|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch GLM model. """
|
|
|
|
import math
|
|
|
|
import torch
|
|
import torch.utils.checkpoint
|
|
import torch.nn.functional as F
|
|
from torch.nn import init, LayerNorm, Linear, CrossEntropyLoss
|
|
|
|
from transformers.activations import gelu
|
|
from transformers.utils import (
|
|
add_code_sample_docstrings,
|
|
add_start_docstrings,
|
|
add_start_docstrings_to_model_forward,
|
|
)
|
|
from transformers.modeling_outputs import (
|
|
BaseModelOutputWithPastAndCrossAttentions,
|
|
ModelOutput,
|
|
SequenceClassifierOutput,
|
|
)
|
|
|
|
from transformers.modeling_utils import (
|
|
PreTrainedModel,
|
|
)
|
|
from .configuration_glm import EnzymeGLMConfig
|
|
from torch.nn.parameter import Parameter
|
|
|
|
_CHECKPOINT_FOR_DOC = "YinhuiQiao/Enzyme-GLM"
|
|
_CONFIG_FOR_DOC = "EnzymeGLMConfig"
|
|
|
|
|
|
GLM_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
|
"YinhuiQiao/Enzyme-GLM",
|
|
|
|
]
|
|
|
|
|
|
def unscaled_init_method(sigma):
|
|
"""Init method based on N(0, sigma)."""
|
|
|
|
def init_(tensor):
|
|
return torch.nn.init.normal_(tensor, mean=0.0, std=sigma)
|
|
|
|
return init_
|
|
|
|
|
|
def scaled_init_method(mean, std, num_layers):
|
|
"""Init method based on N(0, sigma/sqrt(2*num_layers)."""
|
|
std = std / math.sqrt(2.0 * num_layers)
|
|
|
|
def init_(tensor):
|
|
return torch.nn.init.normal_(tensor, mean=mean, std=std)
|
|
|
|
return init_
|
|
|
|
|
|
def ensure_divisibility(numerator, denominator):
|
|
"""Ensure that numerator is divisible by the denominator."""
|
|
assert numerator % denominator == 0, '{} is not divisible by {}'.format(
|
|
numerator, denominator)
|
|
|
|
|
|
def divide(numerator, denominator):
|
|
"""Ensure that numerator is divisible by the denominator and return
|
|
the division value."""
|
|
ensure_divisibility(numerator, denominator)
|
|
return numerator // denominator
|
|
|
|
|
|
def split_tensor_along_last_dim(tensor, num_partitions,
|
|
contiguous_split_chunks=False):
|
|
"""Split a tensor along its last dimension.
|
|
Arguments:
|
|
tensor: input tensor.
|
|
num_partitions: number of partitions to split the tensor
|
|
contiguous_split_chunks: If True, make each chunk contiguous
|
|
in memory.
|
|
"""
|
|
|
|
last_dim = tensor.dim() - 1
|
|
last_dim_size = divide(tensor.size()[last_dim], num_partitions)
|
|
|
|
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
|
|
|
|
if contiguous_split_chunks:
|
|
return tuple(chunk.contiguous() for chunk in tensor_list)
|
|
|
|
return tensor_list
|
|
|
|
|
|
class MLP(torch.nn.Module):
|
|
"""MLP for GPT2.
|
|
MLP will take the input with h hidden state, project it to 4*h
|
|
hidden dimension, perform gelu transformation, and project the
|
|
state back into h hidden dimension. At the end, dropout is also
|
|
applied.
|
|
Arguments:
|
|
hidden_size: The hidden size of the self attention.
|
|
output_dropout_prob: dropout probability for the outputs
|
|
after self attention and final output.
|
|
init_method: initialization method used for the weights. Note
|
|
that all biases are initialized to zero and
|
|
layernorm weight are initialized to one.
|
|
output_layer_init_method: output layer initialization. If None,
|
|
use `init_method`.
|
|
"""
|
|
|
|
def __init__(self, hidden_size, output_dropout_prob, init_method,
|
|
output_layer_init_method=None):
|
|
super(MLP, self).__init__()
|
|
|
|
if output_layer_init_method is None:
|
|
output_layer_init_method = init_method
|
|
|
|
self.dense_h_to_4h = Linear(hidden_size, 4 * hidden_size)
|
|
|
|
|
|
self.dense_4h_to_h = Linear(
|
|
4 * hidden_size,
|
|
hidden_size)
|
|
|
|
self.dropout = torch.nn.Dropout(output_dropout_prob)
|
|
|
|
def forward(self, hidden_states):
|
|
|
|
intermediate_parallel = self.dense_h_to_4h(hidden_states)
|
|
intermediate_parallel = gelu(intermediate_parallel)
|
|
|
|
|
|
output = self.dense_4h_to_h(intermediate_parallel)
|
|
output = self.dropout(output)
|
|
return output
|
|
|
|
|
|
class VocabEmbedding(torch.nn.Module):
|
|
"""Embedding parallelized in the vocabulary dimension.
