207e-05,
229
+ "loss": 0.7595,
230
+ "step": 37
231
+ },
232
+ {
233
+ "epoch": 0.06,
234
+ "learning_rate": 2.992632512801076e-05,
235
+ "loss": 0.7622,
236
+ "step": 38
237
+ },
238
+ {
239
+ "epoch": 0.06,
240
+ "learning_rate": 2.991837301914483e-05,
241
+ "loss": 0.7367,
242
+ "step": 39
243
+ },
244
+ {
245
+ "epoch": 0.06,
246
+ "learning_rate": 2.9910014628599188e-05,
247
+ "loss": 0.7679,
248
+ "step": 40
249
+ },
250
+ {
251
+ "epoch": 0.07,
252
+ "learning_rate": 2.9901250184003286e-05,
253
+ "loss": 0.7414,
254
+ "step": 41
255
+ },
256
+ {
257
+ "epoch": 0.07,
258
+ "learning_rate": 2.9892079924044892e-05,
259
+ "loss": 0.7491,
260
+ "step": 42
261
+ },
262
+ {
263
+ "epoch": 0.07,
264
+ "learning_rate": 2.9882504098463614e-05,
265
+ "loss": 0.7704,
266
+ "step": 43
267
+ },
268
+ {
269
+ "epoch": 0.07,
270
+ "learning_rate": 2.98725229680441e-05,
271
+ "loss": 0.7218,
272
+ "step": 44
273
+ },
274
+ {
275
+ "epoch": 0.07,
276
+ "learning_rate": 2.9862136804608897e-05,
277
+ "loss": 0.723,
278
+ "step": 45
279
+ },
280
+ {
281
+ "epoch": 0.07,
282
+ "learning_rate": 2.985134589101111e-05,
283
+ "loss": 0.7511,
284
+ "step": 46
285
+ },
286
+ {
287
+ "epoch": 0.08,
288
+ "learning_rate": 2.9840150521126656e-05,
289
+ "loss": 0.7258,
290
+ "step": 47
291
+ },
292
+ {
293
+ "epoch": 0.08,
294
+ "learning_rate": 2.9828550999846257e-05,
295
+ "loss": 0.7263,
296
+ "step": 48
297
+ },
298
+ {
299
+ "epoch": 0.08,
300
+ "learning_rate": 2.9816547643067163e-05,
301
+ "loss": 0.7348,
302
+ "step": 49
303
+ },
304
+ {
305
+ "epoch": 0.08,
306
+ "learning_rate": 2.9804140777684538e-05,
307
+ "loss": 0.7454,
308
+ "step": 50
309
+ },
310
+ {
311
+ "epoch": 0.08,
312
+ "learning_rate": 2.979133074158256e-05,
313
+ "loss": 0.7683,
314
+ "step": 51
315
+ },
316
+ {
317
+ "epoch": 0.08,
318
+ "learning_rate": 2.9778117883625196e-05,
319
+ "loss": 0.7351,
320
+ "step": 52
321
+ },
322
+ {
323
+ "epoch": 0.09,
324
+ "learning_rate": 2.9764502563646746e-05,
325
+ "loss": 0.7302,
326
+ "step": 53
327
+ },
328
+ {
329
+ "epoch": 0.09,
330
+ "learning_rate": 2.975048515244199e-05,
331
+ "loss": 0.7243,
332
+ "step": 54
333
+ },
334
+ {
335
+ "epoch": 0.09,
336
+ "learning_rate": 2.973606603175615e-05,
337
+ "loss": 0.7189,
338
+ "step": 55
339
+ },
340
+ {
341
+ "epoch": 0.09,
342
+ "learning_rate": 2.9721245594274435e-05,
343
+ "loss": 0.7269,
344
+ "step": 56
345
+ },
346
+ {
347
+ "epoch": 0.09,
348
+ "learning_rate": 2.9706024243611384e-05,
349
+ "loss": 0.7288,
350
+ "step": 57
351
+ },
352
+ {
353
+ "epoch": 0.09,
354
+ "learning_rate": 2.969040239429987e-05,
355
+ "loss": 0.7303,
356
+ "step": 58
357
+ },
358
+ {
359
+ "epoch": 0.09,
360
+ "learning_rate": 2.9674380471779784e-05,
361
+ "loss": 0.6944,
362
+ "step": 59
363
+ },
364
+ {
365
+ "epoch": 0.1,
366
+ "learning_rate": 2.9657958912386487e-05,
367
+ "loss": 0.7537,
368
+ "step": 60
369
+ },
370
+ {
371
+ "epoch": 0.1,
372
+ "learning_rate": 2.964113816333891e-05,
373
+ "loss": 0.7305,
374
+ "step": 61
375
+ },
376
+ {
377
+ "epoch": 0.1,
378
+ "learning_rate": 2.9623918682727355e-05,
379
+ "loss": 0.7183,
380
+ "step": 62
381
+ },
382
+ {
383
+ "epoch": 0.1,
384
+ "learning_rate": 2.9606300939501055e-05,
385
+ "loss": 0.7353,
386
+ "step": 63
387
+ },
388
+ {
389
+ "epoch": 0.1,
390
+ "learning_rate": 2.9588285413455384e-05,
391
+ "loss": 0.7355,
392
+ "step": 64
393
+ },
394
+ {
395
+ "epoch": 0.1,
396
+ "learning_rate": 2.9569872595218786e-05,
397
+ "loss": 0.724,
398
+ "step": 65
399
+ },
400
+ {
401
+ "epoch": 0.11,
402
+ "learning_rate": 2.9551062986239422e-05,
403
+ "loss": 0.7374,
404
+ "step": 66
405
+ },
406
+ {
407
+ "epoch": 0.11,
408
+ "learning_rate": 2.953185709877151e-05,
409
+ "loss": 0.7322,
410
+ "step": 67
411
+ },
412
+ {
413
+ "epoch": 0.11,
414
+ "learning_rate": 2.9512255455861378e-05,
415
+ "loss": 0.7321,
416
+ "step": 68
417
+ },
418
+ {
419
+ "epoch": 0.11,
420
+ "learning_rate": 2.9492258591333224e-05,
421
+ "loss": 0.728,
422
+ "step": 69
423
+ },
424
+ {
425
+ "epoch": 0.11,
426
+ "learning_rate": 2.9471867049774554e-05,
427
+ "loss": 0.7536,
428
+ "step": 70
429
+ },
430
+ {
431
+ "epoch": 0.11,
432
+ "learning_rate": 2.9451081386521383e-05,
433
+ "loss": 0.7061,
434
+ "step": 71
435
+ },
436
+ {
437
+ "epoch": 0.12,
438
+ "learning_rate": 2.9429902167643094e-05,
439
+ "loss": 0.7217,
440
+ "step": 72
441
+ },
442
+ {
443
+ "epoch": 0.12,
444
+ "learning_rate": 2.940832996992702e-05,
445
+ "loss": 0.7466,
446
+ "step": 73
447
+ },
448
+ {
449
+ "epoch": 0.12,
450
+ "learning_rate": 2.9386365380862742e-05,
451
+ "loss": 0.7249,
452
+ "step": 74
453
+ },
454
+ {
455
+ "epoch": 0.12,
456
+ "learning_rate": 2.936400899862609e-05,
457
+ "loss": 0.7365,
458
+ "step": 75
459
+ },
460
+ {
461
+ "epoch": 0.12,
462
+ "learning_rate": 2.934126143206285e-05,
463
+ "loss": 0.7209,
464
+ "step": 76
465
+ },
466
+ {
467
+ "epoch": 0.12,
468
+ "learning_rate": 2.9318123300672176e-05,
469
+ "loss": 0.7399,
470
+ "step": 77
471
+ },
472
+ {
473
+ "epoch": 0.13,
474
+ "learning_rate": 2.929459523458974e-05,
475
+ "loss": 0.7155,
476
+ "step": 78
477
+ },
478
+ {
479
+ "epoch": 0.13,
480
+ "learning_rate": 2.9270677874570545e-05,
481
+ "loss": 0.7405,
482
+ "step": 79
483
+ },
484
+ {
485
+ "epoch": 0.13,
486
+ "learning_rate": 2.9246371871971487e-05,
487
+ "loss": 0.7201,
488
+ "step": 80
489
+ },
490
+ {
491
+ "epoch": 0.13,
492
+ "learning_rate": 2.9221677888733628e-05,
493
+ "loss": 0.7325,
494
+ "step": 81
495
+ },
496
+ {
497
+ "epoch": 0.13,
498
+ "learning_rate": 2.919659659736414e-05,
499
+ "loss": 0.7072,
500
+ "step": 82
501
+ },
502
+ {
503
+ "epoch": 0.13,
504
+ "learning_rate": 2.9171128680918025e-05,
505
+ "loss": 0.7461,
506
+ "step": 83
507
+ },
508
+ {
509
+ "epoch": 0.14,
510
+ "learning_rate": 2.9145274832979487e-05,
511
+ "loss": 0.729,
512
+ "step": 84
513
+ },
514
+ {
515
+ "epoch": 0.14,
516
+ "learning_rate": 2.9119035757643046e-05,
517
+ "loss": 0.7236,
518
+ "step": 85
519
+ },
520
+ {
521
+ "epoch": 0.14,
522
+ "learning_rate": 2.9092412169494375e-05,
523
+ "loss": 0.7501,
524
+ "step": 86
525
+ },
526
+ {
527
+ "epoch": 0.14,
528
+ "learning_rate": 2.9065404793590832e-05,
529
+ "loss": 0.726,
530
+ "step": 87
531
+ },
532
+ {
533
+ "epoch": 0.14,
534
+ "learning_rate": 2.903801436544171e-05,
535
+ "loss": 0.7212,
536
+ "step": 88
537
+ },
538
+ {
539
+ "epoch": 0.14,
540
+ "learning_rate": 2.901024163098822e-05,
541
+ "loss": 0.6973,
542
+ "step": 89
543
+ },
544
+ {
545
+ "epoch": 0.14,
546
+ "learning_rate": 2.898208734658316e-05,
547
+ "loss": 0.721,
548
+ "step": 90
549
+ },
550
+ {
551
+ "epoch": 0.15,
552
+ "learning_rate": 2.8953552278970327e-05,
553
+ "loss": 0.721,
554
+ "step": 91
555
+ },
556
+ {
557
+ "epoch": 0.15,
558
+ "learning_rate": 2.892463720526363e-05,
559
+ "loss": 0.7359,
560
+ "step": 92
561
+ },
562
+ {
563
+ "epoch": 0.15,
564
+ "learning_rate": 2.889534291292593e-05,
565
+ "loss": 0.7043,
566
+ "step": 93
567
+ },
568
+ {
569
+ "epoch": 0.15,
570
+ "learning_rate": 2.88656701997476e-05,
571
+ "loss": 0.7423,
572
+ "step": 94
573
+ },
574
+ {
575
+ "epoch": 0.15,
576
+ "learning_rate": 2.883561987382478e-05,
577
+ "loss": 0.7247,
578
+ "step": 95
579
+ },
580
+ {
581
+ "epoch": 0.15,
582
+ "learning_rate": 2.880519275353739e-05,
583
+ "loss": 0.7506,
584
+ "step": 96
585
+ },
586
+ {
587
+ "epoch": 0.16,
588
+ "learning_rate": 2.877438966752684e-05,
589
+ "loss": 0.7028,
590
+ "step": 97
591
+ },
592
+ {
593
+ "epoch": 0.16,
594
+ "learning_rate": 2.874321145467344e-05,
595
+ "loss": 0.7118,
596
+ "step": 98
597
+ },
598
+ {
599
+ "epoch": 0.16,
600
+ "learning_rate": 2.871165896407358e-05,
601
+ "loss": 0.7215,
602
+ "step": 99
603
+ },
604
+ {
605
+ "epoch": 0.16,
606
+ "learning_rate": 2.867973305501661e-05,
607
+ "loss": 0.7214,
608
+ "step": 100
609
+ },
610
+ {
611
+ "epoch": 0.16,
612
+ "learning_rate": 2.8647434596961397e-05,
613
+ "loss": 0.737,
614
+ "step": 101
615
+ },
616
+ {
617
+ "epoch": 0.16,
618
+ "learning_rate": 2.8614764469512708e-05,
619
+ "loss": 0.7213,
620
+ "step": 102
621
+ },
622
+ {
623
+ "epoch": 0.17,
624
+ "learning_rate": 2.8581723562397203e-05,
625
+ "loss": 0.7328,
626
+ "step": 103
627
+ },
628
+ {
629
+ "epoch": 0.17,
630
+ "learning_rate": 2.854831277543922e-05,
631
+ "loss": 0.7207,
632
+ "step": 104
633
+ },
634
+ {
635
+ "epoch": 0.17,
636
+ "learning_rate": 2.8514533018536286e-05,
637
+ "loss": 0.7463,
638
+ "step": 105
639
+ },
640
+ {
641
+ "epoch": 0.17,
642
+ "learning_rate": 2.8480385211634324e-05,
643
+ "loss": 0.713,
644
+ "step": 106
645
+ },
646
+ {
647
+ "epoch": 0.17,
648
+ "learning_rate": 2.8445870284702593e-05,
649
+ "loss": 0.6953,
650
+ "step": 107
651
+ },
652
+ {
653
+ "epoch": 0.17,
654
+ "learning_rate": 2.841098917770837e-05,
655
+ "loss": 0.7047,
656
+ "step": 108
657
+ },
658
+ {
659
+ "epoch": 0.18,
660
+ "learning_rate": 2.837574284059135e-05,
661
+ "loss": 0.6912,
662
+ "step": 109
663
+ },
664
+ {
665
+ "epoch": 0.18,
666
+ "learning_rate": 2.8340132233237784e-05,
667
+ "loss": 0.7134,
668
+ "step": 110
669
+ },
670
+ {
671
+ "epoch": 0.18,
672
+ "learning_rate": 2.8304158325454318e-05,
673
+ "loss": 0.7308,
674
+ "step": 111
675
+ },
676
+ {
677
+ "epoch": 0.18,
678
+ "learning_rate": 2.8267822096941597e-05,
679
+ "loss": 0.724,
680
+ "step": 112
681
+ },
682
+ {
683
+ "epoch": 0.18,
684
+ "learning_rate": 2.823112453726758e-05,
685
+ "loss": 0.7111,
686
+ "step": 113
687
+ },
688
+ {
689
+ "epoch": 0.18,
690
