Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 241.83 +/- 20.71
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f312de993a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f312de99430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f312de994c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f312de99550>", "_build": "<function ActorCriticPolicy._build at 0x7f312de995e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f312de99670>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f312de99700>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f312de99790>", "_predict": "<function ActorCriticPolicy._predict at 0x7f312de99820>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f312de998b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f312de99940>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f312de999d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f312de98940>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVJgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDCMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAMFULFEyu395t/NIe7LOCczo3CIkN7FVZ0uDn+zl603xFALv4gb3N7PokAoJbiVDSvXH5BzAECz9IOstr5PNHBnj6RNmLKVxCD1jUfDhQMwzwCS3lfCwNUv1nM71m4MN4zY6n3z2pHNv5pANNK6N1LpTFXcMuTjOl4wFaAaovFMEPIm3cYUo3bUB2ejopCUmPvbRwKCGbvIRBNQ8AEvjE5NCSrd+0sijPIau3hGaB8FOdx519csn85WnDxJJ5UHCX9qmfVF7HriJ02BYV1AGEDTY+9Qb3kLRUEJAf4OGoWNjeMW4PNHHw6fXy91oA0DAA/PU/Ti9YWBzWX0Vy7/ZhX9bIwTCgLm0+1dCdV7POj5a0b9k8n/fPRnLKg6aEmhFUE420mbiuglJQUi54HrTmwHO0Uzbrij1A29SsRjWWepYCK0DOyaWkM3IMSSqsYKZVrE4UBOzgxuIQv/yIwH6vJq7O8IzoIT8j2QHXUTKg3PLaYAkoiZxY8HAdDqDBtX64GEP6jucZlNY1A6OGpztQfFFipXXdmvWjYTOH+sM9cnzHwVFR1tIJWs9Ift+9xNgF97xjKzun24liZJzGDs45Ft0ZnMR4aAA74cNyCmKa6ahTgXRFMk1Dm1BBSWF3L6KdKgzfDcHxuKRPFL/+R7jB3AgaYBG2TWrXm4E6YY2V/yy+cIygXsdf6XSFYISR2F1LhaEwcRxVufprWkqvwmsJInZcXeX8RUlmmxJ5+PUiQ6nJcG4rbLD/U04yl3RwAGPlvXzady7EkDg80x2XKjoDlSkjqPDMWytnueGfXwUvu8o/JAfX4Sowzr+e+0373Bh9Nkd47ZNAtY5sAaq08dzHKWrg3O+0+X3/8DNiv/a22hbGa7G6xsRX2KBVS5d/gJay/T6SCidMgl8Djs/fBHA4uxnhgbpthn3h8O2oewIjEfvBGmd0mfTZGMirWJQQ3ymDtsu5VUgANsTe2ACwz03xsE9Q65bn2XBVOYE6HJ6xJJanGu87LoQNC/OBNPqh/1/E9jY3QHIJ7+DDypAJJNUwB15xMY+In8hdGpl13c0ixJ2yKSQRjO9WgkTvRurWv179QHN/PzXEiiT2boSEWQSHyU8B8qBcZDynSYrHZathp+PJtVhtBUPHX/YilEYFQW6h0FtN4RaHJ+NhgIjwloa0DhaPegF4Ncs2ESa6tB7lUQokAgCiW4uGz1Fh17qzoSBQ7MMpycLHn8TBSwNLi2zB2Tj9yRyPiD1+oaDFnHDx5T9S2ujWA4iyCW6NjhwJb0EtjIg3tUI4+hkwLMQmedRRNcp5m6KPrZlbB4wUa9kqzxDvd6RE8EPcgcbwaDhlIEz0QMGg8DyE5yLAjQIPjM/HKduizCvuEOzzceKEDtqN5177h9jcjQekSv3tdCdLdlVpuCJ7s20L87YBdehV/kGsZIbgmGiulA5Hu71UvqPfzYVGDobVTuyMgwEgjQNZkAfv+oNw2z7s2eJrHKIkXpQJlJvtA8nPHBhDFjA7PYfJfXQd4OBz8/ZGY7g/W3KvQy8Wp/HQGtKX9y8q+2HaLaklaQS5QMPxiaE1Ev3q3/qAbamX4rfLVNVfBHqSBH3s8EaBMoxnP8UXkjSFk93dOnOt1qswRPiCDD3xumnzu2JpsZWJe55CnrBcWnPRRI/LwGG6ztJBpzltsVa+gpbj7Pa5tx2MSWcDhcQCniwuMH+SSthCCTNosYB5y7ApiC4Un1LozRkZE+itwg7l0rzRe9EuWAkn/bFlaRN/q2o5O18Y28b8df9V8T3+fZGuprbU/1BrndZJpfoEnlOjWdOPWeNqDNXn7mkSZoWNhkgzS3u0AzN1Xjp0iJPm5sOzuk7O0UC6XvUCvtHU4w9/x/AF5fkKAdqGdqltqiywh9iysXrwahOgyHqP8BQBNfGc1bxD9nrQZ8UVkm6J8+uOADRS1PFoSoyYA4JKAAupQOz5eLd3uyuUbxsIakeiSSDZQVAM02aYgg/BYPLD6E9ReR3PfXzsfvPqSh+5UDGjhpMkayrsREEidZ1PF8VhmAsm4MCarL4DMp6HD6XHvppi9yXTBkVCz/XFPdDK819nRjJSU8Oba6ukigpOFPvK9OoNBcV4e0Tj3u6O+NXpIwTkarBb8QlLHNEqwpkBZx+Vyo09f9aHiMixK3G/yLzXQgS3rP9rEXx0PruSPSbIuQUAwodI+zZ1KcnxBWL/ISK1f6t/jLYZBbdf4mpFeGocwo06wOqN0ygaxwtqOACEO3wmGH9evgoQRStrntIb0q09NvKJiD9ufDZOPD5YKk5agHfRgbR/T+MFuCuJ1VkWJdGze6ERizmgq+bS5tOwPunaLn7Ik5cqg3XXAgvuhYj1gQKGpJbl67PFWq6+jJzBX32MSWI0NNdpilQR9bW8d+ipUBju0b2DZuqiAnt2YBr7cMrwjH6mebdjw22qR/z7W4D6tp5DWSpRGnrhzRoPg/IqAmYqBHGrazEfW0jt3gPQg97q082e0tl+Qm9V4wewGaqpKCVAns3rsDpcKICYx4wB7janajDmTZC8j3dAzn4cjBCVz7VCve/Tc7erKFL3agHp9QwfkR9UXxOZfhTMxRnTdDiDGlsQ/V8pnCmbsgeHh7zRcqk6F12YunQgpjgq3WIeL12oQnNYIb483umLs4ZInLnrCeV6v2pSDzp8dyv6gPuEpcB4u1WqeDmTNN5x+U0hVZRgPwm4i1Sgd9RzZBQVWvA8TwjIltatZulck6nrmz52qMmgQQ4RzoOBumXFWIRsVWlC7EsVQOVCm4r95lgmyWLkV0pNcIwKJUZwD9oInLfH+aY0lSwFadMaqd/Efl+CpqjsosNPxseJ+AtytbZHAEXdZ3dcUP3lX/LfTjn1EdNTHnpfNptY9r2U/KxKrqQxY46RA4byb2XIbua5k3RqqRumURhgqHOcZPmyMiV2+3RuaazKlGZjVmxi1GW4+ea3ODr5Uc0pm3NjwgTknlwodw/0eKqrPRMs/FRAWyNbYG6SA2S99hhgpGxILXyiLsakzkH25nrZiQG8LyIGrLCxds4g7MDUnITlu2llBU8U6iE+j1Nuwbx2bxB8HiPMjtm7Jvkm/bRcNvHvGYm+jt5DpGE8w0zxEL5PL6tnJybs9+TyMUKXt0Ffb5MZwHYbzEOy634ilmLA/Vhxeh5lnDmrNR/J1YWl0ZH6mVOmwV/bt/FJs6ZFa+63JpwVSSR07HLWF3w32Z9ySQ+EFKh/3OjqAN2UjiuuQukuxlZbSNNnlvs6lm0EBy9i3fDka8QLYQxl5nfVc73YM/24C6bPXEegEEbBPtHD6frIpomSHFc4GNJksUvxCClEpRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlEsUdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": "RandomState(MT19937)"}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAvFM4SaoqpU73Yr9xQVOZ+c/ZMkWhaUjMB7/wSfjWrpkknCtiT0Euy2DqPIjxeacEbJ6lt5iweL/ezRsQSJPEtQJ12+kk0h1mPKGPF1xLSPLkfTPNfiMNVmGYUmeta3mHT8E7QkYUcRMlhDbcikIuZu3YAvI54YC6VzJcENdxPfPwTnr7bwxSVpTQTDZTljd6p3t4xCTKmsKVtLP5igzrfwZ8y4HuVxmPWNsFvk+Eo+VenJKh+5P7O/E58T4C0GnQDJItwUBoKYd8iA4LcOpnozTcDMzki0zCJqeqbPYfydxkLoQ2MyLIXGy0mZK8YwwrQW8PgNUvuSVoeMeV0vyAfuIsa1V9C4+hVwaH/8BwLgGlpZ9gew72iANk5Ehzvn7GwCxy6bShrB1huO75iUVGlzODU4MwoGCjHP4ELaav+kmDWdAe06433ZxD9KQEnwdt3eElHIJo0WkwtMVjdIGSpgma11yp+301jTMIFxlv99y+5UIW9dEhkupcNBlNmMZpJWnG0VKh3sLNkv1ctcChlgpuAkLOeNFH1ZtWDBSCK+oO7MsAuwpcXX+Lqz/umFVjH3C5DZL+AyIRiOujTjSMlnJLX++i4H7Q4HOw0rvw/oGsKA1lzxfhloGrZPa0+1VuhBMGkj/95QbL6Efh3xeoeuCPewtDgQUqBk1k/5VeOmqc/NYfACUmx2Q+1GAtzXGLieS76Sk4/Gk24GrGGA87jj/y50fmUsfDI3WwsaPY+P1Om5L8075R3Ps16moIbD0aYfkTaze26wJqOhNdxCWXQXhM/3lC3SYeD1QbLAsofpPinvUiKTfGO5mpyxv/yTHf1sECdv01hmtkD6ot044i19IhXG6NFKUfDsVJqRWBmv+QFB57R46YK4t8pEuvkJ7KNls75A+Fg81AIRs0Q1V7Xbb9oWp0x6aJPd2t57htJB336hdqoxuUTPKeg3cNvF4ekpxRJBxBvPzo/1+1elO+mWvlc8RdbQgjhOfk9BZpj+1PooAIdIy2xsAnKKDYwXfITqwU2m2bSaeN7Ktzu0kQ6QBM7relmkL98m7+63qyUx26aq6WUypO1cox4Hx4AsfX/sprGAamrNIkLd8MmbOUhRMhG0Yumr69JgaYuhTgMSQcfGNg3H0Cqs/A9MfY9++ywQk4tgVYd8Q6atoxNdNnhzh6jnlygRfZwUsxiEddlweTUQ3mOYs+POhXEwCkZBsHdXzam7YAxQB7TnZ6n7LS1lZgMxW8vHDTzsoSWIaaczVLk9ZSFPvsgRJ1RaLb6xaWa1ULoZRsVtyZCvNO9RbkYCj4CZYg1C5Xu7aviz50wzgUZptXepd76e2zzj54Md+j0hOBH6HJd2YSgHinMJz+oQPfSiUaSLYnDo//dnPv5dgcZf5jiEkv3MZvHd1ClfSD3DxZyO/yxN84GkGdGPnSgRiyh49IHq/LN693/G3MsT/72l9397OE/nqilThlrFWKggzsY6Jiq8JGe+neLkBbzyAMYGZ8ntYT6Pd4e4DBj3le8FRIfAInGXsynUKyIVRJEacfmWCBNo/n613wVTCBCH9oCZDJJAqXYiUB542KOB5HuK+lnAP4+GZpEx+M05SDbrDqIWzHyR8+t2hPy94nuOKiIBT18eHmC8fuiZh0eNo63ReVNNIq4T+bwdaWu9rp1cVihPD0hUtUysDypiA2PuZefx13wt38XnS3GItXRUnpgocm05wDo5uLe4i2MWI0ALckOHp2l8l3/8W3c3GWwGwVoK7GWPhl9kS0/c5xbtbsu5hSbs/+ac3a2odIEYgmpaqEmKqplxH7fTP97DaA//MpViIH1B688xI946Uxp/JDhuE5FFsaQ8g962fVI11rFTB9oukQbh39tJVmVGEqGL6SmPGcfdiwAFjllam9Nw86tIMqFw+R2iIbahMChCnX7t+QfBwwoMyfYfrkMOD41spBgrIIaO8Si/y7Id/0Sk7IYbCtAnZlWa4TwUWEBYvN5bZVjJryVN8AG+RGMTzy8WhgrJGRErtM4q4r0AeVqH6R1Kjnebf42mVxg4U2DDBIiGSigImJyeVBnhl8cAGZGh2b0XFufv/8ypd+bACaSD/GBgRWhjnD0Mi2SIxRy6F3I6kIClN3u7mDxHBOL/tfP+0sEp/oh5+sKiJlyCPOSKrxNUID9GS6izgbM8CMzPx541hNWyXTY0iv/dS1SWf/PgD+SSPfbsqyGZr6kboz6x9fNzP1vdlWdXwqtcW6elv3ZSGboNU/FsS5G4MzXjUZkMxajp6tByNT4amThwSxLMlqy2a/IZ67jFf9CFG+AFkYGLR6tEXHog22fJxbJelh4YM8kYiOSd24eI6sHuRkHdCQKx5/2VLSER2JOrMOvPhjd+Vs+t6gJHlYH827MlYX53zSL+jAZj/nx+PCO3n6WHFNxDZVAVeEEBdgmE37mQ7r7tSA7Rr1wIk//e2BvZn9KVTjH2+As7kKSf4kOHIef0YcyD/NBi24Zn66tdMGcU9fq2fc5znMxKKOeSlP3//rKRflsOF1wR3DNF1mpA6K1452gpp2fNJkFnTjnagC0OQshll5LWtcZXhyTec5vy8XxSFScOGvk+6t0576NjZPmqEkwACvevrkykC3wI3dxzioQw0G/djebny2JYFNE+Gznu/ynyomfpWKga4FmXhv8qL60pzomAsep1fpLLwNUBgAs/rFvkkNzfcO4Yj3jba3OyGMElkOgkPEXGssEYpi7o7x2wc1fsKKlxj1XewdQp7nhw3Bgfd+Qzjpixvcq/0IWo1uLTPoguMS9y9UwVY8UWBRAqGLekM31XLtZ41YVMEBxK9tVXJQ1eJdzgqTYgEA9JlPwACThT49d+oM4vSDXOFSV705FrWmQw9y7Z/S/rchnqVrJpaeKBqey3vk1vmCYvNCGF32QIp5/MQfAnwubBPpLGEBds08m0meel8hZEbKY8FfyPrZyTBTP7K2kFAtanXYvOD45YuLBMlSdmFTLO+2aD5KqlbxCq7nzBJQCDBJn7YZFyo5UkkdNoQyQttrwxoTuH3zjB50wPLqr2DkAfWAoAC+bVfjdBxfZlPnjmU4pr4GhDBDAKaAcaCqD4gQggvHwV0hYPw0cduNoJ/A2mhiaOdC23JoeWjrLVSux/brh2FEzk+j+Id5E4Q/gs/UkePLELefhZGfRB1XM82JI3AmQ9NI2Se+QEOrT/Yw5xL/Gswtjybuv6HTvi7mKo/p4szg8cV/kCMHHJ5x+0wDn6zHRo+ekqz3d1gxm2zSJ1onCArqCqY+9raA731vT1/8Ys0KL8vrc7Dnmyqrw+es3ilZmdxSPgPDjJmoJwP9gJQulGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLFXWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 1, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679402449080209725, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAFu7vb5Ua1M/qpL0PfMRhr76m7O9tQ81PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIoSsRqL6TcECUhpRSlIwBbJRNHwGMAXSUR0CjB/k7fYSQdX2UKGgGaAloD0MI0zHnGTswcUCUhpRSlGgVTWMBaBZHQKMJpSjQAuJ1fZQoaAZoCWgPQwj9hokGKQlxQJSGlFKUaBVNgwFoFkdAowsNwcYIjXV9lChoBmgJaA9DCDXUKCRZFXBAlIaUUpRoFU1OAWgWR0CjDGd+XqqwdX2UKGgGaAloD0MIlxx3SgffP0CUhpRSlGgVS+loFkdAow4r8pCrtHV9lChoBmgJaA9DCO1l22nrC29AlIaUUpRoFU02AWgWR0CjD4PgvUSadX2UKGgGaAloD0MIgv5Cj5iIcECUhpRSlGgVTR4BaBZHQKMQuIomXw91fZQoaAZoCWgPQwgKn62Dw4VwQJSGlFKUaBVNWwFoFkdAoxK/bTMJQnV9lChoBmgJaA9DCLVPx2MGQWtAlIaUUpRoFU1KAWgWR0CjE7vUz9CNdX2UKGgGaAloD0MIoTAo02hbbECUhpRSlGgVTVEBaBZHQKMU0ezUqhF1fZQoaAZoCWgPQwiMg0vHHP9sQJSGlFKUaBVNTwFoFkdAoxZ3JJXhfnV9lChoBmgJaA9DCCDSb18HQjxAlIaUUpRoFUvJaBZHQKMXAmnfl6t1fZQoaAZoCWgPQwijrN9MzPxvQJSGlFKUaBVNOwFoFkdAoxfmvECNj3V9lChoBmgJaA9DCCPA6V28LFpAlIaUUpRoFU3oA2gWR0CjG+fCqIacdX2UKGgGaAloD0MIxR1v8ttCaUCUhpRSlGgVTUoBaBZHQKMc4cWCVbB1fZQoaAZoCWgPQwj752nAoJ5vQJSGlFKUaBVNlQFoFkdAox7AT4+KTHV9lChoBmgJaA9DCBE10eejoEFAlIaUUpRoFUvOaBZHQKMfSHD76551fZQoaAZoCWgPQwhEwvf+hh1uQJSGlFKUaBVNWwFoFkdAoyBWRoysS3V9lChoBmgJaA9DCLe0GhI3Y3BAlIaUUpRoFU0fAWgWR0CjIcuzY287dX2UKGgGaAloD0MIdhcoKbCbcECUhpRSlGgVS/toFkdAoyKBVQyhz3V9lChoBmgJaA9DCJuQ1hh0PjFAlIaUUpRoFU0ZAWgWR0CjI0bDuSfUdX2UKGgGaAloD0MILxnHSDa+cECUhpRSlGgVTRIBaBZHQKMkFRO1v2p1fZQoaAZoCWgPQwg3b5wUZgxvQJSGlFKUaBVNPgFoFkdAoyWqmEXcg3V9lChoBmgJaA9DCPwBDwyglW5AlIaUUpRoFU1MAWgWR0CjJu23azu4dX2UKGgGaAloD0MIeLeyRGdhPkCUhpRSlGgVS+VoFkdAoyfCSRr8BXV9lChoBmgJaA9DCGAGY0QiMm9AlIaUUpRoFU1KAWgWR0CjKgD6nBLxdX2UKGgGaAloD0MIcOmY84xvbUCUhpRSlGgVTSMBaBZHQKMrPHd43WF1fZQoaAZoCWgPQwgFFsCUgUBtQJSGlFKUaBVNMgFoFkdAoyyLW3BpH3V9lChoBmgJaA9DCP8G7dUHF3JAlIaUUpRoFU00AWgWR0CjLexq46OpdX2UKGgGaAloD0MIYB3HD5XtcUCUhpRSlGgVTSoBaBZHQKMvfS88La51fZQoaAZoCWgPQwibkUHuIuJsQJSGlFKUaBVNOgFoFkdAozBhrFfiP3V9lChoBmgJaA9DCG4VxEDX2W5AlIaUUpRoFU1OAWgWR0CjMWyW7e2vdX2UKGgGaAloD0MIXyaKkLpvb0CUhpRSlGgVTU8BaBZHQKMzDHavicZ1fZQoaAZoCWgPQwinBS/6yj1wQJSGlFKUaBVNPgFoFkdAozQESM98qnV9lChoBmgJaA9DCAK37uapY29AlIaUUpRoFU1BAWgWR0CjNPQ5NoJzdX2UKGgGaAloD0MIOs/Yl2wnakCUhpRSlGgVTWUBaBZHQKM2rZQHiWF1fZQoaAZoCWgPQwg0aVN1z5dwQJSGlFKUaBVNeAFoFkdAozfD7O3UhHV9lChoBmgJaA9DCH7hlSRP+XFAlIaUUpRoFU1iAWgWR0CjON/+S8radX2UKGgGaAloD0MIVp5A2GkBcECUhpRSlGgVTVQBaBZHQKM6glE7W/d1fZQoaAZoCWgPQwiB6h9EslZuQJSGlFKUaBVNOwFoFkdAoztwj0L+gnV9lChoBmgJaA9DCCr+74gKOlJAlIaUUpRoFUv4aBZHQKM8GwDeTFF1fZQoaAZoCWgPQwgBpgwckG9xQJSGlFKUaBVNgQFoFkdAoz3jcsUZenV9lChoBmgJaA9DCCnQJ/Kkm3FAlIaUUpRoFU0kAWgWR0CjPrce8wpOdX2UKGgGaAloD0MISDXs98TQQ0CUhpRSlGgVTSoBaBZHQKM/kDFId2h1fZQoaAZoCWgPQwiaeXJNgQhIQJSGlFKUaBVNEwFoFkdAo0BOdsi0OXV9lChoBmgJaA9DCJcbDHVYN0dAlIaUUpRoFUvjaBZHQKNBhVkMCtB1fZQoaAZoCWgPQwiM8szLYfxuQJSGlFKUaBVNMwFoFkdAo0Kb7Gecx3V9lChoBmgJaA9DCNjviXXqJHJAlIaUUpRoFU07AWgWR0CjQ72c8TzvdX2UKGgGaAloD0MIs+4fC1FybUCUhpRSlGgVTSkBaBZHQKNF3PM0P6N1fZQoaAZoCWgPQwjFPZY+dGEBwJSGlFKUaBVL72gWR0CjRtJhWo3rdX2UKGgGaAloD0MIzxQ6rzG4cECUhpRSlGgVTRwBaBZHQKNIAkqtozx1fZQoaAZoCWgPQwhuoSsRqARDQJSGlFKUaBVLz2gWR0CjSNW+GoJidX2UKGgGaAloD0MIxqUqbTE5cUCUhpRSlGgVTTMBaBZHQKNKmiJwbVB1fZQoaAZoCWgPQwitNCkFXW9sQJSGlFKUaBVNLwFoFkdAo0t+K0lZ5nV9lChoBmgJaA9DCEDCMGAJDHJAlIaUUpRoFU1GAWgWR0CjTG18stkGdX2UKGgGaAloD0MIwOrIkc6eRUCUhpRSlGgVS/xoFkdAo00YK2KEWnV9lChoBmgJaA9DCMqIC0DjS3JAlIaUUpRoFU1cAWgWR0CjTrPMjeKsdX2UKGgGaAloD0MIQdMSK6ObTUCUhpRSlGgVS/BoFkdAo09dAzHjqHV9lChoBmgJaA9DCAoTRrOy8FFAlIaUUpRoFU3oA2gWR0CjU2HEuQIVdX2UKGgGaAloD0MIg2kYPqLTakCUhpRSlGgVTT0BaBZHQKNUU371qWV1fZQoaAZoCWgPQwgzFk1np2JxQJSGlFKUaBVNIQFoFkdAo1XEWAPNFHV9lChoBmgJaA9DCDpZar3f/G9AlIaUUpRoFU1LAWgWR0CjVshPKuB+dX2UKGgGaAloD0MIK/uuCH7ccUCUhpRSlGgVTTABaBZHQKNXrrxAjY91fZQoaAZoCWgPQwgSiULLem1zQJSGlFKUaBVNXAFoFkdAo1k85wOvuHV9lChoBmgJaA9DCPw1WaOeGG1AlIaUUpRoFU1NAWgWR0CjWj0Cq6vrdX2UKGgGaAloD0MI7+NojuxFcECUhpRSlGgVTVMBaBZHQKNbPgE2YOV1fZQoaAZoCWgPQwh7h9uhIUxyQJSGlFKUaBVNTAFoFkdAo1zZWzWwvHV9lChoBmgJaA9DCHxCdt7G9m9AlIaUUpRoFU1LAWgWR0CjXfym65G0dX2UKGgGaAloD0MI0EcZcQHBakCUhpRSlGgVTU4BaBZHQKNfS0zj3mF1fZQoaAZoCWgPQwhQilbuhYZuQJSGlFKUaBVNaQFoFkdAo2HO1SflIXV9lChoBmgJaA9DCPje36D9knFAlIaUUpRoFU1LAWgWR0CjYyfZ/Tb4dX2UKGgGaAloD0MI4c/wZg3pUkCUhpRSlGgVS8poFkdAo2P6MWGh3HV9lChoBmgJaA9DCIekFkomW29AlIaUUpRoFU17AWgWR0CjZX3K0UoKdX2UKGgGaAloD0MIEeM1r+pZbUCUhpRSlGgVTVIBaBZHQKNnLmKZUkx1fZQoaAZoCWgPQwh8Yp0qX7pvQJSGlFKUaBVNWAFoFkdAo2gzABT4tnV9lChoBmgJaA9DCF9egH20cnBAlIaUUpRoFU1gAWgWR0CjaTxIatLddX2UKGgGaAloD0MI2ht8YTKtMkCUhpRSlGgVTQEBaBZHQKNqk/JvHcV1fZQoaAZoCWgPQwg5Yi0+BcZxQJSGlFKUaBVNWAFoFkdAo2uNijL0SXV9lChoBmgJaA9DCFTgZBu4c0FAlIaUUpRoFU0PAWgWR0CjbEq2BreqdX2UKGgGaAloD0MIzTrj+yJ+cECUhpRSlGgVTUYBaBZHQKNt4JhOP/91fZQoaAZoCWgPQwhmoDL+fVNsQJSGlFKUaBVNNgFoFkdAo27MFpwjuHV9lChoBmgJaA9DCM77/zhhLjFAlIaUUpRoFUv0aBZHQKNvdPcBU711fZQoaAZoCWgPQwiBPSZS2nRwQJSGlFKUaBVNdwFoFkdAo3Cb+irT6XV9lChoBmgJaA9DCBB6Nqs+zzNAlIaUUpRoFU0dAWgWR0CjcgHRLK3edX2UKGgGaAloD0MIjPLMy2GZbUCUhpRSlGgVTUcBaBZHQKNy96ZYxL11fZQoaAZoCWgPQwjObi2T4dtmQJSGlFKUaBVN6ANoFkdAo3cTUG3WnXV9lChoBmgJaA9DCB9Hc2SlAnBAlIaUUpRoFU1NAWgWR0CjeBETHsC1dX2UKGgGaAloD0MI6wCIu7oscUCUhpRSlGgVTSMBaBZHQKN5mOmzjWF1fZQoaAZoCWgPQwg+r3jqkf9wQJSGlFKUaBVNEgFoFkdAo3qhQemvXHV9lChoBmgJaA9DCGeAC7LlF25AlIaUUpRoFU1HAWgWR0Cje/FEZzgddX2UKGgGaAloD0MIOQ8nMJ2ecUCUhpRSlGgVTXcBaBZHQKN+hOh0yQB1fZQoaAZoCWgPQwhC6QshZ4tvQJSGlFKUaBVNWAFoFkdAo4AIZMtbtHV9lChoBmgJaA9DCCgn2lVIuVdAlIaUUpRoFU3oA2gWR0CjhHzijtXxdX2UKGgGaAloD0MIke9S6pLcakCUhpRSlGgVTTQBaBZHQKOFYrXlKbt1fZQoaAZoCWgPQwgqGmt/5yxxQJSGlFKUaBVNMAFoFkdAo4bdWp6yB3V9lChoBmgJaA9DCFFKCFZVIG5AlIaUUpRoFU0eAWgWR0Cjh6qRdQfqdX2UKGgGaAloD0MIejTVk3nRbECUhpRSlGgVTUEBaBZHQKOIn61LJ0Z1fZQoaAZoCWgPQwh/+zpwzs9wQJSGlFKUaBVNRwFoFkdAo4mcAFPi1nV9lChoBmgJaA9DCCDu6lVk4llAlIaUUpRoFU3oA2gWR0CjjdkvTPSldX2UKGgGaAloD0MILNUFvMy8YUCUhpRSlGgVTegDaBZHQKOSF2QGOdZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6956d2c2b99194a6aa73c92e1802f6d1bab021cdd269aaee57025c77028a33bd
|
3 |
+
size 154031
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f312de993a0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f312de99430>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f312de994c0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f312de99550>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f312de995e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f312de99670>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f312de99700>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f312de99790>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f312de99820>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f312de998b0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f312de99940>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f312de999d0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f312de98940>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVJgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDCMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAMFULFEyu395t/NIe7LOCczo3CIkN7FVZ0uDn+zl603xFALv4gb3N7PokAoJbiVDSvXH5BzAECz9IOstr5PNHBnj6RNmLKVxCD1jUfDhQMwzwCS3lfCwNUv1nM71m4MN4zY6n3z2pHNv5pANNK6N1LpTFXcMuTjOl4wFaAaovFMEPIm3cYUo3bUB2ejopCUmPvbRwKCGbvIRBNQ8AEvjE5NCSrd+0sijPIau3hGaB8FOdx519csn85WnDxJJ5UHCX9qmfVF7HriJ02BYV1AGEDTY+9Qb3kLRUEJAf4OGoWNjeMW4PNHHw6fXy91oA0DAA/PU/Ti9YWBzWX0Vy7/ZhX9bIwTCgLm0+1dCdV7POj5a0b9k8n/fPRnLKg6aEmhFUE420mbiuglJQUi54HrTmwHO0Uzbrij1A29SsRjWWepYCK0DOyaWkM3IMSSqsYKZVrE4UBOzgxuIQv/yIwH6vJq7O8IzoIT8j2QHXUTKg3PLaYAkoiZxY8HAdDqDBtX64GEP6jucZlNY1A6OGpztQfFFipXXdmvWjYTOH+sM9cnzHwVFR1tIJWs9Ift+9xNgF97xjKzun24liZJzGDs45Ft0ZnMR4aAA74cNyCmKa6ahTgXRFMk1Dm1BBSWF3L6KdKgzfDcHxuKRPFL/+R7jB3AgaYBG2TWrXm4E6YY2V/yy+cIygXsdf6XSFYISR2F1LhaEwcRxVufprWkqvwmsJInZcXeX8RUlmmxJ5+PUiQ6nJcG4rbLD/U04yl3RwAGPlvXzady7EkDg80x2XKjoDlSkjqPDMWytnueGfXwUvu8o/JAfX4Sowzr+e+0373Bh9Nkd47ZNAtY5sAaq08dzHKWrg3O+0+X3/8DNiv/a22hbGa7G6xsRX2KBVS5d/gJay/T6SCidMgl8Djs/fBHA4uxnhgbpthn3h8O2oewIjEfvBGmd0mfTZGMirWJQQ3ymDtsu5VUgANsTe2ACwz03xsE9Q65bn2XBVOYE6HJ6xJJanGu87LoQNC/OBNPqh/1/E9jY3QHIJ7+DDypAJJNUwB15xMY+In8hdGpl13c0ixJ2yKSQRjO9WgkTvRurWv179QHN/PzXEiiT2boSEWQSHyU8B8qBcZDynSYrHZathp+PJtVhtBUPHX/YilEYFQW6h0FtN4RaHJ+NhgIjwloa0DhaPegF4Ncs2ESa6tB7lUQokAgCiW4uGz1Fh17qzoSBQ7MMpycLHn8TBSwNLi2zB2Tj9yRyPiD1+oaDFnHDx5T9S2ujWA4iyCW6NjhwJb0EtjIg3tUI4+hkwLMQmedRRNcp5m6KPrZlbB4wUa9kqzxDvd6RE8EPcgcbwaDhlIEz0QMGg8DyE5yLAjQIPjM/HKduizCvuEOzzceKEDtqN5177h9jcjQekSv3tdCdLdlVpuCJ7s20L87YBdehV/kGsZIbgmGiulA5Hu71UvqPfzYVGDobVTuyMgwEgjQNZkAfv+oNw2z7s2eJrHKIkXpQJlJvtA8nPHBhDFjA7PYfJfXQd4OBz8/ZGY7g/W3KvQy8Wp/HQGtKX9y8q+2HaLaklaQS5QMPxiaE1Ev3q3/qAbamX4rfLVNVfBHqSBH3s8EaBMoxnP8UXkjSFk93dOnOt1qswRPiCDD3xumnzu2JpsZWJe55CnrBcWnPRRI/LwGG6ztJBpzltsVa+gpbj7Pa5tx2MSWcDhcQCniwuMH+SSthCCTNosYB5y7ApiC4Un1LozRkZE+itwg7l0rzRe9EuWAkn/bFlaRN/q2o5O18Y28b8df9V8T3+fZGuprbU/1BrndZJpfoEnlOjWdOPWeNqDNXn7mkSZoWNhkgzS3u0AzN1Xjp0iJPm5sOzuk7O0UC6XvUCvtHU4w9/x/AF5fkKAdqGdqltqiywh9iysXrwahOgyHqP8BQBNfGc1bxD9nrQZ8UVkm6J8+uOADRS1PFoSoyYA4JKAAupQOz5eLd3uyuUbxsIakeiSSDZQVAM02aYgg/BYPLD6E9ReR3PfXzsfvPqSh+5UDGjhpMkayrsREEidZ1PF8VhmAsm4MCarL4DMp6HD6XHvppi9yXTBkVCz/XFPdDK819nRjJSU8Oba6ukigpOFPvK9OoNBcV4e0Tj3u6O+NXpIwTkarBb8QlLHNEqwpkBZx+Vyo09f9aHiMixK3G/yLzXQgS3rP9rEXx0PruSPSbIuQUAwodI+zZ1KcnxBWL/ISK1f6t/jLYZBbdf4mpFeGocwo06wOqN0ygaxwtqOACEO3wmGH9evgoQRStrntIb0q09NvKJiD9ufDZOPD5YKk5agHfRgbR/T+MFuCuJ1VkWJdGze6ERizmgq+bS5tOwPunaLn7Ik5cqg3XXAgvuhYj1gQKGpJbl67PFWq6+jJzBX32MSWI0NNdpilQR9bW8d+ipUBju0b2DZuqiAnt2YBr7cMrwjH6mebdjw22qR/z7W4D6tp5DWSpRGnrhzRoPg/IqAmYqBHGrazEfW0jt3gPQg97q082e0tl+Qm9V4wewGaqpKCVAns3rsDpcKICYx4wB7janajDmTZC8j3dAzn4cjBCVz7VCve/Tc7erKFL3agHp9QwfkR9UXxOZfhTMxRnTdDiDGlsQ/V8pnCmbsgeHh7zRcqk6F12YunQgpjgq3WIeL12oQnNYIb483umLs4ZInLnrCeV6v2pSDzp8dyv6gPuEpcB4u1WqeDmTNN5x+U0hVZRgPwm4i1Sgd9RzZBQVWvA8TwjIltatZulck6nrmz52qMmgQQ4RzoOBumXFWIRsVWlC7EsVQOVCm4r95lgmyWLkV0pNcIwKJUZwD9oInLfH+aY0lSwFadMaqd/Efl+CpqjsosNPxseJ+AtytbZHAEXdZ3dcUP3lX/LfTjn1EdNTHnpfNptY9r2U/KxKrqQxY46RA4byb2XIbua5k3RqqRumURhgqHOcZPmyMiV2+3RuaazKlGZjVmxi1GW4+ea3ODr5Uc0pm3NjwgTknlwodw/0eKqrPRMs/FRAWyNbYG6SA2S99hhgpGxILXyiLsakzkH25nrZiQG8LyIGrLCxds4g7MDUnITlu2llBU8U6iE+j1Nuwbx2bxB8HiPMjtm7Jvkm/bRcNvHvGYm+jt5DpGE8w0zxEL5PL6tnJybs9+TyMUKXt0Ffb5MZwHYbzEOy634ilmLA/Vhxeh5lnDmrNR/J1YWl0ZH6mVOmwV/bt/FJs6ZFa+63JpwVSSR07HLWF3w32Z9ySQ+EFKh/3OjqAN2UjiuuQukuxlZbSNNnlvs6lm0EBy9i3fDka8QLYQxl5nfVc73YM/24C6bPXEegEEbBPtHD6frIpomSHFc4GNJksUvxCClEpRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlEsUdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": "RandomState(MT19937)"