|
|
This is mainly adapted from torch.nn.Embedding and all the default
|
|
values are kept.
|
|
Arguments:
|
|
num_embeddings: vocabulary size.
|
|
embedding_dim: size of hidden state.
|
|
init_method: method to initialize weights.
|
|
"""
|
|
|
|
def __init__(self, config):
|
|
super(VocabEmbedding, self).__init__()
|
|
|
|
self.num_embeddings = config.vocab_size
|
|
self.embedding_dim = config.hidden_size
|
|
|
|
self.padding_idx = None
|
|
self.max_norm = None
|
|
self.norm_type = 2.
|
|
self.scale_grad_by_freq = False
|
|
self.sparse = False
|
|
self._weight = None
|
|
|
|
self.vocab_start_index = 0
|
|
self.vocab_end_index = self.num_embeddings
|
|
|
|
|
|
self.weight = Parameter(torch.Tensor(self.num_embeddings,
|
|
self.embedding_dim))
|
|
|
|
init.xavier_normal_(self.weight)
|
|
|
|
def forward(self, input_):
|
|
|
|
output = F.embedding(input_, self.weight,
|
|
self.padding_idx, self.max_norm,
|
|
self.norm_type, self.scale_grad_by_freq,
|
|
self.sparse)
|
|
return output
|
|
|
|
|
|
class PositionalEmbedding(torch.nn.Module):
|
|
|
|
def __init__(self, hidden_size):
|
|
super(PositionalEmbedding, self).__init__()
|
|
|
|
self.hidden_size = hidden_size
|
|
|
|
inv_freq = 1 / (10000 ** (torch.arange(0.0, hidden_size, 2.0) / hidden_size))
|
|
self.register_buffer('inv_freq', inv_freq)
|
|
|
|
def forward(self, pos_seq, bsz=None):
|
|
sinusoid_inp = torch.ger(pos_seq, self.inv_freq)
|
|
pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1)
|
|
|
|
if bsz is not None:
|
|
return pos_emb[None, :, :].expand(bsz, -1, -1)
|
|
else:
|
|
return pos_emb[None, :, :]
|
|
|
|
|
|
class SelfAttention(torch.nn.Module):
|
|
"""self-attention layer for GLM.
|
|
Self-attention layer takes input with size [b, s, h] where b is
|
|
the batch size, s is the sequence lenght, and h is the hidden size
|
|
and creates output of the same size.
|
|
Arguments:
|
|
hidden_size: total hidden size of the layer (h).
|
|
num_attention_heads: number of attention heads (n). Note that we
|
|
require n to be divisible by number of GPUs
|
|
used to parallelize the model. Also, we
|
|
require hidden size to be divisible by n.
|
|
attention_dropout_prob: dropout probability for the attention scores.
|
|
init_method: weight initialization.
|
|
output_layer_init_method: output layer initialization. If None, use
|
|
`init_method`.
|
|
We use the following notation:
|
|
h: hidden_size
|
|
n: num_attention_heads
|
|
p: number of partitions
|
|
np: n/p
|
|
hp: h/p
|
|
hn: h/n
|
|
b: batch size
|
|
s: sequence length
|
|
"""
|
|
|
|
def __init__(self, hidden_size, num_attention_heads,
|
|
attention_dropout_prob, output_dropout_prob,
|
|
init_method, output_layer_init_method=None,
|
|
attention_scale=1.0):
|
|
super(SelfAttention, self).__init__()
|
|
|
|
if output_layer_init_method is None:
|
|
output_layer_init_method = init_method
|
|
|
|
self.hidden_size = hidden_size
|
|
self.hidden_size_per_attention_head = divide(hidden_size,
|
|
num_attention_heads)
|
|
|
|
self.num_attention_heads = num_attention_heads
|
|
self.attention_scale = attention_scale
|
|
|
|
self.query_key_value = Linear(hidden_size, 3 * hidden_size)
|
|
|
|
|
|
|
|
|
|
self.attention_dropout = torch.nn.Dropout(attention_dropout_prob)
|
|
|
|
|
|
self.dense = Linear(hidden_size,
|
|
hidden_size)
|
|
self.output_dropout = torch.nn.Dropout(output_dropout_prob)
|
|
|
|
def _transpose_for_scores(self, tensor):
|
|
"""Transpose a 3D tensor [b, s, np*hn] into a 4D tensor with
|
|
size [b, np, s, hn].