+ "learning_rate": 2.8194066645840598e-05,
691
+ "loss": 0.7095,
692
+ "step": 114
693
+ },
694
+ {
695
+ "epoch": 0.18,
696
+ "learning_rate": 2.8156649431882118e-05,
697
+ "loss": 0.7052,
698
+ "step": 115
699
+ },
700
+ {
701
+ "epoch": 0.19,
702
+ "learning_rate": 2.8118873914399276e-05,
703
+ "loss": 0.7306,
704
+ "step": 116
705
+ },
706
+ {
707
+ "epoch": 0.19,
708
+ "learning_rate": 2.8080741122157116e-05,
709
+ "loss": 0.7132,
710
+ "step": 117
711
+ },
712
+ {
713
+ "epoch": 0.19,
714
+ "learning_rate": 2.8042252093650578e-05,
715
+ "loss": 0.711,
716
+ "step": 118
717
+ },
718
+ {
719
+ "epoch": 0.19,
720
+ "learning_rate": 2.800340787707621e-05,
721
+ "loss": 0.7274,
722
+ "step": 119
723
+ },
724
+ {
725
+ "epoch": 0.19,
726
+ "learning_rate": 2.7964209530303632e-05,
727
+ "loss": 0.7188,
728
+ "step": 120
729
+ },
730
+ {
731
+ "epoch": 0.19,
732
+ "learning_rate": 2.792465812084672e-05,
733
+ "loss": 0.7034,
734
+ "step": 121
735
+ },
736
+ {
737
+ "epoch": 0.2,
738
+ "learning_rate": 2.788475472583453e-05,
739
+ "loss": 0.7269,
740
+ "step": 122
741
+ },
742
+ {
743
+ "epoch": 0.2,
744
+ "learning_rate": 2.784450043198197e-05,
745
+ "loss": 0.7135,
746
+ "step": 123
747
+ },
748
+ {
749
+ "epoch": 0.2,
750
+ "learning_rate": 2.78038963355602e-05,
751
+ "loss": 0.7152,
752
+ "step": 124
753
+ },
754
+ {
755
+ "epoch": 0.2,
756
+ "learning_rate": 2.776294354236678e-05,
757
+ "loss": 0.7174,
758
+ "step": 125
759
+ },
760
+ {
761
+ "epoch": 0.2,
762
+ "learning_rate": 2.7721643167695552e-05,
763
+ "loss": 0.7204,
764
+ "step": 126
765
+ },
766
+ {
767
+ "epoch": 0.2,
768
+ "learning_rate": 2.767999633630628e-05,
769
+ "loss": 0.706,
770
+ "step": 127
771
+ },
772
+ {
773
+ "epoch": 0.21,
774
+ "learning_rate": 2.7638004182394e-05,
775
+ "loss": 0.6973,
776
+ "step": 128
777
+ },
778
+ {
779
+ "epoch": 0.21,
780
+ "learning_rate": 2.759566784955813e-05,
781
+ "loss": 0.7048,
782
+ "step": 129
783
+ },
784
+ {
785
+ "epoch": 0.21,
786
+ "learning_rate": 2.7552988490771346e-05,
787
+ "loss": 0.6984,
788
+ "step": 130
789
+ },
790
+ {
791
+ "epoch": 0.21,
792
+ "learning_rate": 2.7509967268348168e-05,
793
+ "loss": 0.6926,
794
+ "step": 131
795
+ },
796
+ {
797
+ "epoch": 0.21,
798
+ "learning_rate": 2.7466605353913312e-05,
799
+ "loss": 0.6848,
800
+ "step": 132
801
+ },
802
+ {
803
+ "epoch": 0.21,
804
+ "learning_rate": 2.7422903928369777e-05,
805
+ "loss": 0.6812,
806
+ "step": 133
807
+ },
808
+ {
809
+ "epoch": 0.22,
810
+ "learning_rate": 2.7378864181866683e-05,
811
+ "loss": 0.7051,
812
+ "step": 134
813
+ },
814
+ {
815
+ "epoch": 0.22,
816
+ "learning_rate": 2.7334487313766867e-05,
817
+ "loss": 0.6966,
818
+ "step": 135
819
+ },
820
+ {
821
+ "epoch": 0.22,
822
+ "learning_rate": 2.7289774532614215e-05,
823
+ "loss": 0.6857,
824
+ "step": 136
825
+ },
826
+ {
827
+ "epoch": 0.22,
828
+ "learning_rate": 2.7244727056100755e-05,
829
+ "loss": 0.7081,
830
+ "step": 137
831
+ },
832
+ {
833
+ "epoch": 0.22,
834
+ "learning_rate": 2.719934611103348e-05,
835
+ "loss": 0.6819,
836
+ "step": 138
837
+ },
838
+ {
839
+ "epoch": 0.22,
840
+ "learning_rate": 2.7153632933300957e-05,
841
+ "loss": 0.6823,
842
+ "step": 139
843
+ },
844
+ {
845
+ "epoch": 0.23,
846
+ "learning_rate": 2.7107588767839654e-05,
847
+ "loss": 0.7421,
848
+ "step": 140
849
+ },
850
+ {
851
+ "epoch": 0.23,
852
+ "learning_rate": 2.7061214868600045e-05,
853
+ "loss": 0.7034,
854
+ "step": 141
855
+ },
856
+ {
857
+ "epoch": 0.23,
858
+ "learning_rate": 2.7014512498512452e-05,
859
+ "loss": 0.7123,
860
+ "step": 142
861
+ },
862
+ {
863
+ "epoch": 0.23,
864
+ "learning_rate": 2.696748292945265e-05,
865
+ "loss": 0.6947,
866
+ "step": 143
867
+ },
868
+ {
869
+ "epoch": 0.23,
870
+ "learning_rate": 2.6920127442207262e-05,
871
+ "loss": 0.7064,
872
+ "step": 144
873
+ },
874
+ {
875
+ "epoch": 0.23,
876
+ "learning_rate": 2.6872447326438813e-05,
877
+ "loss": 0.7085,
878
+ "step": 145
879
+ },
880
+ {
881
+ "epoch": 0.23,
882
+ "learning_rate": 2.6824443880650673e-05,
883
+ "loss": 0.6998,
884
+ "step": 146
885
+ },
886
+ {
887
+ "epoch": 0.24,
888
+ "learning_rate": 2.6776118412151662e-05,
889
+ "loss": 0.6983,
890
+ "step": 147
891
+ },
892
+ {
893
+ "epoch": 0.24,
894
+ "learning_rate": 2.672747223702045e-05,
895
+ "loss": 0.6932,
896
+ "step": 148
897
+ },
898
+ {
899
+ "epoch": 0.24,
900
+ "learning_rate": 2.6678506680069708e-05,
901
+ "loss": 0.6901,
902
+ "step": 149
903
+ },
904
+ {
905
+ "epoch": 0.24,
906
+ "learning_rate": 2.6629223074810057e-05,
907
+ "loss": 0.7058,
908
+ "step": 150
909
+ },
910
+ {
911
+ "epoch": 0.24,
912
+ "learning_rate": 2.6579622763413718e-05,
913
+ "loss": 0.683,
914
+ "step": 151
915
+ },
916
+ {
917
+ "epoch": 0.24,
918
+ "learning_rate": 2.652970709667798e-05,
919
+ "loss": 0.7158,
920
+ "step": 152
921
+ },
922
+ {
923
+ "epoch": 0.25,
924
+ "learning_rate": 2.6479477433988413e-05,
925
+ "loss": 0.6693,
926
+ "step": 153
927
+ },
928
+ {
929
+ "epoch": 0.25,
930
+ "learning_rate": 2.642893514328183e-05,
931
+ "loss": 0.6994,
932
+ "step": 154
933
+ },
934
+ {
935
+ "epoch": 0.25,
936
+ "learning_rate": 2.637808160100905e-05,
937
+ "loss": 0.7029,
938
+ "step": 155
939
+ },
940
+ {
941
+ "epoch": 0.25,
942
+ "learning_rate": 2.632691819209741e-05,
943
+ "loss": 0.7294,
944
+ "step": 156
945
+ },
946
+ {
947
+ "epoch": 0.25,
948
+ "learning_rate": 2.627544630991304e-05,
949
+ "loss": 0.7046,
950
+ "step": 157
951
+ },
952
+ {
953
+ "epoch": 0.25,
954
+ "learning_rate": 2.6223667356222925e-05,
955
+ "loss": 0.6985,
956
+ "step": 158
957
+ },
958
+ {
959
+ "epoch": 0.26,
960
+ "learning_rate": 2.617158274115673e-05,
961
+ "loss": 0.6882,
962
+ "step": 159
963
+ },
964
+ {
965
+ "epoch": 0.26,
966
+ "learning_rate": 2.611919388316838e-05,
967
+ "loss": 0.7089,
968
+ "step": 160
969
+ },
970
+ {
971
+ "epoch": 0.26,
972
+ "learning_rate": 2.6066502208997456e-05,
973
+ "loss": 0.7028,
974
+ "step": 161
975
+ },
976
+ {
977
+ "epoch": 0.26,
978
+ "learning_rate": 2.601350915363033e-05,
979
+ "loss": 0.71,
980
+ "step": 162
981
+ },
982
+ {
983
+ "epoch": 0.26,
984
+ "learning_rate": 2.5960216160261063e-05,
985
+ "loss": 0.6834,
986
+ "step": 163
987
+ },
988
+ {
989
+ "epoch": 0.26,
990
+ "learning_rate": 2.5906624680252152e-05,
991
+ "loss": 0.7107,
992
+ "step": 164
993
+ },
994
+ {
995
+ "epoch": 0.27,
996
+ "learning_rate": 2.585273617309495e-05,
997
+ "loss": 0.6981,
998
+ "step": 165
999
+ },
1000
+ {
1001
+ "epoch": 0.27,
1002
+ "learning_rate": 2.579855210636994e-05,
1003
+ "loss": 0.7053,
1004
+ "step": 166
1005
+ },
1006
+ {
1007
+ "epoch": 0.27,
1008
+ "learning_rate": 2.5744073955706786e-05,
1009
+ "loss": 0.702,
1010
+ "step": 167
1011
+ },
1012
+ {
1013
+ "epoch": 0.27,
1014
+ "learning_rate": 2.5689303204744123e-05,
1015
+ "loss": 0.7044,
1016
+ "step": 168
1017
+ },
1018
+ {
1019
+ "epoch": 0.27,
1020
+ "learning_rate": 2.563424134508915e-05,
1021
+ "loss": 0.6947,
1022
+ "step": 169
1023
+ },
1024
+ {
1025
+ "epoch": 0.27,
1026
+ "learning_rate": 2.5578889876277027e-05,
1027
+ "loss": 0.7189,
1028
+ "step": 170
1029
+ },
1030
+ {
1031
+ "epoch": 0.27,
1032
+ "learning_rate": 2.552325030573003e-05,
1033
+ "loss": 0.6952,
1034
+ "step": 171
1035
+ },
1036
+ {
1037
+ "epoch": 0.28,
1038
+ "learning_rate": 2.5467324148716483e-05,
1039
+ "loss": 0.6598,
1040
+ "step": 172
1041
+ },
1042
+ {
1043
+ "epoch": 0.28,
1044
+ "learning_rate": 2.541111292830951e-05,
1045
+ "loss": 0.694,
1046
+ "step": 173
1047
+ },
1048
+ {
1049
+ "epoch": 0.28,
1050
+ "learning_rate": 2.5354618175345553e-05,
1051
+ "loss": 0.6709,
1052
+ "step": 174
1053
+ },
1054
+ {
1055
+ "epoch": 0.28,
1056
+ "learning_rate": 2.529784142838268e-05,
1057
+ "loss": 0.6707,
1058
+ "step": 175
1059
+ },
1060
+ {
1061
+ "epoch": 0.28,
1062
+ "learning_rate": 2.524078423365868e-05,
1063
+ "loss": 0.675,
1064
+ "step": 176
1065
+ },
1066
+ {
1067
+ "epoch": 0.28,
1068
+ "learning_rate": 2.5183448145048956e-05,
1069
+ "loss": 0.7101,
1070
+ "step": 177
1071
+ },
1072
+ {
1073
+ "epoch": 0.29,
1074
+ "learning_rate": 2.512583472402421e-05,
1075
+ "loss": 0.7034,
1076
+ "step": 178
1077
+ },
1078
+ {
1079
+ "epoch": 0.29,
1080
+ "learning_rate": 2.5067945539607913e-05,
1081
+ "loss": 0.6958,
1082
+ "step": 179
1083
+ },
1084
+ {
1085
+ "epoch": 0.29,
1086
+ "learning_rate": 2.500978216833359e-05,
1087
+ "loss": 0.6806,
1088
+ "step": 180
1089
+ },
1090
+ {
1091
+ "epoch": 0.29,
1092
+ "learning_rate": 2.495134619420186e-05,
1093
+ "loss": 0.7301,
1094
+ "step": 181
1095
+ },
1096
+ {
1097
+ "epoch": 0.29,
1098
+ "learning_rate": 2.4892639208637316e-05,
1099
+ "loss": 0.7204,
1100
+ "step": 182
1101
+ },
1102
+ {
1103
+ "epoch": 0.29,
1104
+ "learning_rate": 2.4833662810445188e-05,
1105
+ "loss": 0.6885,
1106
+ "step": 183
1107
+ },
1108
+ {
1109
+ "epoch": 0.3,
1110
+ "learning_rate": 2.477441860576778e-05,
1111
+ "loss": 0.7118,
1112
+ "step": 184
1113
+ },
1114
+ {
1115
+ "epoch": 0.3,
1116
+ "learning_rate": 2.4714908208040756e-05,
1117
+ "loss": 0.7006,
1118
+ "step": 185
1119
+ },
1120
+ {
1121
+ "epoch": 0.3,
1122
+ "learning_rate": 2.465513323794917e-05,
1123
+ "loss": 0.7017,
1124
+ "step": 186
1125
+ },
1126
+ {
1127
+ "epoch": 0.3,
1128
+ "learning_rate": 2.459509532338337e-05,
1129
+ "loss": 0.6917,
1130
+ "step": 187
1131
+ },
1132
+ {
1133
+ "epoch": 0.3,
1134
+ "learning_rate": 2.4534796099394624e-05,
1135
+ "loss": 0.6804,
1136
+ "step": 188
1137
+ },
1138
+ {
1139
+ "epoch": 0.3,
1140
+ "learning_rate": 2.4474237208150606e-05,
