depthsplat / MinkowskiEngine /src /local_pooling_transpose_cpu.cpp
Yeqing0814's picture
Upload folder using huggingface_hub
a6dd040 verified
/*
* Copyright (c) 2020 NVIDIA Corporation.
* Copyright (c) Chris Choy (chrischoy@ai.stanford.edu).
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Please cite "4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural
* Networks", CVPR'19 (https://arxiv.org/abs/1904.08755) if you use any part
* of the code.
*/
#include "coordinate_map.hpp"
#include "coordinate_map_cpu.hpp"
#include "coordinate_map_key.hpp"
#include "coordinate_map_manager.hpp"
#include "errors.hpp"
#include "types.hpp"
#include "utils.hpp"
#include "pooling_avg_kernel.hpp"
#include <pybind11/pybind11.h>
#include <torch/extension.h>
namespace minkowski {
template <typename coordinate_type>
std::pair<at::Tensor, at::Tensor> LocalPoolingTransposeForwardCPU(
at::Tensor const &in_feat,
default_types::stride_type const &kernel_size, //
default_types::stride_type const &kernel_stride, //
default_types::stride_type const &kernel_dilation, //
RegionType::Type const region_type, //
at::Tensor const &offset, //
bool generate_new_coordinates, //
PoolingMode::Type pooling_mode, //
CoordinateMapKey *p_in_map_key, //
CoordinateMapKey *p_out_map_key, //
cpu_manager_type<coordinate_type> *p_map_manager) {
ASSERT(in_feat.is_contiguous(), "in_feat must be contiguous");
ASSERT(!in_feat.is_cuda(), "in_feat must be CPU");
ASSERT(in_feat.dim() == 2, "in_feat.dim():", in_feat.dim());
coordinate_map_key_type in_key = p_in_map_key->get_key();
ASSERT(p_map_manager->exists(in_key), ERROR_MAP_NOT_FOUND);
ASSERT(in_feat.size(0) == p_map_manager->size(in_key), "Invalid in_feat size",
in_feat.size(0), "!=", p_map_manager->size(in_key));
// create an output coordinate map
if (!p_out_map_key->is_key_set()) {
auto map_it = p_map_manager->find(p_in_map_key->get_key());
ASSERT(map_it != p_map_manager->map_end(), ERROR_MAP_NOT_FOUND);
auto const &in_map = (*map_it).second;
auto out_tensor_stride = detail::stride_tensor_stride(
in_map.get_tensor_stride(), kernel_stride, true /* is_transpose */);
auto kernel_region = cpu_kernel_region<coordinate_type>(
region_type, //
in_map.coordinate_size(), //
out_tensor_stride.data(), //
kernel_size.data(), //
kernel_dilation.data(), //
0, // volume. Will be initialized automatically
offset.data_ptr<coordinate_type>(), offset.size(0),
true // is_transpose
);
coordinate_map_key_type out_key = std::get<0>(p_map_manager->stride_region(
in_key, kernel_region, out_tensor_stride, generate_new_coordinates));
p_out_map_key->set_key(out_key);
}
cpu_kernel_map const &in_out = p_map_manager->kernel_map(
p_in_map_key, //
p_out_map_key, //
kernel_size, //
kernel_stride, //
kernel_dilation, //
region_type, //
offset, true /* is_transpose */, true /* is_pool */);
auto const out_nrows = p_map_manager->size(p_out_map_key->get_key());
at::Tensor out_feat =
torch::zeros({out_nrows, in_feat.size(1)}, in_feat.options());
LOG_DEBUG("Allocated", out_nrows, "x", in_feat.size(1), "features.");
at::Tensor num_nonzero =
torch::empty({0}, in_feat.options().requires_grad(false));
AT_DISPATCH_FLOATING_TYPES(
in_feat.scalar_type(), "local_pooling_forward_cpu", [&] {
NonzeroAvgPoolingForwardKernelCPU<scalar_t, coordinate_type>(