|
|
"""
|
|
new_tensor_shape = tensor.size()[:-1] + \
|
|
(self.num_attention_heads,
|
|
self.hidden_size_per_attention_head)
|
|
tensor = tensor.view(*new_tensor_shape)
|
|
return tensor.permute(0, 2, 1, 3)
|
|
|
|
def forward(self, hidden_states, ltor_mask, mem=None):
|
|
|
|
|
|
|
|
|
|
query_length = hidden_states.size(1)
|
|
|
|
if mem is None:
|
|
mixed_x_layer = self.query_key_value(hidden_states)
|
|
(mixed_query_layer,
|
|
mixed_key_layer,
|
|
mixed_value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
|
|
else:
|
|
cat = torch.cat((mem, hidden_states), 1)
|
|
mixed_x_layer = self.query_key_value(cat)
|
|
(mixed_query_layer,
|
|
mixed_key_layer,
|
|
mixed_value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
|
|
mixed_query_layer = mixed_query_layer[:, -query_length:]
|
|
|
|
|
|
query_layer = self._transpose_for_scores(mixed_query_layer)
|
|
key_layer = self._transpose_for_scores(mixed_key_layer)
|
|
value_layer = self._transpose_for_scores(mixed_value_layer)
|
|
|
|
if self.attention_scale > 1.0:
|
|
|
|
attention_scores = torch.matmul(query_layer / math.sqrt(self.attention_scale),
|
|
key_layer.transpose(-1, -2) / math.sqrt(
|
|
self.hidden_size_per_attention_head * self.attention_scale))
|
|
else:
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2) / math.sqrt(
|
|
self.hidden_size_per_attention_head))
|
|
|
|
|
|
ltor_mask = ltor_mask.type_as(attention_scores)
|
|
attention_scores = torch.mul(attention_scores, ltor_mask)
|
|
if self.attention_scale > 1.0:
|
|
max_attention_scores = attention_scores.max(dim=-1, keepdim=True)[0]
|
|
attention_scores -= max_attention_scores
|
|
attention_scores *= self.attention_scale
|
|
|
|
attention_scores = attention_scores + (-65504.0) * (1.0 - ltor_mask)
|
|
|
|
attention_probs = torch.nn.Softmax(dim=-1)(attention_scores)
|
|
|
|
|
|
|
|
attention_probs = self.attention_dropout(attention_probs)
|
|
|
|
|
|
|
|
context_layer = torch.matmul(attention_probs, value_layer)
|
|
|
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
|
new_context_layer_shape = context_layer.size()[:-2] + \
|
|
(self.hidden_size,)
|
|
|
|
context_layer = context_layer.view(*new_context_layer_shape)
|
|
|
|
|
|
output = self.dense(context_layer)
|
|
output = self.output_dropout(output)
|
|
|
|
return output
|
|
|
|
|
|
class GLMBlock(torch.nn.Module):
|
|
"""A single layer transformer for GLM.
|
|
We use the following notation:
|
|
h: hidden size
|
|
n: number of attention heads
|
|
b: batch size
|
|
s: sequence length
|
|
Transformore layer takes input with size [b, s, h] and returns an
|
|
output of the same size.
|
|
Arguments:
|
|
hidden_size: The hidden size of the self attention.
|
|
num_attention_heads: number of attention head in the self
|
|
attention.
|
|
attention_dropout_prob: dropout probability of the attention
|
|
score in self attention.
|
|
output_dropout_prob: dropout probability for the outputs
|
|
after self attention and final output.
|
|
layernorm_epsilon: epsilon used in layernorm to avoid
|
|
division by zero.
|
|
init_method: initialization method used for the weights. Note
|
|
that all biases are initialized to zero and
|
|
layernorm weight are initialized to one.
|
|
output_layer_init_method: output layers (attention output and
|
|
mlp output) initialization. If None,
|
|
use `init_method`.