1141
+ "loss": 0.7019,
1142
+ "step": 189
1143
+ },
1144
+ {
1145
+ "epoch": 0.31,
1146
+ "learning_rate": 2.4413420298890687e-05,
1147
+ "loss": 0.6755,
1148
+ "step": 190
1149
+ },
1150
+ {
1151
+ "epoch": 0.31,
1152
+ "learning_rate": 2.4352347027881003e-05,
1153
+ "loss": 0.692,
1154
+ "step": 191
1155
+ },
1156
+ {
1157
+ "epoch": 0.31,
1158
+ "learning_rate": 2.429101905836936e-05,
1159
+ "loss": 0.718,
1160
+ "step": 192
1161
+ },
1162
+ {
1163
+ "epoch": 0.31,
1164
+ "learning_rate": 2.4229438060539917e-05,
1165
+ "loss": 0.7089,
1166
+ "step": 193
1167
+ },
1168
+ {
1169
+ "epoch": 0.31,
1170
+ "learning_rate": 2.416760571146774e-05,
1171
+ "loss": 0.6916,
1172
+ "step": 194
1173
+ },
1174
+ {
1175
+ "epoch": 0.31,
1176
+ "learning_rate": 2.4105523695073086e-05,
1177
+ "loss": 0.6847,
1178
+ "step": 195
1179
+ },
1180
+ {
1181
+ "epoch": 0.32,
1182
+ "learning_rate": 2.4043193702075576e-05,
1183
+ "loss": 0.6764,
1184
+ "step": 196
1185
+ },
1186
+ {
1187
+ "epoch": 0.32,
1188
+ "learning_rate": 2.3980617429948132e-05,
1189
+ "loss": 0.7085,
1190
+ "step": 197
1191
+ },
1192
+ {
1193
+ "epoch": 0.32,
1194
+ "learning_rate": 2.391779658287075e-05,
1195
+ "loss": 0.7112,
1196
+ "step": 198
1197
+ },
1198
+ {
1199
+ "epoch": 0.32,
1200
+ "learning_rate": 2.3854732871684104e-05,
1201
+ "loss": 0.6706,
1202
+ "step": 199
1203
+ },
1204
+ {
1205
+ "epoch": 0.32,
1206
+ "learning_rate": 2.3791428013842935e-05,
1207
+ "loss": 0.6831,
1208
+ "step": 200
1209
+ },
1210
+ {
1211
+ "epoch": 0.32,
1212
+ "learning_rate": 2.3727883733369295e-05,
1213
+ "loss": 0.6848,
1214
+ "step": 201
1215
+ },
1216
+ {
1217
+ "epoch": 0.32,
1218
+ "learning_rate": 2.366410176080557e-05,
1219
+ "loss": 0.6828,
1220
+ "step": 202
1221
+ },
1222
+ {
1223
+ "epoch": 0.33,
1224
+ "learning_rate": 2.360008383316739e-05,
1225
+ "loss": 0.6917,
1226
+ "step": 203
1227
+ },
1228
+ {
1229
+ "epoch": 0.33,
1230
+ "learning_rate": 2.3535831693896283e-05,
1231
+ "loss": 0.6664,
1232
+ "step": 204
1233
+ },
1234
+ {
1235
+ "epoch": 0.33,
1236
+ "learning_rate": 2.3471347092812224e-05,
1237
+ "loss": 0.6732,
1238
+ "step": 205
1239
+ },
1240
+ {
1241
+ "epoch": 0.33,
1242
+ "learning_rate": 2.3406631786065977e-05,
1243
+ "loss": 0.7021,
1244
+ "step": 206
1245
+ },
1246
+ {
1247
+ "epoch": 0.33,
1248
+ "learning_rate": 2.334168753609124e-05,
1249
+ "loss": 0.6986,
1250
+ "step": 207
1251
+ },
1252
+ {
1253
+ "epoch": 0.33,
1254
+ "learning_rate": 2.327651611155669e-05,
1255
+ "loss": 0.6899,
1256
+ "step": 208
1257
+ },
1258
+ {
1259
+ "epoch": 0.34,
1260
+ "learning_rate": 2.3211119287317785e-05,
1261
+ "loss": 0.6732,
1262
+ "step": 209
1263
+ },
1264
+ {
1265
+ "epoch": 0.34,
1266
+ "learning_rate": 2.3145498844368448e-05,
1267
+ "loss": 0.7044,
1268
+ "step": 210
1269
+ },
1270
+ {
1271
+ "epoch": 0.34,
1272
+ "learning_rate": 2.3079656569792543e-05,
1273
+ "loss": 0.6834,
1274
+ "step": 211
1275
+ },
1276
+ {
1277
+ "epoch": 0.34,
1278
+ "learning_rate": 2.3013594256715232e-05,
1279
+ "loss": 0.6906,
1280
+ "step": 212
1281
+ },
1282
+ {
1283
+ "epoch": 0.34,
1284
+ "learning_rate": 2.2947313704254104e-05,
1285
+ "loss": 0.6995,
1286
+ "step": 213
1287
+ },
1288
+ {
1289
+ "epoch": 0.34,
1290
+ "learning_rate": 2.2880816717470225e-05,
1291
+ "loss": 0.6925,
1292
+ "step": 214
1293
+ },
1294
+ {
1295
+ "epoch": 0.35,
1296
+ "learning_rate": 2.2814105107318955e-05,
1297
+ "loss": 0.695,
1298
+ "step": 215
1299
+ },
1300
+ {
1301
+ "epoch": 0.35,
1302
+ "learning_rate": 2.274718069060062e-05,
1303
+ "loss": 0.7041,
1304
+ "step": 216
1305
+ },
1306
+ {
1307
+ "epoch": 0.35,
1308
+ "learning_rate": 2.2680045289911042e-05,
1309
+ "loss": 0.6718,
1310
+ "step": 217
1311
+ },
1312
+ {
1313
+ "epoch": 0.35,
1314
+ "learning_rate": 2.261270073359192e-05,
1315
+ "loss": 0.6794,
1316
+ "step": 218
1317
+ },
1318
+ {
1319
+ "epoch": 0.35,
1320
+ "learning_rate": 2.254514885568101e-05,
1321
+ "loss": 0.7014,
1322
+ "step": 219
1323
+ },
1324
+ {
1325
+ "epoch": 0.35,
1326
+ "learning_rate": 2.2477391495862206e-05,
1327
+ "loss": 0.6996,
1328
+ "step": 220
1329
+ },
1330
+ {
1331
+ "epoch": 0.36,
1332
+ "learning_rate": 2.2409430499415408e-05,
1333
+ "loss": 0.6992,
1334
+ "step": 221
1335
+ },
1336
+ {
1337
+ "epoch": 0.36,
1338
+ "learning_rate": 2.2341267717166285e-05,
1339
+ "loss": 0.6909,
1340
+ "step": 222
1341
+ },
1342
+ {
1343
+ "epoch": 0.36,
1344
+ "learning_rate": 2.2272905005435876e-05,
1345
+ "loss": 0.6922,
1346
+ "step": 223
1347
+ },
1348
+ {
1349
+ "epoch": 0.36,
1350
+ "learning_rate": 2.220434422599003e-05,
1351
+ "loss": 0.6909,
1352
+ "step": 224
1353
+ },
1354
+ {
1355
+ "epoch": 0.36,
1356
+ "learning_rate": 2.2135587245988698e-05,
1357
+ "loss": 0.696,
1358
+ "step": 225
1359
+ },
1360
+ {
1361
+ "epoch": 0.36,
1362
+ "learning_rate": 2.2066635937935085e-05,
1363
+ "loss": 0.7072,
1364
+ "step": 226
1365
+ },
1366
+ {
1367
+ "epoch": 0.36,
1368
+ "learning_rate": 2.1997492179624662e-05,
1369
+ "loss": 0.6845,
1370
+ "step": 227
1371
+ },
1372
+ {
1373
+ "epoch": 0.37,
1374
+ "learning_rate": 2.1928157854094014e-05,
1375
+ "loss": 0.6987,
1376
+ "step": 228
1377
+ },
1378
+ {
1379
+ "epoch": 0.37,
1380
+ "learning_rate": 2.1858634849569578e-05,
1381
+ "loss": 0.7064,
1382
+ "step": 229
1383
+ },
1384
+ {
1385
+ "epoch": 0.37,
1386
+ "learning_rate": 2.17889250594162e-05,
1387
+ "loss": 0.7079,
1388
+ "step": 230
1389
+ },
1390
+ {
1391
+ "epoch": 0.37,
1392
+ "learning_rate": 2.1719030382085577e-05,
1393
+ "loss": 0.6718,
1394
+ "step": 231
1395
+ },
1396
+ {
1397
+ "epoch": 0.37,
1398
+ "learning_rate": 2.1648952721064563e-05,
1399
+ "loss": 0.6888,
1400
+ "step": 232
1401
+ },
1402
+ {
1403
+ "epoch": 0.37,
1404
+ "learning_rate": 2.157869398482333e-05,
1405
+ "loss": 0.6822,
1406
+ "step": 233
1407
+ },
1408
+ {
1409
+ "epoch": 0.38,
1410
+ "learning_rate": 2.1508256086763372e-05,
1411
+ "loss": 0.6774,
1412
+ "step": 234
1413
+ },
1414
+ {
1415
+ "epoch": 0.38,
1416
+ "learning_rate": 2.1437640945165433e-05,
1417
+ "loss": 0.6815,
1418
+ "step": 235
1419
+ },
1420
+ {
1421
+ "epoch": 0.38,
1422
+ "learning_rate": 2.136685048313723e-05,
1423
+ "loss": 0.6718,
1424
+ "step": 236
1425
+ },
1426
+ {
1427
+ "epoch": 0.38,
1428
+ "learning_rate": 2.1295886628561092e-05,
1429
+ "loss": 0.688,
1430
+ "step": 237
1431
+ },
1432
+ {
1433
+ "epoch": 0.38,
1434
+ "learning_rate": 2.122475131404148e-05,
1435
+ "loss": 0.6881,
1436
+ "step": 238
1437
+ },
1438
+ {
1439
+ "epoch": 0.38,
1440
+ "learning_rate": 2.1153446476852304e-05,
1441
+ "loss": 0.6833,
1442
+ "step": 239
1443
+ },
1444
+ {
1445
+ "epoch": 0.39,
1446
+ "learning_rate": 2.108197405888422e-05,
1447
+ "loss": 0.6988,
1448
+ "step": 240
1449
+ },
1450
+ {
1451
+ "epoch": 0.39,
1452
+ "learning_rate": 2.1010336006591715e-05,
1453
+ "loss": 0.6775,
1454
+ "step": 241
1455
+ },
1456
+ {
1457
+ "epoch": 0.39,
1458
+ "learning_rate": 2.093853427094009e-05,
1459
+ "loss": 0.6972,
1460
+ "step": 242
1461
+ },
1462
+ {
1463
+ "epoch": 0.39,
1464
+ "learning_rate": 2.086657080735234e-05,
1465
+ "loss": 0.7003,
1466
+ "step": 243
1467
+ },
1468
+ {
1469
+ "epoch": 0.39,
1470
+ "learning_rate": 2.0794447575655924e-05,
1471
+ "loss": 0.6803,
1472
+ "step": 244
1473
+ },
1474
+ {
1475
+ "epoch": 0.39,
1476
+ "learning_rate": 2.072216654002935e-05,
1477
+ "loss": 0.7042,
1478
+ "step": 245
1479
+ },
1480
+ {
1481
+ "epoch": 0.4,
1482
+ "learning_rate": 2.0649729668948694e-05,
1483
+ "loss": 0.69,
1484
+ "step": 246
1485
+ },
1486
+ {
1487
+ "epoch": 0.4,
1488
+ "learning_rate": 2.057713893513403e-05,
1489
+ "loss": 0.6948,
1490
+ "step": 247
1491
+ },
1492
+ {
1493
+ "epoch": 0.4,
1494
+ "learning_rate": 2.0504396315495645e-05,
1495
+ "loss": 0.6927,
1496
+ "step": 248
1497
+ },
1498
+ {
1499
+ "epoch": 0.4,
1500
+ "learning_rate": 2.043150379108025e-05,
1501
+ "loss": 0.672,
1502
+ "step": 249
1503
+ },
1504
+ {
1505
+ "epoch": 0.4,
1506
+ "learning_rate": 2.035846334701699e-05,
1507
+ "loss": 0.6971,
1508
+ "step": 250
1509
+ },
1510
+ {
1511
+ "epoch": 0.4,
1512
+ "learning_rate": 2.028527697246343e-05,
1513
+ "loss": 0.6847,
1514
+ "step": 251
1515
+ },
1516
+ {
1517
+ "epoch": 0.41,
1518
+ "learning_rate": 2.0211946660551327e-05,
1519
+ "loss": 0.6994,
1520
+ "step": 252
1521
+ },
1522
+ {
1523
+ "epoch": 0.41,
1524
+ "learning_rate": 2.013847440833239e-05,
1525
+ "loss": 0.6754,
1526
+ "step": 253
1527
+ },
1528
+ {
1529
+ "epoch": 0.41,
1530
+ "learning_rate": 2.006486221672388e-05,
1531
+ "loss": 0.6815,
1532
+ "step": 254
1533
+ },
1534
+ {
1535
+ "epoch": 0.41,
1536
+ "learning_rate": 1.9991112090454108e-05,
1537
+ "loss": 0.6744,
1538
+ "step": 255
1539
+ },
1540
+ {
1541
+ "epoch": 0.41,
1542
+ "learning_rate": 1.9917226038007863e-05,
1543
+ "loss": 0.7123,
1544
+ "step": 256
1545
+ },
1546
+ {
1547
+ "epoch": 0.41,
1548
+ "learning_rate": 1.9843206071571692e-05,
1549
+ "loss": 0.6813,
1550
+ "step": 257
1551
+ },
1552
+ {
1553
+ "epoch": 0.41,
1554
+ "learning_rate": 1.976905420697911e-05,
1555
+ "loss": 0.6852,
1556
+ "step": 258
1557
+ },
1558
+ {
1559
+ "epoch": 0.42,
1560
+ "learning_rate": 1.9694772463655684e-05,
1561
+ "loss": 0.7095,
1562
+ "step": 259
1563
+ },
1564
+ {
1565
+ "epoch": 0.42,
1566
+ "learning_rate": 1.9620362864564082e-05,
1567
+ "loss": 0.706,
1568
+ "step": 260
1569
+ },
1570
+ {
1571
+ "epoch": 0.42,
1572
+ "learning_rate": 1.9545827436148932e-05,
1573
+ "loss": 0.7002,
1574
+ "step": 261
1575
+ },
1576
+ {
1577
