YiYiXu commited on
Commit
220fc34
·
verified ·
1 Parent(s): 951df84

Upload diffdiff.py

Browse files
Files changed (1) hide show
  1. diffdiff.py +224 -0
diffdiff.py ADDED
@@ -0,0 +1,224 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modular diffusers diff-idff
2
+
3
+ from diffusers.modular_pipelines import (
4
+ PipelineBlock,
5
+ SequentialPipelineBlocks,
6
+ PipelineState,
7
+ InputParam,
8
+ OutputParam,
9
+ ComponentSpec,
10
+ AutoPipelineBlocks
11
+ )
12
+ from diffusers.image_processor import VaeImageProcessor
13
+ from diffusers.schedulers import EulerDiscreteScheduler
14
+ from diffusers.models import AutoencoderKL
15
+ from diffusers.configuration_utils import FrozenDict
16
+
17
+ from diffusers.modular_pipelines.stable_diffusion_xl.before_denoise import prepare_latents_img2img
18
+ from diffusers.modular_pipelines.stable_diffusion_xl.denoise import (
19
+ StableDiffusionXLDenoiseLoopWrapper,
20
+ StableDiffusionXLDenoiseLoopDenoiser,
21
+ StableDiffusionXLControlNetDenoiseLoopDenoiser,
22
+ StableDiffusionXLDenoiseLoopAfterDenoiser
23
+ )
24
+ from diffusers.modular_pipelines.stable_diffusion_xl.modular_pipeline_block_mappings import (
25
+ IMAGE2IMAGE_BLOCKS,
26
+ TEXT2IMAGE_BLOCKS
27
+ )
28
+
29
+ import torch
30
+ from typing import List, Tuple, Any, Optional
31
+
32
+ class SDXLDiffDiffPrepareLatentsStep(PipelineBlock):
33
+ model_name = "stable-diffusion-xl"
34
+
35
+ @property
36
+ def description(self) -> str:
37
+ return (
38
+ "Step that prepares the latents for the differential diffusion generation process"
39
+ )
40
+
41
+ @property
42
+ def expected_components(self) -> List[ComponentSpec]:
43
+ return [
44
+ ComponentSpec("vae", AutoencoderKL),
45
+ ComponentSpec("scheduler", EulerDiscreteScheduler),
46
+ ComponentSpec(
47
+ "mask_processor",
48
+ VaeImageProcessor,
49
+ config=FrozenDict({"do_normalize": False, "do_convert_grayscale": True}),
50
+ default_creation_method="from_config",
51
+ )
52
+ ]
53
+
54
+ @property
55
+ def inputs(self) -> List[Tuple[str, Any]]:
56
+ return [
57
+ InputParam("diffdiff_map",required=True),
58
+ InputParam(
59
+ "latents",
60
+ type_hint=Optional[torch.Tensor],
61
+ description="Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`."
62
+ ),
63
+ InputParam(
64
+ "num_images_per_prompt",
65
+ default=1,
66
+ type_hint=int,
67
+ description="The number of images to generate per prompt"
68
+ ),
69
+ InputParam(
70
+ "denoising_start",
71
+ type_hint=Optional[float],
72
+ description="When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be bypassed before it is initiated. The initial part of the denoising process is skipped and it is assumed that the passed `image` is a partly denoised image. Note that when this is specified, strength will be ignored. Useful for 'Mixture of Denoisers' multi-pipeline setups."
73
+ ),
74
+ ]
75
+
76
+ @property
77
+ def intermediates_inputs(self) -> List[InputParam]:
78
+ return [
79
+ InputParam("generator"),
80
+ InputParam("timesteps",type_hint=torch.Tensor, description="The timesteps to use for sampling. Can be generated in set_timesteps step."),
81
+ InputParam("image_latents", type_hint=torch.Tensor, description="The latents representing the reference image for image-to-image/inpainting generation. Can be generated in vae_encode step."),
82
+ InputParam("batch_size", type_hint=int, description="Number of prompts, the final batch size of model inputs should be batch_size * num_images_per_prompt. Can be generated in input step."),
83
+ InputParam("num_inference_steps", type_hint=int, description="The number of inference steps to use for the denoising process. Can be generated in set_timesteps step."),
84
+ ]
85
+
86
+ @property
87
+ def intermediates_outputs(self) -> List[OutputParam]:
88
+ return [
89
+ OutputParam("latents", type_hint=torch.Tensor, description="The initial latents to use for the denoising process"),
90
+ OutputParam("original_latents", type_hint=torch.Tensor, description="The initial latents to use for the denoising process"),
91
+ OutputParam("diffdiff_masks", type_hint=torch.Tensor, description="The masks used for the differential diffusion denoising process"),
92
+ ]
93
+
94
+
95
+
96
+ @torch.no_grad()
97
+ def __call__(self, components, state: PipelineState):
98
+ block_state = self.get_block_state(state)
99
+
100
+ block_state.dtype = components.vae.dtype
101
+ block_state.device = components._execution_device
102
+
103
+ block_state.add_noise = True if block_state.denoising_start is None else False
104
+ components.scheduler.set_begin_index(None)
105
+
106
+ if block_state.latents is None:
107
+ block_state.latents = prepare_latents_img2img(
108
+ components.vae,
109
+ components.scheduler,