|
|
"""
|
|
|
|
def __init__(self,
|
|
hidden_size,
|
|
num_attention_heads,
|
|
attention_dropout_prob,
|
|
output_dropout_prob,
|
|
layernorm_epsilon,
|
|
init_method,
|
|
output_layer_init_method=None,
|
|
attention_scale=1.0):
|
|
super(GLMBlock, self).__init__()
|
|
|
|
if output_layer_init_method is None:
|
|
output_layer_init_method = init_method
|
|
|
|
|
|
self.input_layernorm = LayerNorm(hidden_size, eps=layernorm_epsilon)
|
|
|
|
|
|
self.attention = SelfAttention(
|
|
hidden_size,
|
|
num_attention_heads,
|
|
attention_dropout_prob,
|
|
output_dropout_prob,
|
|
init_method,
|
|
output_layer_init_method=output_layer_init_method,
|
|
attention_scale=attention_scale)
|
|
|
|
|
|
self.post_attention_layernorm = LayerNorm(hidden_size,
|
|
eps=layernorm_epsilon)
|
|
|
|
|
|
self.mlp = MLP(
|
|
hidden_size,
|
|
output_dropout_prob,
|
|
init_method,
|
|
output_layer_init_method=output_layer_init_method)
|
|
|
|
def forward(self, hidden_states, ltor_mask, mem=None):
|
|
|
|
|
|
|
|
|
|
layernorm_output = self.input_layernorm(hidden_states)
|
|
mem = self.input_layernorm(mem) if mem is not None else None
|
|
|
|
attention_output = self.attention(layernorm_output, ltor_mask, mem)
|
|
|
|
layernorm_input = hidden_states + attention_output
|
|
|
|
layernorm_output = self.post_attention_layernorm(layernorm_input)
|
|
|
|
mlp_output = self.mlp(layernorm_output)
|
|
|
|
output = layernorm_input + mlp_output
|
|
|
|
return output
|
|
|
|
|
|
class GLMStack(torch.nn.Module):
|
|
"""GLM transformer.
|
|
This module takes input from embedding layer and it's output can
|
|
be used directly by a logit layer. It consists of L (num-layers)
|
|
blocks of:
|
|
layer norm
|
|
self attention
|
|
residual connection
|
|
layer norm
|
|
mlp
|
|
residual connection
|
|
followed by a final layer norm.
|
|
Arguments:
|
|
num_layers: Number of transformer layers.
|
|
hidden_size: The hidden size of the self attention.
|
|
num_attention_heads: number of attention head in the self
|
|
attention.
|
|
attention_dropout_prob: dropout probability of the attention
|
|
score in self attention.
|
|
output_dropout_prob: dropout probability for the outputs
|
|
after self attention and final output.
|
|
checkpoint_activations: if True, checkpoint activations.
|
|
checkpoint_num_layers: number of layers to checkpoint. This
|
|
is basically the chunk size in checkpoitning.
|
|
layernorm_epsilon: epsilon used in layernorm to avoid
|
|
division by zero.
|
|
init_method_std: standard deviation of the init method which has
|
|
the form N(0, std).
|
|
use_scaled_init_for_output_weights: If Ture use 1/sqrt(2*num_layers)
|
|
scaling for the output weights (
|
|
output of self attention and mlp).
|
|
"""
|
|
|
|
def __init__(self,
|
|
num_layers,
|
|
hidden_size,
|
|
num_attention_heads,
|
|
max_sequence_length,
|
|
embedding_dropout_prob,
|
|
attention_dropout_prob,
|
|
output_dropout_prob,
|
|
checkpoint_activations,
|
|
checkpoint_num_layers=1,
|
|
layernorm_epsilon=1.0e-5,
|
|
init_method_std=0.02,
|
|
use_scaled_init_for_output_weights=True,
|
|
block_position_encoding=False,
|
|
attention_scale=1.0,
|
|
):
|
|
super(GLMStack, self).__init__()
|
|
self.hidden_size = hidden_size
|
|
|
|
self.checkpoint_activations = checkpoint_activations
|
|
self.checkpoint_num_layers = checkpoint_num_layers
|
|
|
|
output_layer_init_method = None
|
|
if use_scaled_init_for_output_weights:
|
|
output_layer_init_method = scaled_init_method(0.0, init_method_std,
|
|
num_layers)
|
|
|
|
self.embedding_dropout = torch.nn.Dropout(embedding_dropout_prob)
|
|
self.block_position_encoding = block_position_encoding
|
|
|
|
|
|
if block_position_encoding:
|
|
self.position_embeddings = torch.nn.Embedding(max_sequence_length + 1, hidden_size)
|
|
self.block_position_embeddings = torch.nn.Embedding(max_sequence_length + 1, hidden_size)
|
|
torch.nn.init.normal_(self.block_position_embeddings.weight, mean=0.0, std=init_method_std)
|
|