+ "epoch": 0.42,
1578
+ "learning_rate": 1.9471168208281648e-05,
1579
+ "loss": 0.6605,
1580
+ "step": 262
1581
+ },
1582
+ {
1583
+ "epoch": 0.42,
1584
+ "learning_rate": 1.9396387214205173e-05,
1585
+ "loss": 0.6623,
1586
+ "step": 263
1587
+ },
1588
+ {
1589
+ "epoch": 0.42,
1590
+ "learning_rate": 1.9321486490478565e-05,
1591
+ "loss": 0.6849,
1592
+ "step": 264
1593
+ },
1594
+ {
1595
+ "epoch": 0.43,
1596
+ "learning_rate": 1.9246468076921578e-05,
1597
+ "loss": 0.6969,
1598
+ "step": 265
1599
+ },
1600
+ {
1601
+ "epoch": 0.43,
1602
+ "learning_rate": 1.9171334016559078e-05,
1603
+ "loss": 0.6717,
1604
+ "step": 266
1605
+ },
1606
+ {
1607
+ "epoch": 0.43,
1608
+ "learning_rate": 1.909608635556542e-05,
1609
+ "loss": 0.6954,
1610
+ "step": 267
1611
+ },
1612
+ {
1613
+ "epoch": 0.43,
1614
+ "learning_rate": 1.902072714320871e-05,
1615
+ "loss": 0.6696,
1616
+ "step": 268
1617
+ },
1618
+ {
1619
+ "epoch": 0.43,
1620
+ "learning_rate": 1.894525843179501e-05,
1621
+ "loss": 0.6826,
1622
+ "step": 269
1623
+ },
1624
+ {
1625
+ "epoch": 0.43,
1626
+ "learning_rate": 1.886968227661244e-05,
1627
+ "loss": 0.6849,
1628
+ "step": 270
1629
+ },
1630
+ {
1631
+ "epoch": 0.44,
1632
+ "learning_rate": 1.879400073587521e-05,
1633
+ "loss": 0.6561,
1634
+ "step": 271
1635
+ },
1636
+ {
1637
+ "epoch": 0.44,
1638
+ "learning_rate": 1.871821587066756e-05,
1639
+ "loss": 0.7054,
1640
+ "step": 272
1641
+ },
1642
+ {
1643
+ "epoch": 0.44,
1644
+ "learning_rate": 1.8642329744887623e-05,
1645
+ "loss": 0.6526,
1646
+ "step": 273
1647
+ },
1648
+ {
1649
+ "epoch": 0.44,
1650
+ "learning_rate": 1.856634442519124e-05,
1651
+ "loss": 0.7006,
1652
+ "step": 274
1653
+ },
1654
+ {
1655
+ "epoch": 0.44,
1656
+ "learning_rate": 1.849026198093565e-05,
1657
+ "loss": 0.6897,
1658
+ "step": 275
1659
+ },
1660
+ {
1661
+ "epoch": 0.44,
1662
+ "learning_rate": 1.841408448412317e-05,
1663
+ "loss": 0.6461,
1664
+ "step": 276
1665
+ },
1666
+ {
1667
+ "epoch": 0.45,
1668
+ "learning_rate": 1.8337814009344716e-05,
1669
+ "loss": 0.6909,
1670
+ "step": 277
1671
+ },
1672
+ {
1673
+ "epoch": 0.45,
1674
+ "learning_rate": 1.8261452633723356e-05,
1675
+ "loss": 0.6816,
1676
+ "step": 278
1677
+ },
1678
+ {
1679
+ "epoch": 0.45,
1680
+ "learning_rate": 1.818500243685771e-05,
1681
+ "loss": 0.6701,
1682
+ "step": 279
1683
+ },
1684
+ {
1685
+ "epoch": 0.45,
1686
+ "learning_rate": 1.8108465500765315e-05,
1687
+ "loss": 0.7011,
1688
+ "step": 280
1689
+ },
1690
+ {
1691
+ "epoch": 0.45,
1692
+ "learning_rate": 1.8031843909825953e-05,
1693
+ "loss": 0.69,
1694
+ "step": 281
1695
+ },
1696
+ {
1697
+ "epoch": 0.45,
1698
+ "learning_rate": 1.7955139750724858e-05,
1699
+ "loss": 0.6694,
1700
+ "step": 282
1701
+ },
1702
+ {
1703
+ "epoch": 0.46,
1704
+ "learning_rate": 1.7878355112395887e-05,
1705
+ "loss": 0.6827,
1706
+ "step": 283
1707
+ },
1708
+ {
1709
+ "epoch": 0.46,
1710
+ "learning_rate": 1.780149208596465e-05,
1711
+ "loss": 0.6671,
1712
+ "step": 284
1713
+ },
1714
+ {
1715
+ "epoch": 0.46,
1716
+ "learning_rate": 1.7724552764691545e-05,
1717
+ "loss": 0.6945,
1718
+ "step": 285
1719
+ },
1720
+ {
1721
+ "epoch": 0.46,
1722
+ "learning_rate": 1.764753924391477e-05,
1723
+ "loss": 0.68,
1724
+ "step": 286
1725
+ },
1726
+ {
1727
+ "epoch": 0.46,
1728
+ "learning_rate": 1.7570453620993225e-05,
1729
+ "loss": 0.6665,
1730
+ "step": 287
1731
+ },
1732
+ {
1733
+ "epoch": 0.46,
1734
+ "learning_rate": 1.7493297995249428e-05,
1735
+ "loss": 0.6869,
1736
+ "step": 288
1737
+ },
1738
+ {
1739
+ "epoch": 0.46,
1740
+ "learning_rate": 1.7416074467912323e-05,
1741
+ "loss": 0.6758,
1742
+ "step": 289
1743
+ },
1744
+ {
1745
+ "epoch": 0.47,
1746
+ "learning_rate": 1.733878514206007e-05,
1747
+ "loss": 0.6896,
1748
+ "step": 290
1749
+ },
1750
+ {
1751
+ "epoch": 0.47,
1752
+ "learning_rate": 1.7261432122562755e-05,
1753
+ "loss": 0.6797,
1754
+ "step": 291
1755
+ },
1756
+ {
1757
+ "epoch": 0.47,
1758
+ "learning_rate": 1.7184017516025072e-05,
1759
+ "loss": 0.6884,
1760
+ "step": 292
1761
+ },
1762
+ {
1763
+ "epoch": 0.47,
1764
+ "learning_rate": 1.7106543430728967e-05,
1765
+ "loss": 0.6531,
1766
+ "step": 293
1767
+ },
1768
+ {
1769
+ "epoch": 0.47,
1770
+ "learning_rate": 1.7029011976576193e-05,
1771
+ "loss": 0.6692,
1772
+ "step": 294
1773
+ },
1774
+ {
1775
+ "epoch": 0.47,
1776
+ "learning_rate": 1.6951425265030883e-05,
1777
+ "loss": 0.6663,
1778
+ "step": 295
1779
+ },
1780
+ {
1781
+ "epoch": 0.48,
1782
+ "learning_rate": 1.6873785409062012e-05,
1783
+ "loss": 0.6817,
1784
+ "step": 296
1785
+ },
1786
+ {
1787
+ "epoch": 0.48,
1788
+ "learning_rate": 1.6796094523085885e-05,
1789
+ "loss": 0.6876,
1790
+ "step": 297
1791
+ },
1792
+ {
1793
+ "epoch": 0.48,
1794
+ "learning_rate": 1.6718354722908543e-05,
1795
+ "loss": 0.6817,
1796
+ "step": 298
1797
+ },
1798
+ {
1799
+ "epoch": 0.48,
1800
+ "learning_rate": 1.664056812566812e-05,
1801
+ "loss": 0.6826,
1802
+ "step": 299
1803
+ },
1804
+ {
1805
+ "epoch": 0.48,
1806
+ "learning_rate": 1.656273684977722e-05,
1807
+ "loss": 0.6892,
1808
+ "step": 300
1809
+ },
1810
+ {
1811
+ "epoch": 0.48,
1812
+ "learning_rate": 1.6484863014865212e-05,
1813
+ "loss": 0.6857,
1814
+ "step": 301
1815
+ },
1816
+ {
1817
+ "epoch": 0.49,
1818
+ "learning_rate": 1.6406948741720492e-05,
1819
+ "loss": 0.6776,
1820
+ "step": 302
1821
+ },
1822
+ {
1823
+ "epoch": 0.49,
1824
+ "learning_rate": 1.6328996152232747e-05,
1825
+ "loss": 0.6547,
1826
+ "step": 303
1827
+ },
1828
+ {
1829
+ "epoch": 0.49,
1830
+ "learning_rate": 1.6251007369335137e-05,
1831
+ "loss": 0.6742,
1832
+ "step": 304
1833
+ },
1834
+ {
1835
+ "epoch": 0.49,
1836
+ "learning_rate": 1.617298451694653e-05,
1837
+ "loss": 0.6719,
1838
+ "step": 305
1839
+ },
1840
+ {
1841
+ "epoch": 0.49,
1842
+ "learning_rate": 1.6094929719913614e-05,
1843
+ "loss": 0.6797,
1844
+ "step": 306
1845
+ },
1846
+ {
1847
+ "epoch": 0.49,
1848
+ "learning_rate": 1.601684510395304e-05,
1849
+ "loss": 0.6846,
1850
+ "step": 307
1851
+ },
1852
+ {
1853
+ "epoch": 0.5,
1854
+ "learning_rate": 1.5938732795593552e-05,
1855
+ "loss": 0.6777,
1856
+ "step": 308
1857
+ },
1858
+ {
1859
+ "epoch": 0.5,
1860
+ "learning_rate": 1.586059492211805e-05,
1861
+ "loss": 0.6561,
1862
+ "step": 309
1863
+ },
1864
+ {
1865
+ "epoch": 0.5,
1866
+ "learning_rate": 1.5782433611505658e-05,
1867
+ "loss": 0.6708,
1868
+ "step": 310
1869
+ },
1870
+ {
1871
+ "epoch": 0.5,
1872
+ "learning_rate": 1.5704250992373804e-05,
1873
+ "loss": 0.6733,
1874
+ "step": 311
1875
+ },
1876
+ {
1877
+ "epoch": 0.5,
1878
+ "learning_rate": 1.5626049193920197e-05,
1879
+ "loss": 0.6656,
1880
+ "step": 312
1881
+ },
1882
+ {
1883
+ "epoch": 0.5,
1884
+ "learning_rate": 1.5547830345864887e-05,
1885
+ "loss": 0.6851,
1886
+ "step": 313
1887
+ },
1888
+ {
1889
+ "epoch": 0.5,
1890
+ "learning_rate": 1.546959657839223e-05,
1891
+ "loss": 0.6897,
1892
+ "step": 314
1893
+ },
1894
+ {
1895
+ "epoch": 0.51,
1896
+ "learning_rate": 1.5391350022092913e-05,
1897
+ "loss": 0.6772,
1898
+ "step": 315
1899
+ },
1900
+ {
1901
+ "epoch": 0.51,
1902
+ "learning_rate": 1.5313092807905892e-05,
1903
+ "loss": 0.6664,
1904
+ "step": 316
1905
+ },
1906
+ {
1907
+ "epoch": 0.51,
1908
+ "learning_rate": 1.5234827067060387e-05,
1909
+ "loss": 0.6771,
1910
+ "step": 317
1911
+ },
1912
+ {
1913
+ "epoch": 0.51,
1914
+ "learning_rate": 1.5156554931017825e-05,
1915
+ "loss": 0.6817,
1916
+ "step": 318
1917
+ },
1918
+ {
1919
+ "epoch": 0.51,
1920
+ "learning_rate": 1.5078278531413795e-05,
1921
+ "loss": 0.6699,
1922
+ "step": 319
1923
+ },
1924
+ {
1925
+ "epoch": 0.51,
1926
+ "learning_rate": 1.5e-05,
1927
+ "loss": 0.6657,
1928
+ "step": 320
1929
+ },
1930
+ {
1931
+ "epoch": 0.52,
1932
+ "learning_rate": 1.4921721468586213e-05,
1933
+ "loss": 0.6913,
1934
+ "step": 321
1935
+ },
1936
+ {
1937
+ "epoch": 0.52,
1938
+ "learning_rate": 1.4843445068982178e-05,
1939
+ "loss": 0.6894,
1940
+ "step": 322
1941
+ },
1942
+ {
1943
+ "epoch": 0.52,
1944
+ "learning_rate": 1.4765172932939616e-05,
1945
+ "loss": 0.6846,
1946
+ "step": 323
1947
+ },
1948
+ {
1949
+ "epoch": 0.52,
1950
+ "learning_rate": 1.4686907192094107e-05,
1951
+ "loss": 0.6518,
1952
+ "step": 324
1953
+ },
1954
+ {
1955
+ "epoch": 0.52,
1956
+ "learning_rate": 1.460864997790709e-05,
1957
+ "loss": 0.6762,
1958
+ "step": 325
1959
+ },
1960
+ {
1961
+ "epoch": 0.52,
1962
+ "learning_rate": 1.4530403421607774e-05,
1963
+ "loss": 0.6591,
1964
+ "step": 326
1965
+ },
1966
+ {
1967
+ "epoch": 0.53,
1968
+ "learning_rate": 1.4452169654135116e-05,
1969
+ "loss": 0.6477,
1970
+ "step": 327
1971
+ },
1972
+ {
1973
+ "epoch": 0.53,
1974
+ "learning_rate": 1.4373950806079805e-05,
1975
+ "loss": 0.6711,
1976
+ "step": 328
1977
+ },
1978
+ {
1979
+ "epoch": 0.53,
1980
+ "learning_rate": 1.4295749007626199e-05,
1981
+ "loss": 0.6589,
1982
+ "step": 329
1983
+ },
1984
+ {
1985
+ "epoch": 0.53,
1986
+ "learning_rate": 1.4217566388494344e-05,
1987
+ "loss": 0.6857,
1988
+ "step": 330
1989
+ },
1990
+ {
1991
+ "epoch": 0.53,
1992
+ "learning_rate": 1.4139405077881956e-05,
1993
+ "loss": 0.6907,
1994
+ "step": 331
1995
+ },
1996
+ {
1997
+ "epoch": 0.53,
1998
+ "learning_rate": 1.406126720440645e-05,
1999
+ "loss": 0.6897,
2000
+ "step": 332
2001
+ },
2002
+ {
2003
+ "epoch": 0.54,
2004
+ "learning_rate": 1.3983154896046962e-05,
2005
+ "loss": 0.6564,
2006
+ "step": 333
2007
+ },
2008
+ {
2009
+ "epoch": 0.54,
2010
+ "learning_rate": 1.3905070280086387e-05,
2011
+ "loss": 0.6703,
2012