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAvFM4SaoqpU73Yr9xQVOZ+c/ZMkWhaUjMB7/wSfjWrpkknCtiT0Euy2DqPIjxeacEbJ6lt5iweL/ezRsQSJPEtQJ12+kk0h1mPKGPF1xLSPLkfTPNfiMNVmGYUmeta3mHT8E7QkYUcRMlhDbcikIuZu3YAvI54YC6VzJcENdxPfPwTnr7bwxSVpTQTDZTljd6p3t4xCTKmsKVtLP5igzrfwZ8y4HuVxmPWNsFvk+Eo+VenJKh+5P7O/E58T4C0GnQDJItwUBoKYd8iA4LcOpnozTcDMzki0zCJqeqbPYfydxkLoQ2MyLIXGy0mZK8YwwrQW8PgNUvuSVoeMeV0vyAfuIsa1V9C4+hVwaH/8BwLgGlpZ9gew72iANk5Ehzvn7GwCxy6bShrB1huO75iUVGlzODU4MwoGCjHP4ELaav+kmDWdAe06433ZxD9KQEnwdt3eElHIJo0WkwtMVjdIGSpgma11yp+301jTMIFxlv99y+5UIW9dEhkupcNBlNmMZpJWnG0VKh3sLNkv1ctcChlgpuAkLOeNFH1ZtWDBSCK+oO7MsAuwpcXX+Lqz/umFVjH3C5DZL+AyIRiOujTjSMlnJLX++i4H7Q4HOw0rvw/oGsKA1lzxfhloGrZPa0+1VuhBMGkj/95QbL6Efh3xeoeuCPewtDgQUqBk1k/5VeOmqc/NYfACUmx2Q+1GAtzXGLieS76Sk4/Gk24GrGGA87jj/y50fmUsfDI3WwsaPY+P1Om5L8075R3Ps16moIbD0aYfkTaze26wJqOhNdxCWXQXhM/3lC3SYeD1QbLAsofpPinvUiKTfGO5mpyxv/yTHf1sECdv01hmtkD6ot044i19IhXG6NFKUfDsVJqRWBmv+QFB57R46YK4t8pEuvkJ7KNls75A+Fg81AIRs0Q1V7Xbb9oWp0x6aJPd2t57htJB336hdqoxuUTPKeg3cNvF4ekpxRJBxBvPzo/1+1elO+mWvlc8RdbQgjhOfk9BZpj+1PooAIdIy2xsAnKKDYwXfITqwU2m2bSaeN7Ktzu0kQ6QBM7relmkL98m7+63qyUx26aq6WUypO1cox4Hx4AsfX/sprGAamrNIkLd8MmbOUhRMhG0Yumr69JgaYuhTgMSQcfGNg3H0Cqs/A9MfY9++ywQk4tgVYd8Q6atoxNdNnhzh6jnlygRfZwUsxiEddlweTUQ3mOYs+POhXEwCkZBsHdXzam7YAxQB7TnZ6n7LS1lZgMxW8vHDTzsoSWIaaczVLk9ZSFPvsgRJ1RaLb6xaWa1ULoZRsVtyZCvNO9RbkYCj4CZYg1C5Xu7aviz50wzgUZptXepd76e2zzj54Md+j0hOBH6HJd2YSgHinMJz+oQPfSiUaSLYnDo//dnPv5dgcZf5jiEkv3MZvHd1ClfSD3DxZyO/yxN84GkGdGPnSgRiyh49IHq/LN693/G3MsT/72l9397OE/nqilThlrFWKggzsY6Jiq8JGe+neLkBbzyAMYGZ8ntYT6Pd4e4DBj3le8FRIfAInGXsynUKyIVRJEacfmWCBNo/n613wVTCBCH9oCZDJJAqXYiUB542KOB5HuK+lnAP4+GZpEx+M05SDbrDqIWzHyR8+t2hPy94nuOKiIBT18eHmC8fuiZh0eNo63ReVNNIq4T+bwdaWu9rp1cVihPD0hUtUysDypiA2PuZefx13wt38XnS3GItXRUnpgocm05wDo5uLe4i2MWI0ALckOHp2l8l3/8W3c3GWwGwVoK7GWPhl9kS0/c5xbtbsu5hSbs/+ac3a2odIEYgmpaqEmKqplxH7fTP97DaA//MpViIH1B688xI946Uxp/JDhuE5FFsaQ8g962fVI11rFTB9oukQbh39tJVmVGEqGL6SmPGcfdiwAFjllam9Nw86tIMqFw+R2iIbahMChCnX7t+QfBwwoMyfYfrkMOD41spBgrIIaO8Si/y7Id/0Sk7IYbCtAnZlWa4TwUWEBYvN5bZVjJryVN8AG+RGMTzy8WhgrJGRErtM4q4r0AeVqH6R1Kjnebf42mVxg4U2DDBIiGSigImJyeVBnhl8cAGZGh2b0XFufv/8ypd+bACaSD/GBgRWhjnD0Mi2SIxRy6F3I6kIClN3u7mDxHBOL/tfP+0sEp/oh5+sKiJlyCPOSKrxNUID9GS6izgbM8CMzPx541hNWyXTY0iv/dS1SWf/PgD+SSPfbsqyGZr6kboz6x9fNzP1vdlWdXwqtcW6elv3ZSGboNU/FsS5G4MzXjUZkMxajp6tByNT4amThwSxLMlqy2a/IZ67jFf9CFG+AFkYGLR6tEXHog22fJxbJelh4YM8kYiOSd24eI6sHuRkHdCQKx5/2VLSER2JOrMOvPhjd+Vs+t6gJHlYH827MlYX53zSL+jAZj/nx+PCO3n6WHFNxDZVAVeEEBdgmE37mQ7r7tSA7Rr1wIk//e2BvZn9KVTjH2+As7kKSf4kOHIef0YcyD/NBi24Zn66tdMGcU9fq2fc5znMxKKOeSlP3//rKRflsOF1wR3DNF1mpA6K1452gpp2fNJkFnTjnagC0OQshll5LWtcZXhyTec5vy8XxSFScOGvk+6t0576NjZPmqEkwACvevrkykC3wI3dxzioQw0G/djebny2JYFNE+Gznu/ynyomfpWKga4FmXhv8qL60pzomAsep1fpLLwNUBgAs/rFvkkNzfcO4Yj3jba3OyGMElkOgkPEXGssEYpi7o7x2wc1fsKKlxj1XewdQp7nhw3Bgfd+Qzjpixvcq/0IWo1uLTPoguMS9y9UwVY8UWBRAqGLekM31XLtZ41YVMEBxK9tVXJQ1eJdzgqTYgEA9JlPwACThT49d+oM4vSDXOFSV705FrWmQw9y7Z/S/rchnqVrJpaeKBqey3vk1vmCYvNCGF32QIp5/MQfAnwubBPpLGEBds08m0meel8hZEbKY8FfyPrZyTBTP7K2kFAtanXYvOD45YuLBMlSdmFTLO+2aD5KqlbxCq7nzBJQCDBJn7YZFyo5UkkdNoQyQttrwxoTuH3zjB50wPLqr2DkAfWAoAC+bVfjdBxfZlPnjmU4pr4GhDBDAKaAcaCqD4gQggvHwV0hYPw0cduNoJ/A2mhiaOdC23JoeWjrLVSux/brh2FEzk+j+Id5E4Q/gs/UkePLELefhZGfRB1XM82JI3AmQ9NI2Se+QEOrT/Yw5xL/Gswtjybuv6HTvi7mKo/p4szg8cV/kCMHHJ5x+0wDn6zHRo+ekqz3d1gxm2zSJ1onCArqCqY+9raA731vT1/8Ys0KL8vrc7Dnmyqrw+es3ilZmdxSPgPDjJmoJwP9gJQulGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLFXWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": "RandomState(MT19937)"