else:
|
|
self.position_embeddings = torch.nn.Embedding(max_sequence_length, hidden_size)
|
|
|
|
torch.nn.init.normal_(self.position_embeddings.weight, mean=0.0, std=init_method_std)
|
|
|
|
def get_layer():
|
|
|
|
return GLMBlock(
|
|
hidden_size,
|
|
num_attention_heads,
|
|
attention_dropout_prob,
|
|
output_dropout_prob,
|
|
layernorm_epsilon,
|
|
unscaled_init_method(init_method_std),
|
|
output_layer_init_method=output_layer_init_method,
|
|
attention_scale=attention_scale)
|
|
|
|
|
|
self.layers = torch.nn.ModuleList(
|
|
[get_layer() for _ in range(num_layers)])
|
|
|
|
|
|
self.final_layernorm = LayerNorm(hidden_size, eps=layernorm_epsilon)
|
|
|
|
def forward(self, hidden_states, position_ids, attention_mask, memory_states=None):
|
|
|
|
batch_size, query_length = hidden_states.size()[:2]
|
|
memory_length = memory_states[0].size(1) if memory_states else 0
|
|
|
|
is_scalar = torch.numel(attention_mask) == 1
|
|
is_sep = is_scalar or torch.numel(attention_mask) == batch_size
|
|
if is_sep:
|
|
sep = attention_mask.item() if is_scalar else attention_mask
|
|
|
|
|
|
def build_mask_matrix(seq_length, sep, memory_length=0):
|
|
m = hidden_states.new_ones((1, seq_length, seq_length))
|
|
m = torch.tril(m)
|
|
if is_scalar:
|
|
m[0, :, :int(sep)] = 1
|
|
else:
|
|
m = m.expand(batch_size, -1, -1)
|
|
ids = torch.arange(seq_length, device=sep.device, dtype=sep.dtype).view(1, -1)
|
|
mask = ids < sep.view(-1, 1)
|
|
m = m.masked_fill(mask.unsqueeze(1).expand_as(m), 1)
|
|
if memory_length > 0:
|
|
m = m.expand(batch_size, -1, -1)
|
|
m = torch.cat((hidden_states.new_ones((batch_size, seq_length, memory_length)), m), dim=2)
|
|
m = m.unsqueeze(1)
|
|
return m
|
|
|
|
attention_mask = build_mask_matrix(query_length, sep, memory_length=memory_length)
|
|
else:
|
|
if attention_mask.dim() == 2:
|
|
attention_mask = attention_mask.unsqueeze(1).unsqueeze(1)
|
|
attention_mask = attention_mask[:, :, :, -query_length - memory_length:]
|
|
|
|
if self.block_position_encoding:
|
|
position_ids, block_position_ids = position_ids[:, 0], position_ids[:, 1]
|
|
position_embeddings = self.position_embeddings(position_ids)
|
|
|
|
hidden_states = hidden_states + position_embeddings
|
|
if self.block_position_encoding:
|
|
block_position_embeddings = self.block_position_embeddings(block_position_ids)
|
|
hidden_states = hidden_states + block_position_embeddings
|
|
hidden_states = self.embedding_dropout(hidden_states)
|
|
|
|
def check_detach(_hidden_states):
|
|
return _hidden_states.detach()
|
|
|
|
mem_layers = [check_detach(hidden_states)]
|
|
|
|
for i, layer in enumerate(self.layers):
|
|
|
|
args = [hidden_states, attention_mask]
|
|
|
|
def create_custom_forward(module):
|
|
def custom_forward(*inputs):
|
|
|
|
return module(*inputs)
|
|
|
|
return custom_forward
|
|
|
|
mem_i = memory_states[i] if memory_states else None
|
|
|
|
if self.checkpoint_activations:
|
|
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(layer),
|
|
hidden_states,
|
|
mem=mem_i,
|
|
)
|
|
else:
|
|
hidden_states = layer(*args, mem=mem_i)
|
|
mem_layers.append(check_detach(hidden_states))
|
|
|
|
|
|
output = self.final_layernorm(hidden_states)
|
|
mem_layers = self.update_mems(mem_layers, memory_states)
|
|
return (output, mem_layers)
|
|
|
|
def update_mems(self, hiddens, mems):
|
|
memory_length = mems[0].size(1) if mems else 0
|
|
query_length = hiddens[0].size(1)
|
|
new_memory_length = memory_length + query_length
|
|
|
|
new_mems = []
|
|
|
|
for i in range(len(hiddens)):
|
|
if new_memory_length <= query_length:
|
|
new_mems.append(hiddens[i][:, -new_memory_length:])
|
|
else:
|
|
new_mems.append(torch.cat((mems[i][:, -new_memory_length + query_length:], hiddens[i]), dim=1))
|
|
return new_mems
|
|
|
|
|
|
class GLMPreTrainedModel(PreTrainedModel):
|
|
"""
|
|
An abstract class to handle weights initialization and
|
|
a simple interface for downloading and loading pretrained models.