+ "step": 334
2013
+ },
2014
+ {
2015
+ "epoch": 0.54,
2016
+ "learning_rate": 1.382701548305347e-05,
2017
+ "loss": 0.664,
2018
+ "step": 335
2019
+ },
2020
+ {
2021
+ "epoch": 0.54,
2022
+ "learning_rate": 1.3748992630664866e-05,
2023
+ "loss": 0.6555,
2024
+ "step": 336
2025
+ },
2026
+ {
2027
+ "epoch": 0.54,
2028
+ "learning_rate": 1.3671003847767259e-05,
2029
+ "loss": 0.6859,
2030
+ "step": 337
2031
+ },
2032
+ {
2033
+ "epoch": 0.54,
2034
+ "learning_rate": 1.3593051258279512e-05,
2035
+ "loss": 0.6828,
2036
+ "step": 338
2037
+ },
2038
+ {
2039
+ "epoch": 0.55,
2040
+ "learning_rate": 1.3515136985134789e-05,
2041
+ "loss": 0.6836,
2042
+ "step": 339
2043
+ },
2044
+ {
2045
+ "epoch": 0.55,
2046
+ "learning_rate": 1.3437263150222782e-05,
2047
+ "loss": 0.6757,
2048
+ "step": 340
2049
+ },
2050
+ {
2051
+ "epoch": 0.55,
2052
+ "learning_rate": 1.3359431874331888e-05,
2053
+ "loss": 0.6696,
2054
+ "step": 341
2055
+ },
2056
+ {
2057
+ "epoch": 0.55,
2058
+ "learning_rate": 1.3281645277091462e-05,
2059
+ "loss": 0.6853,
2060
+ "step": 342
2061
+ },
2062
+ {
2063
+ "epoch": 0.55,
2064
+ "learning_rate": 1.3203905476914116e-05,
2065
+ "loss": 0.6705,
2066
+ "step": 343
2067
+ },
2068
+ {
2069
+ "epoch": 0.55,
2070
+ "learning_rate": 1.312621459093799e-05,
2071
+ "loss": 0.6695,
2072
+ "step": 344
2073
+ },
2074
+ {
2075
+ "epoch": 0.55,
2076
+ "learning_rate": 1.304857473496912e-05,
2077
+ "loss": 0.6804,
2078
+ "step": 345
2079
+ },
2080
+ {
2081
+ "epoch": 0.56,
2082
+ "learning_rate": 1.297098802342381e-05,
2083
+ "loss": 0.6812,
2084
+ "step": 346
2085
+ },
2086
+ {
2087
+ "epoch": 0.56,
2088
+ "learning_rate": 1.2893456569271036e-05,
2089
+ "loss": 0.6945,
2090
+ "step": 347
2091
+ },
2092
+ {
2093
+ "epoch": 0.56,
2094
+ "learning_rate": 1.281598248397493e-05,
2095
+ "loss": 0.6509,
2096
+ "step": 348
2097
+ },
2098
+ {
2099
+ "epoch": 0.56,
2100
+ "learning_rate": 1.2738567877437247e-05,
2101
+ "loss": 0.6806,
2102
+ "step": 349
2103
+ },
2104
+ {
2105
+ "epoch": 0.56,
2106
+ "learning_rate": 1.2661214857939933e-05,
2107
+ "loss": 0.6799,
2108
+ "step": 350
2109
+ },
2110
+ {
2111
+ "epoch": 0.56,
2112
+ "learning_rate": 1.2583925532087681e-05,
2113
+ "loss": 0.6727,
2114
+ "step": 351
2115
+ },
2116
+ {
2117
+ "epoch": 0.57,
2118
+ "learning_rate": 1.2506702004750575e-05,
2119
+ "loss": 0.6653,
2120
+ "step": 352
2121
+ },
2122
+ {
2123
+ "epoch": 0.57,
2124
+ "learning_rate": 1.242954637900678e-05,
2125
+ "loss": 0.6809,
2126
+ "step": 353
2127
+ },
2128
+ {
2129
+ "epoch": 0.57,
2130
+ "learning_rate": 1.235246075608523e-05,
2131
+ "loss": 0.6738,
2132
+ "step": 354
2133
+ },
2134
+ {
2135
+ "epoch": 0.57,
2136
+ "learning_rate": 1.2275447235308454e-05,
2137
+ "loss": 0.6654,
2138
+ "step": 355
2139
+ },
2140
+ {
2141
+ "epoch": 0.57,
2142
+ "learning_rate": 1.2198507914035357e-05,
2143
+ "loss": 0.6541,
2144
+ "step": 356
2145
+ },
2146
+ {
2147
+ "epoch": 0.57,
2148
+ "learning_rate": 1.2121644887604116e-05,
2149
+ "loss": 0.6696,
2150
+ "step": 357
2151
+ },
2152
+ {
2153
+ "epoch": 0.58,
2154
+ "learning_rate": 1.2044860249275147e-05,
2155
+ "loss": 0.6656,
2156
+ "step": 358
2157
+ },
2158
+ {
2159
+ "epoch": 0.58,
2160
+ "learning_rate": 1.1968156090174045e-05,
2161
+ "loss": 0.7009,
2162
+ "step": 359
2163
+ },
2164
+ {
2165
+ "epoch": 0.58,
2166
+ "learning_rate": 1.1891534499234688e-05,
2167
+ "loss": 0.6805,
2168
+ "step": 360
2169
+ },
2170
+ {
2171
+ "epoch": 0.58,
2172
+ "learning_rate": 1.1814997563142299e-05,
2173
+ "loss": 0.6777,
2174
+ "step": 361
2175
+ },
2176
+ {
2177
+ "epoch": 0.58,
2178
+ "learning_rate": 1.1738547366276648e-05,
2179
+ "loss": 0.6735,
2180
+ "step": 362
2181
+ },
2182
+ {
2183
+ "epoch": 0.58,
2184
+ "learning_rate": 1.1662185990655285e-05,
2185
+ "loss": 0.6855,
2186
+ "step": 363
2187
+ },
2188
+ {
2189
+ "epoch": 0.59,
2190
+ "learning_rate": 1.1585915515876832e-05,
2191
+ "loss": 0.678,
2192
+ "step": 364
2193
+ },
2194
+ {
2195
+ "epoch": 0.59,
2196
+ "learning_rate": 1.150973801906435e-05,
2197
+ "loss": 0.6796,
2198
+ "step": 365
2199
+ },
2200
+ {
2201
+ "epoch": 0.59,
2202
+ "learning_rate": 1.1433655574808768e-05,
2203
+ "loss": 0.6588,
2204
+ "step": 366
2205
+ },
2206
+ {
2207
+ "epoch": 0.59,
2208
+ "learning_rate": 1.1357670255112379e-05,
2209
+ "loss": 0.6762,
2210
+ "step": 367
2211
+ },
2212
+ {
2213
+ "epoch": 0.59,
2214
+ "learning_rate": 1.1281784129332445e-05,
2215
+ "loss": 0.6666,
2216
+ "step": 368
2217
+ },
2218
+ {
2219
+ "epoch": 0.59,
2220
+ "learning_rate": 1.1205999264124788e-05,
2221
+ "loss": 0.6739,
2222
+ "step": 369
2223
+ },
2224
+ {
2225
+ "epoch": 0.59,
2226
+ "learning_rate": 1.1130317723387562e-05,
2227
+ "loss": 0.6588,
2228
+ "step": 370
2229
+ },
2230
+ {
2231
+ "epoch": 0.6,
2232
+ "learning_rate": 1.1054741568204992e-05,
2233
+ "loss": 0.6836,
2234
+ "step": 371
2235
+ },
2236
+ {
2237
+ "epoch": 0.6,
2238
+ "learning_rate": 1.0979272856791295e-05,
2239
+ "loss": 0.6659,
2240
+ "step": 372
2241
+ },
2242
+ {
2243
+ "epoch": 0.6,
2244
+ "learning_rate": 1.0903913644434587e-05,
2245
+ "loss": 0.6524,
2246
+ "step": 373
2247
+ },
2248
+ {
2249
+ "epoch": 0.6,
2250
+ "learning_rate": 1.0828665983440921e-05,
2251
+ "loss": 0.6626,
2252
+ "step": 374
2253
+ },
2254
+ {
2255
+ "epoch": 0.6,
2256
+ "learning_rate": 1.0753531923078425e-05,
2257
+ "loss": 0.6531,
2258
+ "step": 375
2259
+ },
2260
+ {
2261
+ "epoch": 0.6,
2262
+ "learning_rate": 1.0678513509521436e-05,
2263
+ "loss": 0.6903,
2264
+ "step": 376
2265
+ },
2266
+ {
2267
+ "epoch": 0.61,
2268
+ "learning_rate": 1.0603612785794833e-05,
2269
+ "loss": 0.6547,
2270
+ "step": 377
2271
+ },
2272
+ {
2273
+ "epoch": 0.61,
2274
+ "learning_rate": 1.0528831791718355e-05,
2275
+ "loss": 0.6785,
2276
+ "step": 378
2277
+ },
2278
+ {
2279
+ "epoch": 0.61,
2280
+ "learning_rate": 1.0454172563851072e-05,
2281
+ "loss": 0.6648,
2282
+ "step": 379
2283
+ },
2284
+ {
2285
+ "epoch": 0.61,
2286
+ "learning_rate": 1.037963713543592e-05,
2287
+ "loss": 0.6711,
2288
+ "step": 380
2289
+ },
2290
+ {
2291
+ "epoch": 0.61,
2292
+ "learning_rate": 1.0305227536344315e-05,
2293
+ "loss": 0.6746,
2294
+ "step": 381
2295
+ },
2296
+ {
2297
+ "epoch": 0.61,
2298
+ "learning_rate": 1.0230945793020896e-05,
2299
+ "loss": 0.6571,
2300
+ "step": 382
2301
+ },
2302
+ {
2303
+ "epoch": 0.62,
2304
+ "learning_rate": 1.015679392842831e-05,
2305
+ "loss": 0.6527,
2306
+ "step": 383
2307
+ },
2308
+ {
2309
+ "epoch": 0.62,
2310
+ "learning_rate": 1.0082773961992134e-05,
2311
+ "loss": 0.6639,
2312
+ "step": 384
2313
+ },
2314
+ {
2315
+ "epoch": 0.62,
2316
+ "learning_rate": 1.0008887909545892e-05,
2317
+ "loss": 0.6692,
2318
+ "step": 385
2319
+ },
2320
+ {
2321
+ "epoch": 0.62,
2322
+ "learning_rate": 9.93513778327612e-06,
2323
+ "loss": 0.6476,
2324
+ "step": 386
2325
+ },
2326
+ {
2327
+ "epoch": 0.62,
2328
+ "learning_rate": 9.86152559166761e-06,
2329
+ "loss": 0.6693,
2330
+ "step": 387
2331
+ },
2332
+ {
2333
+ "epoch": 0.62,
2334
+ "learning_rate": 9.788053339448676e-06,
2335
+ "loss": 0.6757,
2336
+ "step": 388
2337
+ },
2338
+ {
2339
+ "epoch": 0.63,
2340
+ "learning_rate": 9.71472302753657e-06,
2341
+ "loss": 0.6538,
2342
+ "step": 389
2343
+ },
2344
+ {
2345
+ "epoch": 0.63,
2346
+ "learning_rate": 9.64153665298301e-06,
2347
+ "loss": 0.6764,
2348
+ "step": 390
2349
+ },
2350
+ {
2351
+ "epoch": 0.63,
2352
+ "learning_rate": 9.568496208919752e-06,
2353
+ "loss": 0.6782,
2354
+ "step": 391
2355
+ },
2356
+ {
2357
+ "epoch": 0.63,
2358
+ "learning_rate": 9.495603684504356e-06,
2359
+ "loss": 0.6636,
2360
+ "step": 392
2361
+ },
2362
+ {
2363
+ "epoch": 0.63,
2364
+ "learning_rate": 9.422861064865974e-06,
2365
+ "loss": 0.6572,
2366
+ "step": 393
2367
+ },
2368
+ {
2369
+ "epoch": 0.63,
2370
+ "learning_rate": 9.350270331051307e-06,
2371
+ "loss": 0.6717,
2372
+ "step": 394
2373
+ },
2374
+ {
2375
+ "epoch": 0.64,
2376
+ "learning_rate": 9.277833459970657e-06,
2377
+ "loss": 0.6626,
2378
+ "step": 395
2379
+ },
2380
+ {
2381
+ "epoch": 0.64,
2382
+ "learning_rate": 9.205552424344078e-06,
2383
+ "loss": 0.6557,
2384
+ "step": 396
2385
+ },
2386
+ {
2387
+ "epoch": 0.64,
2388
+ "learning_rate": 9.133429192647661e-06,
2389
+ "loss": 0.6786,
2390
+ "step": 397
2391
+ },
2392
+ {
2393
+ "epoch": 0.64,
2394
+ "learning_rate": 9.061465729059918e-06,
2395
+ "loss": 0.6863,
2396
+ "step": 398
2397
+ },
2398
+ {
2399
+ "epoch": 0.64,
2400
+ "learning_rate": 8.989663993408286e-06,
2401
+ "loss": 0.6953,
2402
+ "step": 399
2403
+ },
2404
+ {
2405
+ "epoch": 0.64,
2406
+ "learning_rate": 8.91802594111578e-06,
2407
+ "loss": 0.6529,
2408
+ "step": 400
2409
+ },
2410
+ {
2411
+ "epoch": 0.64,
2412
+ "learning_rate": 8.846553523147695e-06,
2413
+ "loss": 0.6736,
2414
+ "step": 401
2415
+ },
2416
+ {
2417
+ "epoch": 0.65,
2418
+ "learning_rate": 8.775248685958526e-06,
2419
+ "loss": 0.6552,
2420
+ "step": 402
2421
+ },
2422
+ {
2423
+ "epoch": 0.65,
2424
+ "learning_rate": 8.704113371438907e-06,
2425
+ "loss": 0.658,
2426
+ "step": 403
2427
+ },
2428
+ {
2429
+ "epoch": 0.65,
2430
+ "learning_rate": 8.633149516862777e-06,
2431
+ "loss": 0.6607,
2432
+ "step": 404
2433
+ },
2434
+ {
2435
+ "epoch": 0.65,
2436
+ "learning_rate": 8.562359054834574e-06,
2437
+ "loss": 0.6745,
2438
+ "step": 405
2439
+ },
2440
+ {
2441
+ "epoch": 0.65,
2442
+ "learning_rate": 8.491743913236629e-06,
2443
+ "loss": 0.6748,
2444
+ "step": 406
2445
+ },
2446
+ {
2447
+ "epoch": 0.65,
2448
+ "learning_rate": 8.421306015176677e-06,
2449
+ "loss": 0.6648,
2450
+ "step": 407
2451
+ },
2452
+ {
2453
+ "epoch": 0.66,
2454
+ "learning_rate": 8.351047278935443e-06,
2455
+ "loss": 0.6497,
2456
+ "step": 408
2457
+ },
2458
+ {
2459
+ "epoch": 0.66,
2460
+ "learning_rate": 8.280969617914427e-06,
2461
+ "loss": 0.6842,
2462
+ "step": 409
2463
+ },
2464
+ {
2465
+ "epoch": 0.66,
2466
+ "learning_rate": 8.211074940583807e-06,
2467
+ "loss": 0.6424,
2468
+ "step": 410
2469
+ },
2470
+ {
2471
+ "epoch": 0.66,
2472
+ "learning_rate": 8.141365150430423e-06,
2473
+ "loss": 0.6695,
2474
+ "step": 411
2475
+ },
2476
+ {
2477
+ "epoch": 0.66,
2478
+ "learning_rate": 8.071842145905988e-06,
2479
+ "loss": 0.6587,
2480
+ "step": 412
2481
+ },
2482
+ {
2483
+ "epoch": 0.66,
2484
+ "learning_rate": 8.002507820375342e-06,
2485
+ "loss": 0.6602,
2486
+ "step": 413
2487
+ },
2488
+ {
2489
+ "epoch": 0.67,
2490
+ "learning_rate": 7.933364062064914e-06,
2491
+ "loss": 0.6345,
2492
+ "step": 414
2493
+ },
2494
+ {
2495
+ "epoch": 0.67,
2496
+ "learning_rate": 7.864412754011303e-06,
2497
+ "loss": 0.6601,
2498
+ "step": 415
2499
+ },
2500
+ {
2501
+ "epoch": 0.67,
2502
+ "learning_rate": 7.795655774009967e-06,
2503
+ "loss": 0.6338,
2504
+ "step": 416
2505
+ },
2506
+ {
2507
+ "epoch": 0.67,
2508
+ "learning_rate": 7.727094994564123e-06,
2509
+ "loss": 0.6599,
2510
+ "step": 417
2511
+ },
2512
+ {
2513
+ "epoch": 0.67,
2514
+ "learning_rate": 7.658732282833721e-06,
2515
+ "loss": 0.6751,
2516
+ "step": 418
2517
+ },
2518
+ {
2519
+ "epoch": 0.67,
2520
+ "learning_rate": 7.590569500584597e-06,
2521
+ "loss": 0.6762,
2522
+ "step": 419
2523
+ },
2524
+ {
2525
+ "epoch": 0.68,
2526
+ "learning_rate": 7.522608504137799e-06,
2527
+ "loss": 0.6748,
2528
+ "step": 420
2529
+ },
2530
+ {
2531
+ "epoch": 0.68,
2532
+ "learning_rate": 7.454851144318987e-06,
2533
+ "loss": 0.67,
2534
+ "step": 421
2535
+ },
2536
+ {
2537
+ "epoch": 0.68,
2538
+ "learning_rate": 7.3872992664080845e-06,
2539
+ "loss": 0.6793,
2540
+ "step": 422
2541
+ },
2542
+ {
2543
+ "epoch": 0.68,
2544
+ "learning_rate": 7.3199547100889635e-06,
2545
+ "loss": 0.6494,
2546
+ "step": 423
2547
+ },
2548
+ {
2549
+ "epoch": 0.68,
2550
+ "learning_rate": 7.2528193093993835e-06,
2551
+ "loss": 0.6762,
2552
+ "step": 424
2553
+ },
2554
+ {
2555
+ "epoch": 0.68,
2556
+ "learning_rate": 7.185894892681048e-06,
2557
+ "loss": 0.6485,
2558
+ "step": 425
2559
+ },
2560
+ {
2561
+ "epoch": 0.68,
2562
+ "learning_rate": 7.119183282529772e-06,
2563
+ "loss": 0.6787,
2564
+ "step": 426
2565
+ },
2566
+ {
2567
+ "epoch": 0.69,
2568
+ "learning_rate": 7.052686295745899e-06,
2569
+ "loss": 0.6633,
2570
+ "step": 427
2571
+ },
2572
+ {
2573
+ "epoch": 0.69,
2574
+ "learning_rate": 6.986405743284776e-06,
2575
+ "loss": 0.6638,
2576
+ "step": 428
2577
+ },
2578
+ {
2579
+ "epoch": 0.69,
2580
+ "learning_rate": 6.920343430207455e-06,
2581
+ "loss": 0.6499,
2582
+ "step": 429
2583
+ },
2584
+ {
2585
+ "epoch": 0.69,
2586
+ "learning_rate": 6.854501155631553e-06,
2587
+ "loss": 0.6632,
2588
+ "step": 430
2589
+ },
2590
+ {
2591
+ "epoch": 0.69,
2592
+ "learning_rate": 6.788880712682212e-06,
2593
+ "loss": 0.6423,
2594
+ "step": 431
2595
+ },
2596
+ {
2597
+ "epoch": 0.69,
2598
+ "learning_rate": 6.72348388844331e-06,
2599
+ "loss": 0.6747,
2600
+ "step": 432
2601
+ },
2602
+ {
2603
+ "epoch": 0.7,
2604
+ "learning_rate": 6.658312463908763e-06,
2605
+ "loss": 0.6632,
2606
+ "step": 433
2607
+ },
2608
+ {
2609
+ "epoch": 0.7,
2610
+ "learning_rate": 6.593368213934023e-06,
2611
+ "loss": 0.6534,
2612
+ "step": 434
2613
+ },
2614
+ {
2615
+ "epoch": 0.7,
2616
+ "learning_rate": 6.528652907187774e-06,
2617
+ "loss": 0.6441,
2618
+ "step": 435
2619
+ },
2620
+ {
2621
+ "epoch": 0.7,
2622
+ "learning_rate": 6.46416830610372e-06,
2623
+ "loss": 0.6463,
2624
+ "step": 436
2625
+ },
2626
+ {
2627
+ "epoch": 0.7,
2628
+ "learning_rate": 6.39991616683261e-06,
2629
+ "loss": 0.6642,
2630
+ "step": 437
2631
+ },
2632
+ {
2633
+ "epoch": 0.7,
2634
+ "learning_rate": 6.335898239194431e-06,
2635
+ "loss": 0.6728,
2636
+ "step": 438
2637
+ },
2638
+ {
2639
+ "epoch": 0.71,
2640
+ "learning_rate": 6.27211626663071e-06,
2641
+ "loss": 0.6566,
2642
+ "step": 439
2643
+ },
2644
+ {
2645
+ "epoch": 0.71,
2646
+ "learning_rate": 6.208571986157068e-06,
2647
+ "loss": 0.6737,
2648
+ "step": 440
2649
+ },
2650
+ {
2651
+ "epoch": 0.71,
2652
+ "learning_rate": 6.145267128315897e-06,
2653
+ "loss": 0.6633,
2654
+ "step": 441
2655
+ },
2656
+ {
2657
+ "epoch": 0.71,
2658
+ "learning_rate": 6.082203417129252e-06,
2659
+ "loss": 0.6456,
2660
+ "step": 442
2661
+ },
2662
+ {
2663
+ "epoch": 0.71,
2664
+ "learning_rate": 6.019382570051874e-06,
2665
+ "loss": 0.6604,
2666
+ "step": 443
2667
+ },
2668
+ {
2669
+ "epoch": 0.71,
2670
+ "learning_rate": 5.956806297924426e-06,
2671
+ "loss": 0.6463,
2672
+ "step": 444
2673
+ },
2674
+ {
2675
+ "epoch": 0.72,
2676
+ "learning_rate": 5.894476304926917e-06,
2677
+ "loss": 0.6336,
2678
+ "step": 445
2679
+ },
2680
+ {
2681
+ "epoch": 0.72,
2682
+ "learning_rate": 5.832394288532261e-06,
2683
+ "loss": 0.6498,
2684
+ "step": 446
2685
+ },
2686
+ {
2687
+ "epoch": 0.72,
2688
+ "learning_rate": 5.770561939460085e-06,
2689
+ "loss": 0.649,
2690
+ "step": 447
2691
+ },
2692
+ {
2693
+ "epoch": 0.72,
2694
+ "learning_rate": 5.708980941630648e-06,
2695
+ "loss": 0.6479,
2696
+ "step": 448
2697
+ },
2698
+ {
2699
+ "epoch": 0.72,
2700
+ "learning_rate": 5.647652972118998e-06,
2701
+ "loss": 0.6544,
2702
+ "step": 449
2703
+ },
2704
+ {
2705
+ "epoch": 0.72,
2706
+ "learning_rate": 5.586579701109316e-06,
2707
+ "loss": 0.6672,
2708
+ "step": 450
2709
+ },
2710
+ {
2711
+ "epoch": 0.73,
2712
+ "learning_rate": 5.525762791849396e-06,
2713
+ "loss": 0.6377,
2714
+ "step": 451
2715
+ },
2716
+ {
2717
+ "epoch": 0.73,
2718
+ "learning_rate": 5.465203900605381e-06,
2719
+ "loss": 0.6561,
2720
+ "step": 452
2721
+ },
2722
+ {
2723
+ "epoch": 0.73,
2724
+ "learning_rate": 5.404904676616634e-06,
2725
+ "loss": 0.6439,
2726
+ "step": 453
2727
+ },
2728
+ {
2729
+ "epoch": 0.73,
2730
+ "learning_rate": 5.344866762050831e-06,
2731
+ "loss": 0.666,
2732
+ "step": 454
2733
+ },
2734
+ {
2735
+ "epoch": 0.73,
2736
+ "learning_rate": 5.2850917919592496e-06,
2737
+ "loss": 0.6604,
2738
+ "step": 455
2739
+ },
2740
+ {
2741
+ "epoch": 0.73,
2742
+ "learning_rate": 5.22558139423222e-06,
2743
+ "loss": 0.6531,
2744
+ "step": 456
2745
+ },
2746
+ {
2747
+ "epoch": 0.73,
2748
+ "learning_rate": 5.1663371895548135e-06,
2749
+ "loss": 0.632,
2750
+ "step": 457
2751
+ },
2752
+ {
2753
+ "epoch": 0.74,
2754
+ "learning_rate": 5.1073607913626844e-06,
2755
+ "loss": 0.675,
2756
+ "step": 458
2757
+ },
2758
+ {
2759
+ "epoch": 0.74,
2760
+ "learning_rate": 5.048653805798138e-06,
2761
+ "loss": 0.6424,
2762
+ "step": 459
2763
+ },
2764
+ {
2765
+ "epoch": 0.74,
2766
+ "learning_rate": 4.99021783166641e-06,
2767
+ "loss": 0.66,
2768
+ "step": 460
2769
+ },
2770
+ {
2771
+ "epoch": 0.74,
2772
+ "learning_rate": 4.932054460392082e-06,
2773
+ "loss": 0.6559,
2774
+ "step": 461
2775
+ },
2776
+ {
2777
+ "epoch": 0.74,
2778
+ "learning_rate": 4.8741652759757915e-06,
2779
+ "loss": 0.6646,
2780
+ "step": 462
2781
+ },
2782
+ {
2783
+ "epoch": 0.74,
2784
+ "learning_rate": 4.8165518549510476e-06,
2785
+ "loss": 0.6756,
2786
+ "step": 463
2787
+ },
2788
+ {
2789
+ "epoch": 0.75,
2790
+ "learning_rate": 4.7592157663413195e-06,
2791
+ "loss": 0.6445,
2792
+ "step": 464
2793
+ },
2794
+ {
2795
+ "epoch": 0.75,
2796
+ "learning_rate": 4.70215857161732e-06,
2797
+ "loss": 0.6625,
2798
+ "step": 465
2799
+ },
2800
+ {
2801
+ "epoch": 0.75,
2802
+ "learning_rate": 4.645381824654444e-06,
2803
+ "loss": 0.6372,
2804
+ "step": 466
2805
+ },
2806
+ {
2807
+ "epoch": 0.75,
2808
+ "learning_rate": 4.588887071690491e-06,
2809
+ "loss": 0.653,
2810
+ "step": 467
2811
+ },
2812
+ {
2813
+ "epoch": 0.75,
2814
+ "learning_rate": 4.532675851283522e-06,
2815
+ "loss": 0.6484,
2816
+ "step": 468
2817
+ },
2818
+ {
2819
+ "epoch": 0.75,
2820
+ "learning_rate": 4.476749694269972e-06,
2821
+ "loss": 0.6638,
2822
+ "step": 469
2823
+ },
2824
+ {
2825
+ "epoch": 0.76,
2826
+ "learning_rate": 4.421110123722973e-06,
2827
+ "loss": 0.6513,
2828
+ "step": 470
2829
+ },
2830
+ {
2831
+ "epoch": 0.76,
2832
+ "learning_rate": 4.365758654910855e-06,
2833
+ "loss": 0.6703,
2834
+ "step": 471
2835
+ },
2836
+ {
2837
+ "epoch": 0.76,
2838
+ "learning_rate": 4.310696795255885e-06,
2839
+ "loss": 0.6336,
2840
+ "step": 472
2841
+ },
2842
+ {
2843
+ "epoch": 0.76,
2844
+ "learning_rate": 4.255926044293216e-06,
2845
+ "loss": 0.6557,
2846
+ "step": 473
2847
+ },
2848
+ {
2849
+ "epoch": 0.76,
2850
+ "learning_rate": 4.201447893630065e-06,
2851
+ "loss": 0.641,
2852
+ "step": 474
2853
+ },
2854
+ {
2855
+ "epoch": 0.76,
2856
+ "learning_rate": 4.147263826905059e-06,
2857
+ "loss": 0.6607,
2858
+ "step": 475
2859
+ },
2860
+ {
2861
+ "epoch": 0.77,
2862
+ "learning_rate": 4.093375319747849e-06,
2863
+ "loss": 0.6619,
2864
+ "step": 476
2865
+ },
2866
+ {
2867
+ "epoch": 0.77,
2868
+ "learning_rate": 4.039783839738937e-06,
2869
+ "loss": 0.6575,
2870
+ "step": 477
2871
+ },
2872
+ {
2873
+ "epoch": 0.77,
2874
+ "learning_rate": 3.986490846369674e-06,
2875
+ "loss": 0.6526,
2876
+ "step": 478
2877
+ },
2878
+ {
2879
+ "epoch": 0.77,
2880
+ "learning_rate": 3.933497791002547e-06,
2881
+ "loss": 0.6655,
2882
+ "step": 479
2883
+ },
2884
+ {
2885
+ "epoch": 0.77,
2886
+ "learning_rate": 3.880806116831625e-06,