110
+ block_state.image_latents,
111
+ block_state.timesteps,
112
+ block_state.batch_size,
113
+ block_state.num_images_per_prompt,
114
+ block_state.dtype,
115
+ block_state.device,
116
+ block_state.generator,
117
+ block_state.add_noise,
118
+ )
119
+
120
+ latent_height = block_state.image_latents.shape[-2]
121
+ latent_width = block_state.image_latents.shape[-1]
122
+ diffdiff_map = components.mask_processor.preprocess(block_state.diffdiff_map, height=latent_height, width=latent_width)
123
+
124
+ diffdiff_map = diffdiff_map.squeeze(0).to(block_state.device)
125
+ thresholds = torch.arange(block_state.num_inference_steps, dtype=diffdiff_map.dtype) / block_state.num_inference_steps
126
+ thresholds = thresholds.unsqueeze(1).unsqueeze(1).to(block_state.device)
127
+ block_state.diffdiff_masks = diffdiff_map > (thresholds + (block_state.denoising_start or 0))
128
+ block_state.original_latents = block_state.latents
129
+
130
+ self.add_block_state(state, block_state)
131
+
132
+ return components, state
133
+
134
+
135
+ class SDXLDiffDiffDenoiseLoopBeforeDenoiser(PipelineBlock):
136
+ model_name = "stable-diffusion-xl"
137
+
138
+ @property
139
+ def description(self) -> str:
140
+ return (
141
+ "Step within the denoising loop for differential diffusion that prepare the latent input for the denoiser"
142
+ )
143
+
144
+ @property
145
+ def inputs(self) -> List[Tuple[str, Any]]:
146
+ return [
147
+ InputParam("denoising_start"),
148
+ ]
149
+
150
+ @property
151
+ def intermediates_inputs(self) -> List[str]:
152
+ return [
153
+ InputParam(
154
+ "latents",
155
+ type_hint=torch.Tensor,
156
+ description="The initial latents to use for the denoising process. Can be generated in prepare_latent step."
157
+ ),
158
+ InputParam(
159
+ "original_latents",
160
+ type_hint=torch.Tensor,
161
+ description="The initial latents to use for the denoising process. Can be generated in prepare_latent step."
162
+ ),
163
+ InputParam(
164
+ "diffdiff_masks",
165
+ type_hint=torch.Tensor,
166
+ description="The masks used for the differential diffusion denoising process, can be generated in DiffDiffInput step."
167
+ ),
168
+ ]
169
+
170
+ @property
171
+ def intermediates_outputs(self) -> List[OutputParam]:
172
+ return [OutputParam("latents", type_hint=torch.Tensor, description="The denoised latents")]
173
+
174
+ @property
175
+ def expected_components(self) -> List[ComponentSpec]:
176
+ return [
177
+ ComponentSpec("scheduler", EulerDiscreteScheduler)
178
+ ]
179
+
180
+ @torch.no_grad()
181
+ def __call__(self, components, block_state, i, t) -> PipelineState:
182
+
183
+ # diff diff
184
+ if i == 0 and block_state.denoising_start is None:
185
+ block_state.latents = block_state.original_latents[:1]
186
+ else:
187
+ block_state.mask = block_state.diffdiff_masks[i].unsqueeze(0)
188
+ # cast mask to the same type as latents etc
189
+ block_state.mask = block_state.mask.to(block_state.latents.dtype)
190
+ block_state.mask = block_state.mask.unsqueeze(1) # fit shape
191
+ block_state.latents = block_state.original_latents[i] * block_state.mask + block_state.latents * (1 - block_state.mask)
192
+ # end diff diff
193
+
194
+ # expand the latents if we are doing classifier free guidance
195
+ block_state.scaled_latents = components.scheduler.scale_model_input(block_state.latents, t)
196
+
197
+ return components, block_state
198
+
199
+
200
+ class SDXLDiffDiffDenoiseLoop(StableDiffusionXLDenoiseLoopWrapper):
201
+ block_classes = [SDXLDiffDiffDenoiseLoopBeforeDenoiser, StableDiffusionXLDenoiseLoopDenoiser, StableDiffusionXLDenoiseLoopAfterDenoiser]
202
+ block_names = ["before_denoiser", "denoiser", "after_denoiser"]
203
+
204
+ # control_cond
205
+ class SDXLDiffDiffControlNetDenoiseLoop(StableDiffusionXLDenoiseLoopWrapper):
206
+ block_classes = [SDXLDiffDiffDenoiseLoopBeforeDenoiser, StableDiffusionXLControlNetDenoiseLoopDenoiser, StableDiffusionXLDenoiseLoopAfterDenoiser]
207
+ block_names = ["before_denoiser", "denoiser", "after_denoiser"]
208
+
209
+ class SDXLDiffDiffDenoiseStep(AutoPipelineBlocks):
210
+ block_classes = [SDXLDiffDiffControlNetDenoiseLoop, SDXLDiffDiffDenoiseLoop]
211
+ block_names = ["controlnet_denoise", "denoise"]
212
+ block_trigger_inputs = ["controlnet_cond", None]
213
+
214
+
215
+ DIFFDIFF_BLOCKS = IMAGE2IMAGE_BLOCKS.copy()
216
+ DIFFDIFF_BLOCKS["denoise"] = SDXLDiffDiffDenoiseStep
217
+ DIFFDIFF_BLOCKS["prepare_latents"] = SDXLDiffDiffPrepareLatentsStep
218
+ DIFFDIFF_BLOCKS["set_timesteps"] = TEXT2IMAGE_BLOCKS["set_timesteps"]
219
+
220
+
221
+ class DiffDiffBlocks(SequentialPipelineBlocks):
222
+ block_classes = list(DIFFDIFF_BLOCKS.values())
223
+ block_names = list(DIFFDIFF_BLOCKS.keys())
224
+