|
|
"""
|
|
|
|
config_class = EnzymeGLMConfig
|
|
base_model_prefix = "glm"
|
|
supports_gradient_checkpointing = True
|
|
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
|
|
|
def _init_weights(self, module):
|
|
""" Initialize the weights """
|
|
if isinstance(module, torch.nn.Linear):
|
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
|
if module.bias is not None:
|
|
module.bias.data.zero_()
|
|
elif isinstance(module, torch.nn.Embedding):
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
|
if module.padding_idx is not None:
|
|
module.weight.data[module.padding_idx].zero_()
|
|
elif isinstance(module, torch.nn.LayerNorm):
|
|
module.bias.data.zero_()
|
|
module.weight.data.fill_(1.0)
|
|
|
|
def _set_gradient_checkpointing(self, module, value=False):
|
|
if isinstance(module, GLMModel):
|
|
module.gradient_checkpointing = value
|
|
|
|
|
|
GLM_START_DOCSTRING = r"""
|
|
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class.
|
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general
|
|
usage and behavior.
|
|
Parameters:
|
|
config ([`~GLMConfig`]): Model configuration class with all the parameters of the model.
|
|
Initializing with a config file does not load the weights associated with the model, only the configuration.
|
|
Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
|
"""
|
|
|
|
GLM_INPUTS_DOCSTRING = r"""
|
|
Args:
|
|
input_ids (`torch.LongTensor` of shape `({0})`):
|
|
Indices of input sequence tokens in the vocabulary.
|
|
Indices can be obtained using [`GLMTokenizer`].
|
|
See [`PreTrainedTokenizer.encode`] and
|
|
[`PreTrainedTokenizer.__call__`] for details.
|
|
[What are input IDs?](../glossary#input-ids)
|
|
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
[What are attention masks?](../glossary#attention-mask)
|
|
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
|
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`:
|
|
- 0 corresponds to a *sentence A* token,
|
|
- 1 corresponds to a *sentence B* token.
|
|
[What are token type IDs?](../glossary#token-type-ids)
|
|
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
|
Indices of positions of each input sequence tokens in the position embeddings.
|
|
Selected in the range `[0, config.max_position_embeddings - 1]`.
|
|
[What are position IDs?](../glossary#position-ids)
|
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
|
- 1 indicates the head is **not masked**,
|
|
- 0 indicates the head is **masked**.
|
|
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
|
This is useful if you want more control over how to convert *input_ids* indices into associated vectors
|
|
than the model's internal embedding lookup matrix.
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
|
tensors for more detail.
|
|
output_hidden_states (`bool`, *optional*):
|
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
|
more detail.
|
|
return_dict (`bool`, *optional*):
|
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
|
"""
|
|
|
|
|
|
@add_start_docstrings(
|
|
"The bare GLM Model transformer outputting raw hidden-states without any specific head on top.",
|
|
GLM_START_DOCSTRING,
|
|
)
|
|
class GLMModel(GLMPreTrainedModel):
|
|
"""
|
|
The model can behave as an encoder (with only self-attention) as well
|
|
as a decoder, in which case a layer of cross-attention is added between
|
|
the self-attention layers, following the architecture described in [Attention is
|
|
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani,
|
|
Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
|
To behave as an decoder the model needs to be initialized with the
|
|
`is_decoder` argument of the configuration set to `True`.
|
|
To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder`
|
|
argument and `add_cross_attention` set to `True`; an
|
|
`encoder_hidden_states` is then expected as an input to the forward pass.