2887
+ "loss": 0.6429,
2888
+ "step": 480
2889
+ },
2890
+ {
2891
+ "epoch": 0.77,
2892
+ "learning_rate": 3.828417258843272e-06,
2893
+ "loss": 0.6545,
2894
+ "step": 481
2895
+ },
2896
+ {
2897
+ "epoch": 0.77,
2898
+ "learning_rate": 3.7763326437770757e-06,
2899
+ "loss": 0.6499,
2900
+ "step": 482
2901
+ },
2902
+ {
2903
+ "epoch": 0.78,
2904
+ "learning_rate": 3.724553690086959e-06,
2905
+ "loss": 0.6471,
2906
+ "step": 483
2907
+ },
2908
+ {
2909
+ "epoch": 0.78,
2910
+ "learning_rate": 3.6730818079025926e-06,
2911
+ "loss": 0.6649,
2912
+ "step": 484
2913
+ },
2914
+ {
2915
+ "epoch": 0.78,
2916
+ "learning_rate": 3.6219183989909528e-06,
2917
+ "loss": 0.6546,
2918
+ "step": 485
2919
+ },
2920
+ {
2921
+ "epoch": 0.78,
2922
+ "learning_rate": 3.5710648567181725e-06,
2923
+ "loss": 0.665,
2924
+ "step": 486
2925
+ },
2926
+ {
2927
+ "epoch": 0.78,
2928
+ "learning_rate": 3.52052256601159e-06,
2929
+ "loss": 0.6672,
2930
+ "step": 487
2931
+ },
2932
+ {
2933
+ "epoch": 0.78,
2934
+ "learning_rate": 3.4702929033220176e-06,
2935
+ "loss": 0.6583,
2936
+ "step": 488
2937
+ },
2938
+ {
2939
+ "epoch": 0.79,
2940
+ "learning_rate": 3.4203772365862835e-06,
2941
+ "loss": 0.6856,
2942
+ "step": 489
2943
+ },
2944
+ {
2945
+ "epoch": 0.79,
2946
+ "learning_rate": 3.3707769251899463e-06,
2947
+ "loss": 0.6614,
2948
+ "step": 490
2949
+ },
2950
+ {
2951
+ "epoch": 0.79,
2952
+ "learning_rate": 3.3214933199302915e-06,
2953
+ "loss": 0.6712,
2954
+ "step": 491
2955
+ },
2956
+ {
2957
+ "epoch": 0.79,
2958
+ "learning_rate": 3.272527762979553e-06,
2959
+ "loss": 0.6562,
2960
+ "step": 492
2961
+ },
2962
+ {
2963
+ "epoch": 0.79,
2964
+ "learning_rate": 3.2238815878483357e-06,
2965
+ "loss": 0.6517,
2966
+ "step": 493
2967
+ },
2968
+ {
2969
+ "epoch": 0.79,
2970
+ "learning_rate": 3.175556119349326e-06,
2971
+ "loss": 0.6514,
2972
+ "step": 494
2973
+ },
2974
+ {
2975
+ "epoch": 0.8,
2976
+ "learning_rate": 3.12755267356119e-06,
2977
+ "loss": 0.6519,
2978
+ "step": 495
2979
+ },
2980
+ {
2981
+ "epoch": 0.8,
2982
+ "learning_rate": 3.07987255779274e-06,
2983
+ "loss": 0.6721,
2984
+ "step": 496
2985
+ },
2986
+ {
2987
+ "epoch": 0.8,
2988
+ "learning_rate": 3.032517070547348e-06,
2989
+ "loss": 0.6442,
2990
+ "step": 497
2991
+ },
2992
+ {
2993
+ "epoch": 0.8,
2994
+ "learning_rate": 2.9854875014875495e-06,
2995
+ "loss": 0.6488,
2996
+ "step": 498
2997
+ },
2998
+ {
2999
+ "epoch": 0.8,
3000
+ "learning_rate": 2.9387851313999555e-06,
3001
+ "loss": 0.6445,
3002
+ "step": 499
3003
+ },
3004
+ {
3005
+ "epoch": 0.8,
3006
+ "learning_rate": 2.8924112321603456e-06,
3007
+ "loss": 0.6612,
3008
+ "step": 500
3009
+ },
3010
+ {
3011
+ "epoch": 0.81,
3012
+ "learning_rate": 2.846367066699041e-06,
3013
+ "loss": 0.6561,
3014
+ "step": 501
3015
+ },
3016
+ {
3017
+ "epoch": 0.81,
3018
+ "learning_rate": 2.8006538889665194e-06,
3019
+ "loss": 0.6589,
3020
+ "step": 502
3021
+ },
3022
+ {
3023
+ "epoch": 0.81,
3024
+ "learning_rate": 2.7552729438992486e-06,
3025
+ "loss": 0.6379,
3026
+ "step": 503
3027
+ },
3028
+ {
3029
+ "epoch": 0.81,
3030
+ "learning_rate": 2.710225467385788e-06,
3031
+ "loss": 0.6169,
3032
+ "step": 504
3033
+ },
3034
+ {
3035
+ "epoch": 0.81,
3036
+ "learning_rate": 2.6655126862331354e-06,
3037
+ "loss": 0.6592,
3038
+ "step": 505
3039
+ },
3040
+ {
3041
+ "epoch": 0.81,
3042
+ "learning_rate": 2.621135818133321e-06,
3043
+ "loss": 0.6792,
3044
+ "step": 506
3045
+ },
3046
+ {
3047
+ "epoch": 0.82,
3048
+ "learning_rate": 2.5770960716302274e-06,
3049
+ "loss": 0.643,
3050
+ "step": 507
3051
+ },
3052
+ {
3053
+ "epoch": 0.82,
3054
+ "learning_rate": 2.5333946460866875e-06,
3055
+ "loss": 0.6683,
3056
+ "step": 508
3057
+ },
3058
+ {
3059
+ "epoch": 0.82,
3060
+ "learning_rate": 2.490032731651833e-06,
3061
+ "loss": 0.6676,
3062
+ "step": 509
3063
+ },
3064
+ {
3065
+ "epoch": 0.82,
3066
+ "learning_rate": 2.447011509228659e-06,
3067
+ "loss": 0.6738,
3068
+ "step": 510
3069
+ },
3070
+ {
3071
+ "epoch": 0.82,
3072
+ "learning_rate": 2.4043321504418725e-06,
3073
+ "loss": 0.6536,
3074
+ "step": 511
3075
+ },
3076
+ {
3077
+ "epoch": 0.82,
3078
+ "learning_rate": 2.3619958176060038e-06,
3079
+ "loss": 0.6744,
3080
+ "step": 512
3081
+ },
3082
+ {
3083
+ "epoch": 0.82,
3084
+ "learning_rate": 2.320003663693718e-06,
3085
+ "loss": 0.6374,
3086
+ "step": 513
3087
+ },
3088
+ {
3089
+ "epoch": 0.83,
3090
+ "learning_rate": 2.2783568323044484e-06,
3091
+ "loss": 0.644,
3092
+ "step": 514
3093
+ },
3094
+ {
3095
+ "epoch": 0.83,
3096
+ "learning_rate": 2.2370564576332254e-06,
3097
+ "loss": 0.6675,
3098
+ "step": 515
3099
+ },
3100
+ {
3101
+ "epoch": 0.83,
3102
+ "learning_rate": 2.1961036644398034e-06,
3103
+ "loss": 0.6605,
3104
+ "step": 516
3105
+ },
3106
+ {
3107
+ "epoch": 0.83,
3108
+ "learning_rate": 2.155499568018034e-06,
3109
+ "loss": 0.6561,
3110
+ "step": 517
3111
+ },
3112
+ {
3113
+ "epoch": 0.83,
3114
+ "learning_rate": 2.11524527416547e-06,
3115
+ "loss": 0.6564,
3116
+ "step": 518
3117
+ },
3118
+ {
3119
+ "epoch": 0.83,
3120
+ "learning_rate": 2.07534187915328e-06,
3121
+ "loss": 0.661,
3122
+ "step": 519
3123
+ },
3124
+ {
3125
+ "epoch": 0.84,
3126
+ "learning_rate": 2.0357904696963696e-06,
3127
+ "loss": 0.6591,
3128
+ "step": 520
3129
+ },
3130
+ {
3131
+ "epoch": 0.84,
3132
+ "learning_rate": 1.996592122923791e-06,
3133
+ "loss": 0.6595,
3134
+ "step": 521
3135
+ },
3136
+ {
3137
+ "epoch": 0.84,
3138
+ "learning_rate": 1.9577479063494263e-06,
3139
+ "loss": 0.6546,
3140
+ "step": 522
3141
+ },
3142
+ {
3143
+ "epoch": 0.84,
3144
+ "learning_rate": 1.9192588778428844e-06,
3145
+ "loss": 0.6511,
3146
+ "step": 523
3147
+ },
3148
+ {
3149
+ "epoch": 0.84,
3150
+ "learning_rate": 1.8811260856007246e-06,
3151
+ "loss": 0.6696,
3152
+ "step": 524
3153
+ },
3154
+ {
3155
+ "epoch": 0.84,
3156
+ "learning_rate": 1.8433505681178835e-06,
3157
+ "loss": 0.646,
3158
+ "step": 525
3159
+ },
3160
+ {
3161
+ "epoch": 0.85,
3162
+ "learning_rate": 1.8059333541594015e-06,
3163
+ "loss": 0.6612,
3164
+ "step": 526
3165
+ },
3166
+ {
3167
+ "epoch": 0.85,
3168
+ "learning_rate": 1.7688754627324182e-06,
3169
+ "loss": 0.6761,
3170
+ "step": 527
3171
+ },
3172
+ {
3173
+ "epoch": 0.85,
3174
+ "learning_rate": 1.7321779030584022e-06,
3175
+ "loss": 0.6783,
3176
+ "step": 528
3177
+ },
3178
+ {
3179
+ "epoch": 0.85,
3180
+ "learning_rate": 1.6958416745456829e-06,
3181
+ "loss": 0.6575,
3182
+ "step": 529
3183
+ },
3184
+ {
3185
+ "epoch": 0.85,
3186
+ "learning_rate": 1.6598677667622176e-06,
3187
+ "loss": 0.6424,
3188
+ "step": 530
3189
+ },
3190
+ {
3191
+ "epoch": 0.85,
3192
+ "learning_rate": 1.6242571594086487e-06,
3193
+ "loss": 0.6536,
3194
+ "step": 531
3195
+ },
3196
+ {
3197
+ "epoch": 0.86,
3198
+ "learning_rate": 1.5890108222916311e-06,
3199
+ "loss": 0.6722,
3200
+ "step": 532
3201
+ },
3202
+ {
3203
+ "epoch": 0.86,
3204
+ "learning_rate": 1.554129715297407e-06,
3205
+ "loss": 0.6739,
3206
+ "step": 533
3207
+ },
3208
+ {
3209
+ "epoch": 0.86,
3210
+ "learning_rate": 1.5196147883656752e-06,
3211
+ "loss": 0.6712,
3212
+ "step": 534
3213
+ },
3214
+ {
3215
+ "epoch": 0.86,
3216
+ "learning_rate": 1.4854669814637145e-06,
3217
+ "loss": 0.6634,
3218
+ "step": 535
3219
+ },
3220
+ {
3221
+ "epoch": 0.86,
3222
+ "learning_rate": 1.4516872245607816e-06,
3223
+ "loss": 0.6601,
3224
+ "step": 536
3225
+ },
3226
+ {
3227
+ "epoch": 0.86,
3228
+ "learning_rate": 1.4182764376028007e-06,
3229
+ "loss": 0.6306,
3230
+ "step": 537
3231
+ },
3232
+ {
3233
+ "epoch": 0.87,
3234
+ "learning_rate": 1.3852355304872928e-06,
3235
+ "loss": 0.6671,
3236
+ "step": 538
3237
+ },
3238
+ {
3239
+ "epoch": 0.87,
3240
+ "learning_rate": 1.352565403038604e-06,
3241
+ "loss": 0.6445,
3242
+ "step": 539
3243
+ },
3244
+ {
3245
+ "epoch": 0.87,
3246
+ "learning_rate": 1.3202669449833943e-06,
3247
+ "loss": 0.6716,
3248
+ "step": 540
3249
+ },
3250
+ {
3251
+ "epoch": 0.87,
3252
+ "learning_rate": 1.2883410359264219e-06,
3253
+ "loss": 0.6546,
3254
+ "step": 541
3255
+ },
3256
+ {
3257
+ "epoch": 0.87,
3258
+ "learning_rate": 1.2567885453265653e-06,
3259
+ "loss": 0.6616,
3260
+ "step": 542
3261
+ },
3262
+ {
3263
+ "epoch": 0.87,
3264
+ "learning_rate": 1.2256103324731627e-06,
3265
+ "loss": 0.6658,
3266
+ "step": 543
3267
+ },
3268
+ {
3269
+ "epoch": 0.87,
3270
+ "learning_rate": 1.1948072464626102e-06,
3271
+ "loss": 0.6756,
3272
+ "step": 544
3273
+ },
3274
+ {
3275
+ "epoch": 0.88,
3276
+ "learning_rate": 1.1643801261752235e-06,
3277
+ "loss": 0.6577,
3278
+ "step": 545
3279
+ },
3280
+ {
3281
+ "epoch": 0.88,
3282
+ "learning_rate": 1.1343298002524027e-06,
3283
+ "loss": 0.6617,
3284
+ "step": 546
3285
+ },
3286
+ {
3287
+ "epoch": 0.88,
3288
+ "learning_rate": 1.1046570870740718e-06,
3289
+ "loss": 0.6414,
3290
+ "step": 547
3291
+ },
3292
+ {
3293
+ "epoch": 0.88,
3294
+ "learning_rate": 1.0753627947363709e-06,
3295
+ "loss": 0.6282,
3296
+ "step": 548
3297
+ },
3298
+ {
3299
+ "epoch": 0.88,
3300
+ "learning_rate": 1.0464477210296752e-06,
3301
+ "loss": 0.6308,
3302
+ "step": 549
3303
+ },
3304
+ {
3305
+ "epoch": 0.88,
3306
+ "learning_rate": 1.0179126534168415e-06,
3307
+ "loss": 0.6623,
3308
+ "step": 550
3309
+ },
3310
+ {
3311
+ "epoch": 0.89,
3312
+ "learning_rate": 9.897583690117813e-07,
3313
+ "loss": 0.6504,
3314
+ "step": 551
3315
+ },
3316
+ {
3317
+ "epoch": 0.89,
3318
+ "learning_rate": 9.619856345582911e-07,
3319
+ "loss": 0.6543,
3320
+ "step": 552
3321
+ },
3322
+ {
3323
+ "epoch": 0.89,
3324