in_feat.template data_ptr<scalar_t>(),
out_feat.template data_ptr<scalar_t>(),
num_nonzero.template data_ptr<scalar_t>(), in_feat.size(1),
in_out.first, in_out.second, out_nrows, false);
});
return std::make_pair(out_feat, num_nonzero);
}
template <typename coordinate_type>
at::Tensor LocalPoolingTransposeBackwardCPU(
at::Tensor const &in_feat, //
at::Tensor const &grad_out_feat, //
at::Tensor const &num_nonzero, //
default_types::stride_type const &kernel_size, //
default_types::stride_type const &kernel_stride, //
default_types::stride_type const &kernel_dilation, //
RegionType::Type const region_type, //
at::Tensor const &offset, //
PoolingMode::Type pooling_mode, //
CoordinateMapKey *p_in_map_key, //
CoordinateMapKey *p_out_map_key, //
cpu_manager_type<coordinate_type> *p_map_manager) {
ASSERT(in_feat.is_contiguous(), "in_feat must be contiguous");
ASSERT(grad_out_feat.is_contiguous(), "grad_out_feata must be contiguous");
ASSERT(!in_feat.is_cuda(), "in_feat must be CPU");
ASSERT(!grad_out_feat.is_cuda(), "in_feat must be CPU");
ASSERT(in_feat.scalar_type() == grad_out_feat.scalar_type(), "type mismatch");
ASSERT(in_feat.dim() == 2, "in_feat.dim():", in_feat.dim());
ASSERT(grad_out_feat.dim() == 2, "grad_out_feat.dim():", grad_out_feat.dim());
coordinate_map_key_type in_key = p_in_map_key->get_key();
ASSERT(p_map_manager->exists(in_key), ERROR_MAP_NOT_FOUND);
coordinate_map_key_type out_key = p_out_map_key->get_key();
ASSERT(p_map_manager->exists(out_key), ERROR_MAP_NOT_FOUND);
cpu_kernel_map const &in_out = p_map_manager->kernel_map(
p_in_map_key, //
p_out_map_key, //
kernel_size, //
kernel_stride, //
kernel_dilation, //
region_type, //
offset, true /* is_transpose */, true /* is_pool */);
at::Tensor grad_in_feat =
torch::zeros({in_feat.size(0), in_feat.size(1)}, in_feat.options());
AT_DISPATCH_FLOATING_TYPES(
in_feat.scalar_type(), "local_pooling_backward_cpu", [&] {
NonzeroAvgPoolingBackwardKernelCPU<scalar_t, default_types::index_type>(
grad_in_feat.template data_ptr<scalar_t>(), in_feat.size(0),
grad_out_feat.template data_ptr<scalar_t>(),
num_nonzero.template data_ptr<scalar_t>(), in_feat.size(1),
in_out.first, in_out.second, false /* avg */);
});
return grad_in_feat;
}
template std::pair<at::Tensor, at::Tensor>
LocalPoolingTransposeForwardCPU<int32_t>(
at::Tensor const &in_feat,
default_types::stride_type const &kernel_size, //
default_types::stride_type const &kernel_stride, //
default_types::stride_type const &kernel_dilation, //
RegionType::Type const region_type, //
at::Tensor const &offset, //
bool generate_new_coordinates, //
PoolingMode::Type pooling_mode, //
CoordinateMapKey *p_in_map_key, //
CoordinateMapKey *p_out_map_key, //
cpu_manager_type<int32_t> *p_map_manager);
template at::Tensor LocalPoolingTransposeBackwardCPU<int32_t>(
at::Tensor const &in_feat, //
at::Tensor const &grad_out_feat, //
at::Tensor const &num_nonzero, //
default_types::stride_type const &kernel_size, //
default_types::stride_type const &kernel_stride, //
default_types::stride_type const &kernel_dilation, //
RegionType::Type const region_type, //
at::Tensor const &offset, //
PoolingMode::Type pooling_mode, //
CoordinateMapKey *p_in_map_key, //
CoordinateMapKey *p_out_map_key, //
cpu_manager_type<int32_t> *p_map_manager);
} // end namespace minkowski