|
|
"""
|
|
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.config = config
|
|
self.output_predict = config.output_predict
|
|
|
|
self.word_embeddings = VocabEmbedding(config)
|
|
|
|
|
|
self.transformer = GLMStack(config.num_layers,
|
|
config.hidden_size,
|
|
config.num_attention_heads,
|
|
config.max_sequence_length,
|
|
config.embedding_dropout_prob,
|
|
config.attention_dropout_prob,
|
|
config.output_dropout_prob,
|
|
config.checkpoint_activations,
|
|
config.checkpoint_num_layers,
|
|
attention_scale=config.attention_scale,
|
|
block_position_encoding=config.block_position_encoding)
|
|
|
|
|
|
self.post_init()
|
|
|
|
@add_start_docstrings_to_model_forward(GLM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
|
@add_code_sample_docstrings(
|
|
|
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
|
output_type=BaseModelOutputWithPastAndCrossAttentions,
|
|
config_class=_CONFIG_FOR_DOC,
|
|
)
|
|
def forward(
|
|
self,
|
|
input_ids=None,
|
|
position_ids=None,
|
|
attention_mask=None,
|
|
mems=None,
|
|
**kwargs
|
|
):
|
|
batch_size = input_ids.size(0)
|
|
words_embeddings = self.word_embeddings(input_ids)
|
|
embeddings = words_embeddings
|
|
|
|
device = input_ids.device
|
|
input_shape = input_ids.size()
|
|
|
|
if position_ids is None:
|
|
position_ids = torch.arange(0, input_shape[-1], dtype=torch.long, device=device)
|
|
block_position_ids = torch.zeros(input_shape[-1], dtype=torch.long, device=device)
|
|
position_ids = torch.stack((position_ids, block_position_ids), dim=0).unsqueeze(0)
|
|
if attention_mask is None:
|
|
attention_mask = torch.zeros(batch_size)
|
|
|
|
transformer_output = self.transformer(embeddings, position_ids, attention_mask, mems)
|
|
last_hidden_states, mems = transformer_output
|
|
logits = None
|
|
if self.output_predict:
|
|
logits = F.linear(last_hidden_states, self.word_embeddings.weight)
|
|
|
|
return ModelOutput(
|
|
last_hidden_states=last_hidden_states,
|
|
logits=logits,
|
|
mems=mems,
|
|
)
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""GLM Model transformer for multiple choice classification""",
|
|
GLM_START_DOCSTRING
|
|
)
|
|
class GLMForMultipleChoice(GLMPreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.glm = GLMModel(config)
|
|
self.post_init()
|
|
|
|
def forward(
|
|
self,
|
|
input_ids=None,
|
|
position_ids=None,
|
|
attention_mask=None,
|
|
choice_ids=None,
|
|
choice_indices=None,
|
|
labels=None,
|
|
mems=None,
|
|
**kwargs
|
|
):
|
|
model_output = self.glm(input_ids, position_ids, attention_mask, mems=mems, **kwargs)
|
|
lm_logits = model_output.logits
|
|
log_probs = []
|
|
for output, choices, choice_index in zip(F.log_softmax(lm_logits, dim=-1), choice_ids, choice_indices):
|
|
log_probs_single = []
|
|
for choice, choice_target_id in zip(choices, choice_index):
|
|
tmp = output[choice_target_id, choice]
|
|
log_probs_single.append(tmp.sum())
|
|
log_probs.append(torch.stack(log_probs_single))
|
|
log_probs = torch.stack(log_probs)
|
|
loss = None
|
|
if labels is not None:
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(log_probs, labels)
|
|
return ModelOutput(
|
|
loss=loss,
|
|
logits=log_probs,
|
|
lm_logits=lm_logits,
|
|
mems=model_output.mems
|
|
)
|
|
|
|
@add_start_docstrings(
|
|
"""GLM Model transformer with a `language modeling` head on top""",
|
|
GLM_START_DOCSTRING,
|
|
)
|
|
class GLMForConditionalGeneration(GLMPreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.glm = GLMModel(config)
|
|
self.post_init()
|
|
|
|
def _reorder_cache(self, past, beam_idx):
|
|
|
|
|
|
if past is None:
|
|
return past
|
|
reordered_decoder_past = ()
|
|
for layer_past_states in past:
|
|
|
|
reordered_decoder_past = reordered_decoder_past + (
|
|
layer_past_states.index_select(0, beam_idx.to(layer_past_states.device)),)
|
|
return reordered_decoder_past
|
|
|
|
def prepare_inputs_for_generation(self, input_ids, past=None, position_ids=None, generation_attention_mask=None,
|
|
**kwargs):
|
|
|
|
attention_mask = generation_attention_mask
|
|
seq_length = input_ids.shape[1]