+ "learning_rate": 9.345952064091718e-07,
3325
+ "loss": 0.642,
3326
+ "step": 553
3327
+ },
3328
+ {
3329
+ "epoch": 0.89,
3330
+ "learning_rate": 9.075878305056284e-07,
3331
+ "loss": 0.6407,
3332
+ "step": 554
3333
+ },
3334
+ {
3335
+ "epoch": 0.89,
3336
+ "learning_rate": 8.80964242356958e-07,
3337
+ "loss": 0.6494,
3338
+ "step": 555
3339
+ },
3340
+ {
3341
+ "epoch": 0.89,
3342
+ "learning_rate": 8.547251670205147e-07,
3343
+ "loss": 0.647,
3344
+ "step": 556
3345
+ },
3346
+ {
3347
+ "epoch": 0.9,
3348
+ "learning_rate": 8.288713190819758e-07,
3349
+ "loss": 0.6616,
3350
+ "step": 557
3351
+ },
3352
+ {
3353
+ "epoch": 0.9,
3354
+ "learning_rate": 8.034034026358589e-07,
3355
+ "loss": 0.657,
3356
+ "step": 558
3357
+ },
3358
+ {
3359
+ "epoch": 0.9,
3360
+ "learning_rate": 7.783221112663757e-07,
3361
+ "loss": 0.6627,
3362
+ "step": 559
3363
+ },
3364
+ {
3365
+ "epoch": 0.9,
3366
+ "learning_rate": 7.536281280285156e-07,
3367
+ "loss": 0.6636,
3368
+ "step": 560
3369
+ },
3370
+ {
3371
+ "epoch": 0.9,
3372
+ "learning_rate": 7.293221254294586e-07,
3373
+ "loss": 0.6591,
3374
+ "step": 561
3375
+ },
3376
+ {
3377
+ "epoch": 0.9,
3378
+ "learning_rate": 7.05404765410263e-07,
3379
+ "loss": 0.653,
3380
+ "step": 562
3381
+ },
3382
+ {
3383
+ "epoch": 0.91,
3384
+ "learning_rate": 6.818766993278241e-07,
3385
+ "loss": 0.6587,
3386
+ "step": 563
3387
+ },
3388
+ {
3389
+ "epoch": 0.91,
3390
+ "learning_rate": 6.587385679371527e-07,
3391
+ "loss": 0.659,
3392
+ "step": 564
3393
+ },
3394
+ {
3395
+ "epoch": 0.91,
3396
+ "learning_rate": 6.359910013739123e-07,
3397
+ "loss": 0.6789,
3398
+ "step": 565
3399
+ },
3400
+ {
3401
+ "epoch": 0.91,
3402
+ "learning_rate": 6.136346191372582e-07,
3403
+ "loss": 0.6499,
3404
+ "step": 566
3405
+ },
3406
+ {
3407
+ "epoch": 0.91,
3408
+ "learning_rate": 5.916700300729827e-07,
3409
+ "loss": 0.6653,
3410
+ "step": 567
3411
+ },
3412
+ {
3413
+ "epoch": 0.91,
3414
+ "learning_rate": 5.700978323569061e-07,
3415
+ "loss": 0.6673,
3416
+ "step": 568
3417
+ },
3418
+ {
3419
+ "epoch": 0.91,
3420
+ "learning_rate": 5.489186134786173e-07,
3421
+ "loss": 0.6495,
3422
+ "step": 569
3423
+ },
3424
+ {
3425
+ "epoch": 0.92,
3426
+ "learning_rate": 5.281329502254489e-07,
3427
+ "loss": 0.6466,
3428
+ "step": 570
3429
+ },
3430
+ {
3431
+ "epoch": 0.92,
3432
+ "learning_rate": 5.077414086667792e-07,
3433
+ "loss": 0.6553,
3434
+ "step": 571
3435
+ },
3436
+ {
3437
+ "epoch": 0.92,
3438
+ "learning_rate": 4.877445441386219e-07,
3439
+ "loss": 0.6712,
3440
+ "step": 572
3441
+ },
3442
+ {
3443
+ "epoch": 0.92,
3444
+ "learning_rate": 4.681429012284921e-07,
3445
+ "loss": 0.6615,
3446
+ "step": 573
3447
+ },
3448
+ {
3449
+ "epoch": 0.92,
3450
+ "learning_rate": 4.489370137605814e-07,
3451
+ "loss": 0.6401,
3452
+ "step": 574
3453
+ },
3454
+ {
3455
+ "epoch": 0.92,
3456
+ "learning_rate": 4.3012740478121595e-07,
3457
+ "loss": 0.647,
3458
+ "step": 575
3459
+ },
3460
+ {
3461
+ "epoch": 0.93,
3462
+ "learning_rate": 4.1171458654461644e-07,
3463
+ "loss": 0.6583,
3464
+ "step": 576
3465
+ },
3466
+ {
3467
+ "epoch": 0.93,
3468
+ "learning_rate": 3.9369906049894435e-07,
3469
+ "loss": 0.6597,
3470
+ "step": 577
3471
+ },
3472
+ {
3473
+ "epoch": 0.93,
3474
+ "learning_rate": 3.760813172726457e-07,
3475
+ "loss": 0.643,
3476
+ "step": 578
3477
+ },
3478
+ {
3479
+ "epoch": 0.93,
3480
+ "learning_rate": 3.588618366610941e-07,
3481
+ "loss": 0.6689,
3482
+ "step": 579
3483
+ },
3484
+ {
3485
+ "epoch": 0.93,
3486
+ "learning_rate": 3.4204108761351214e-07,
3487
+ "loss": 0.6574,
3488
+ "step": 580
3489
+ },
3490
+ {
3491
+ "epoch": 0.93,
3492
+ "learning_rate": 3.2561952822021735e-07,
3493
+ "loss": 0.6379,
3494
+ "step": 581
3495
+ },
3496
+ {
3497
+ "epoch": 0.94,
3498
+ "learning_rate": 3.095976057001332e-07,
3499
+ "loss": 0.6415,
3500
+ "step": 582
3501
+ },
3502
+ {
3503
+ "epoch": 0.94,
3504
+ "learning_rate": 2.9397575638861416e-07,
3505
+ "loss": 0.6556,
3506
+ "step": 583
3507
+ },
3508
+ {
3509
+ "epoch": 0.94,
3510
+ "learning_rate": 2.787544057255653e-07,
3511
+ "loss": 0.6292,
3512
+ "step": 584
3513
+ },
3514
+ {
3515
+ "epoch": 0.94,
3516
+ "learning_rate": 2.639339682438496e-07,
3517
+ "loss": 0.6759,
3518
+ "step": 585
3519
+ },
3520
+ {
3521
+ "epoch": 0.94,
3522
+ "learning_rate": 2.495148475580089e-07,
3523
+ "loss": 0.6475,
3524
+ "step": 586
3525
+ },
3526
+ {
3527
+ "epoch": 0.94,
3528
+ "learning_rate": 2.3549743635325914e-07,
3529
+ "loss": 0.6688,
3530
+ "step": 587
3531
+ },
3532
+ {
3533
+ "epoch": 0.95,
3534
+ "learning_rate": 2.2188211637480416e-07,
3535
+ "loss": 0.6398,
3536
+ "step": 588
3537
+ },
3538
+ {
3539
+ "epoch": 0.95,
3540
+ "learning_rate": 2.086692584174438e-07,
3541
+ "loss": 0.6675,
3542
+ "step": 589
3543
+ },
3544
+ {
3545
+ "epoch": 0.95,
3546
+ "learning_rate": 1.958592223154604e-07,
3547
+ "loss": 0.6431,
3548
+ "step": 590
3549
+ },
3550
+ {
3551
+ "epoch": 0.95,
3552
+ "learning_rate": 1.8345235693283835e-07,
3553
+ "loss": 0.6493,
3554
+ "step": 591
3555
+ },
3556
+ {
3557
+ "epoch": 0.95,
3558
+ "learning_rate": 1.7144900015374666e-07,
3559
+ "loss": 0.6634,
3560
+ "step": 592
3561
+ },
3562
+ {
3563
+ "epoch": 0.95,
3564
+ "learning_rate": 1.5984947887334622e-07,
3565
+ "loss": 0.6646,
3566
+ "step": 593
3567
+ },
3568
+ {
3569
+ "epoch": 0.96,
3570
+ "learning_rate": 1.4865410898888875e-07,
3571
+ "loss": 0.6755,
3572
+ "step": 594
3573
+ },
3574
+ {
3575
+ "epoch": 0.96,
3576
+ "learning_rate": 1.3786319539110191e-07,
3577
+ "loss": 0.6517,
3578
+ "step": 595
3579
+ },
3580
+ {
3581
+ "epoch": 0.96,
3582
+ "learning_rate": 1.2747703195590432e-07,
3583
+ "loss": 0.6442,
3584
+ "step": 596
3585
+ },
3586
+ {
3587
+ "epoch": 0.96,
3588
+ "learning_rate": 1.1749590153638524e-07,
3589
+ "loss": 0.6653,
3590
+ "step": 597
3591
+ },
3592
+ {
3593
+ "epoch": 0.96,
3594
+ "learning_rate": 1.0792007595510911e-07,
3595
+ "loss": 0.6346,
3596
+ "step": 598
3597
+ },
3598
+ {
3599
+ "epoch": 0.96,
3600
+ "learning_rate": 9.874981599671484e-08,
3601
+ "loss": 0.6534,
3602
+ "step": 599
3603
+ },
3604
+ {
3605
+ "epoch": 0.96,
3606
+ "learning_rate": 8.998537140081143e-08,
3607
+ "loss": 0.647,
3608
+ "step": 600
3609
+ },
3610
+ {
3611
+ "epoch": 0.97,
3612
+ "learning_rate": 8.162698085517173e-08,
3613
+ "loss": 0.6583,
3614
+ "step": 601
3615
+ },
3616
+ {
3617
+ "epoch": 0.97,
3618
+ "learning_rate": 7.367487198924106e-08,
3619
+ "loss": 0.6525,
3620
+ "step": 602
3621
+ },
3622
+ {
3623
+ "epoch": 0.97,
3624
+ "learning_rate": 6.612926136793207e-08,
3625
+ "loss": 0.6536,
3626
+ "step": 603
3627
+ },
3628
+ {
3629
+ "epoch": 0.97,
3630
+ "learning_rate": 5.899035448572621e-08,
3631
+ "loss": 0.6546,
3632
+ "step": 604
3633
+ },
3634
+ {
3635
+ "epoch": 0.97,
3636
+ "learning_rate": 5.225834576108313e-08,
3637
+ "loss": 0.6654,
3638
+ "step": 605
3639
+ },
3640
+ {
3641
+ "epoch": 0.97,
3642
+ "learning_rate": 4.593341853114164e-08,
3643
+ "loss": 0.6448,
3644
+ "step": 606
3645
+ },
3646
+ {
3647
+ "epoch": 0.98,
3648
+ "learning_rate": 4.0015745046725336e-08,
3649
+ "loss": 0.6473,
3650
+ "step": 607
3651
+ },
3652
+ {
3653
+ "epoch": 0.98,
3654
+ "learning_rate": 3.4505486467654725e-08,
3655
+ "loss": 0.6412,
3656
+ "step": 608
3657
+ },
3658
+ {
3659
+ "epoch": 0.98,
3660
+ "learning_rate": 2.9402792858359007e-08,
3661
+ "loss": 0.638,
3662
+ "step": 609
3663
+ },
3664
+ {
3665
+ "epoch": 0.98,
3666
+ "learning_rate": 2.4707803183784407e-08,
3667
+ "loss": 0.6524,
3668
+ "step": 610
3669
+ },
3670
+ {
3671
+ "epoch": 0.98,
3672
+ "learning_rate": 2.0420645305617158e-08,
3673
+ "loss": 0.6531,
3674
+ "step": 611
3675
+ },
3676
+ {
3677
+ "epoch": 0.98,
3678
+ "learning_rate": 1.654143597879132e-08,
3679
+ "loss": 0.6422,
3680
+ "step": 612
3681
+ },
3682
+ {
3683
+ "epoch": 0.99,
3684
+ "learning_rate": 1.3070280848319627e-08,
3685
+ "loss": 0.6528,
3686
+ "step": 613
3687
+ },
3688
+ {
3689
+ "epoch": 0.99,
3690
+ "learning_rate": 1.0007274446409143e-08,
3691
+ "loss": 0.648,
3692
+ "step": 614
3693
+ },
3694
+ {
3695
+ "epoch": 0.99,
3696
+ "learning_rate": 7.352500189891642e-09,
3697
+ "loss": 0.6459,
3698
+ "step": 615
3699
+ },
3700
+ {
3701
+ "epoch": 0.99,
3702
+ "learning_rate": 5.106030377945437e-09,
3703
+ "loss": 0.6581,
3704
+ "step": 616
3705
+ },
3706
+ {
3707
+ "epoch": 0.99,
3708
+ "learning_rate": 3.2679261901319424e-09,
3709
+ "loss": 0.6712,
3710
+ "step": 617
3711
+ },
3712
+ {
3713
+ "epoch": 0.99,
3714
+ "learning_rate": 1.8382376847320137e-09,
3715
+ "loss": 0.6489,
3716
+ "step": 618
3717
+ },
3718
+ {
3719
+ "epoch": 1.0,
3720
+ "learning_rate": 8.170037973737054e-10,
3721
+ "loss": 0.6542,
3722
+ "step": 619
3723
+ },
3724
+ {
3725
+ "epoch": 1.0,
3726
+ "learning_rate": 2.0425233997645177e-10,
3727
+ "loss": 0.662,
3728
+ "step": 620
3729
+ },
3730
+ {
3731
+ "epoch": 1.0,
3732
+ "learning_rate": 0.0,
3733
+ "loss": 0.6322,
3734
+ "step": 621
3735
+ },
3736
+ {
3737
+ "epoch": 1.0,
3738
+ "step": 621,
3739
+ "total_flos": 1.1837910281302835e+18,
3740
+ "train_loss": 0.7008271510090421,
3741
+ "train_runtime": 50081.8172,
3742
+ "train_samples_per_second": 1.59,
3743
+ "train_steps_per_second": 0.012
3744
+ }
3745
+ ],
3746
+ "max_steps": 621,
3747
+ "num_train_epochs": 1,
3748
+ "total_flos": 1.1837910281302835e+18,
3749
+ "trial_name": null,
3750
+ "trial_params": null
3751
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9af53a0c93400db979d74723f9dd5e83ff7048449f8c8a3ca5993457be81c02
3
+ size 4664