|
|
if past:
|
|
if position_ids is not None:
|
|
position_ids = position_ids[:, :, seq_length - 1].unsqueeze(-1)
|
|
if attention_mask is not None:
|
|
attention_mask = attention_mask[:, :, seq_length - 1, :seq_length].unsqueeze(-2)
|
|
input_ids = input_ids[:, -1].unsqueeze(-1)
|
|
else:
|
|
if position_ids is not None:
|
|
position_ids = position_ids[:, :, :seq_length]
|
|
if attention_mask is not None:
|
|
attention_mask = attention_mask[:, :, :seq_length, :seq_length]
|
|
if position_ids is not None and input_ids.size(0) > position_ids.size(0):
|
|
batch_size = position_ids.size(0)
|
|
num_beams = input_ids.size(0) // batch_size
|
|
position_ids = position_ids.unsqueeze(1).expand(-1, num_beams, -1, -1)
|
|
position_ids = position_ids.reshape(batch_size * num_beams, *position_ids.shape[-2:])
|
|
if attention_mask is not None and input_ids.size(0) > attention_mask.size(0):
|
|
batch_size = attention_mask.size(0)
|
|
num_beams = input_ids.size(0) // batch_size
|
|
attention_mask = attention_mask.unsqueeze(1).expand(-1, num_beams, -1, -1, -1)
|
|
attention_mask = attention_mask.reshape(batch_size * num_beams, *attention_mask.shape[-3:])
|
|
return {
|
|
"input_ids": input_ids,
|
|
"position_ids": position_ids,
|
|
"attention_mask": attention_mask,
|
|
"mems": past,
|
|
}
|
|
|
|
def forward(
|
|
self,
|
|
input_ids=None,
|
|
position_ids=None,
|
|
attention_mask=None,
|
|
labels=None,
|
|
mems=None,
|
|
**kwargs
|
|
):
|
|
model_output = self.glm(input_ids, position_ids, attention_mask, mems=mems, **kwargs)
|
|
lm_logits = model_output.logits
|
|
loss = None
|
|
if labels is not None:
|
|
loss_fct = CrossEntropyLoss(ignore_index=-100)
|
|
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
|
|
return ModelOutput(
|
|
loss=loss,
|
|
logits=lm_logits,
|
|
mems=model_output.mems
|
|
)
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""GLM Model transformer with a sequence classification/regression head on top (a linear layer on top of
|
|
the pooled output) e.g. for GLUE tasks. """,
|
|
GLM_START_DOCSTRING,
|
|
)
|
|
class GLMForSequenceClassification(GLMPreTrainedModel):
|
|
def __init__(self, config: EnzymeGLMConfig, hidden_dropout=None, num_class=1):
|
|
super().__init__(config)
|
|
self.pool_token = config.pool_token
|
|
self.glm = GLMModel(config)
|
|
self.glm.output_predict = False
|
|
self.num_class = num_class
|
|
|
|
self.dense = torch.nn.Linear(config.hidden_size, config.hidden_size)
|
|
classifier_dropout = (
|
|
config.classifier_dropout if config.classifier_dropout is not None else config.output_dropout_prob
|
|
)
|
|
self.dropout = torch.nn.Dropout(classifier_dropout)
|
|
self.out_proj = torch.nn.Linear(config.hidden_size, config.num_labels)
|
|
|
|
|
|
self.post_init()
|
|
|
|
@add_start_docstrings_to_model_forward(GLM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
|
@add_code_sample_docstrings(
|
|
|
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
|
output_type=SequenceClassifierOutput,
|
|
config_class=_CONFIG_FOR_DOC,
|
|
)
|
|
def forward(self,
|
|
input_ids=None,
|
|
position_ids=None,
|
|
attention_mask=None,
|
|
labels=None):
|
|
|
|
num_choices = None
|
|
|
|
if len(input_ids.shape) == 3:
|
|
batch_size, num_choices = input_ids.shape[:2]
|
|
input_ids = input_ids.reshape(-1, input_ids.size(-1))
|
|
attention_mask = attention_mask.reshape(-1, *attention_mask.size()[2:])
|
|
position_ids = position_ids.reshape(-1, *position_ids.size()[2:])
|
|
model_out = self.glm(input_ids, position_ids, attention_mask)
|
|
outputs, mems = model_out.last_hidden_states, model_out.mems
|
|
|
|
output = outputs[:, 0, :]
|
|
output = self.dropout(output)
|
|
output = torch.tanh(self.dense(output))
|
|
output = self.dropout(output)
|
|
logits = self.out_proj(output)
|
|
if num_choices is not None:
|
|
logits = logits.view(-1, num_choices)
|
|
loss = None
|
|
if labels is not None:
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(logits, labels)
|
|
|
|
return SequenceClassifierOutput(loss=loss,
|
|
logits=logits,
|
|
hidden_states=outputs) |