|
44 |
+
},
|
45 |
+
"n_envs": 1,
|
46 |
+
"num_timesteps": 1000448,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1679402449080209725,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAFu7vb5Ua1M/qpL0PfMRhr76m7O9tQ81PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.00044800000000000395,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIoSsRqL6TcECUhpRSlIwBbJRNHwGMAXSUR0CjB/k7fYSQdX2UKGgGaAloD0MI0zHnGTswcUCUhpRSlGgVTWMBaBZHQKMJpSjQAuJ1fZQoaAZoCWgPQwj9hokGKQlxQJSGlFKUaBVNgwFoFkdAowsNwcYIjXV9lChoBmgJaA9DCDXUKCRZFXBAlIaUUpRoFU1OAWgWR0CjDGd+XqqwdX2UKGgGaAloD0MIlxx3SgffP0CUhpRSlGgVS+loFkdAow4r8pCrtHV9lChoBmgJaA9DCO1l22nrC29AlIaUUpRoFU02AWgWR0CjD4PgvUSadX2UKGgGaAloD0MIgv5Cj5iIcECUhpRSlGgVTR4BaBZHQKMQuIomXw91fZQoaAZoCWgPQwgKn62Dw4VwQJSGlFKUaBVNWwFoFkdAoxK/bTMJQnV9lChoBmgJaA9DCLVPx2MGQWtAlIaUUpRoFU1KAWgWR0CjE7vUz9CNdX2UKGgGaAloD0MIoTAo02hbbECUhpRSlGgVTVEBaBZHQKMU0ezUqhF1fZQoaAZoCWgPQwiMg0vHHP9sQJSGlFKUaBVNTwFoFkdAoxZ3JJXhfnV9lChoBmgJaA9DCCDSb18HQjxAlIaUUpRoFUvJaBZHQKMXAmnfl6t1fZQoaAZoCWgPQwijrN9MzPxvQJSGlFKUaBVNOwFoFkdAoxfmvECNj3V9lChoBmgJaA9DCCPA6V28LFpAlIaUUpRoFU3oA2gWR0CjG+fCqIacdX2UKGgGaAloD0MIxR1v8ttCaUCUhpRSlGgVTUoBaBZHQKMc4cWCVbB1fZQoaAZoCWgPQwj752nAoJ5vQJSGlFKUaBVNlQFoFkdAox7AT4+KTHV9lChoBmgJaA9DCBE10eejoEFAlIaUUpRoFUvOaBZHQKMfSHD76551fZQoaAZoCWgPQwhEwvf+hh1uQJSGlFKUaBVNWwFoFkdAoyBWRoysS3V9lChoBmgJaA9DCLe0GhI3Y3BAlIaUUpRoFU0fAWgWR0CjIcuzY287dX2UKGgGaAloD0MIdhcoKbCbcECUhpRSlGgVS/toFkdAoyKBVQyhz3V9lChoBmgJaA9DCJuQ1hh0PjFAlIaUUpRoFU0ZAWgWR0CjI0bDuSfUdX2UKGgGaAloD0MILxnHSDa+cECUhpRSlGgVTRIBaBZHQKMkFRO1v2p1fZQoaAZoCWgPQwg3b5wUZgxvQJSGlFKUaBVNPgFoFkdAoyWqmEXcg3V9lChoBmgJaA9DCPwBDwyglW5AlIaUUpRoFU1MAWgWR0CjJu23azu4dX2UKGgGaAloD0MIeLeyRGdhPkCUhpRSlGgVS+VoFkdAoyfCSRr8BXV9lChoBmgJaA9DCGAGY0QiMm9AlIaUUpRoFU1KAWgWR0CjKgD6nBLxdX2UKGgGaAloD0MIcOmY84xvbUCUhpRSlGgVTSMBaBZHQKMrPHd43WF1fZQoaAZoCWgPQwgFFsCUgUBtQJSGlFKUaBVNMgFoFkdAoyyLW3BpH3V9lChoBmgJaA9DCP8G7dUHF3JAlIaUUpRoFU00AWgWR0CjLexq46OpdX2UKGgGaAloD0MIYB3HD5XtcUCUhpRSlGgVTSoBaBZHQKMvfS88La51fZQoaAZoCWgPQwibkUHuIuJsQJSGlFKUaBVNOgFoFkdAozBhrFfiP3V9lChoBmgJaA9DCG4VxEDX2W5AlIaUUpRoFU1OAWgWR0CjMWyW7e2vdX2UKGgGaAloD0MIXyaKkLpvb0CUhpRSlGgVTU8BaBZHQKMzDHavicZ1fZQoaAZoCWgPQwinBS/6yj1wQJSGlFKUaBVNPgFoFkdAozQESM98qnV9lChoBmgJaA9DCAK37uapY29AlIaUUpRoFU1BAWgWR0CjNPQ5NoJzdX2UKGgGaAloD0MIOs/Yl2wnakCUhpRSlGgVTWUBaBZHQKM2rZQHiWF1fZQoaAZoCWgPQwg0aVN1z5dwQJSGlFKUaBVNeAFoFkdAozfD7O3UhHV9lChoBmgJaA9DCH7hlSRP+XFAlIaUUpRoFU1iAWgWR0CjON/+S8radX2UKGgGaAloD0MIVp5A2GkBcECUhpRSlGgVTVQBaBZHQKM6glE7W/d1fZQoaAZoCWgPQwiB6h9EslZuQJSGlFKUaBVNOwFoFkdAoztwj0L+gnV9lChoBmgJaA9DCCr+74gKOlJAlIaUUpRoFUv4aBZHQKM8GwDeTFF1fZQoaAZoCWgPQwgBpgwckG9xQJSGlFKUaBVNgQFoFkdAoz3jcsUZenV9lChoBmgJaA9DCCnQJ/Kkm3FAlIaUUpRoFU0kAWgWR0CjPrce8wpOdX2UKGgGaAloD0MISDXs98TQQ0CUhpRSlGgVTSoBaBZHQKM/kDFId2h1fZQoaAZoCWgPQwiaeXJNgQhIQJSGlFKUaBVNEwFoFkdAo0BOdsi0OXV9lChoBmgJaA9DCJcbDHVYN0dAlIaUUpRoFUvjaBZHQKNBhVkMCtB1fZQoaAZoCWgPQwiM8szLYfxuQJSGlFKUaBVNMwFoFkdAo0Kb7Gecx3V9lChoBmgJaA9DCNjviXXqJHJAlIaUUpRoFU07AWgWR0CjQ72c8TzvdX2UKGgGaAloD0MIs+4fC1FybUCUhpRSlGgVTSkBaBZHQKNF3PM0P6N1fZQoaAZoCWgPQwjFPZY+dGEBwJSGlFKUaBVL72gWR0CjRtJhWo3rdX2UKGgGaAloD0MIzxQ6rzG4cECUhpRSlGgVTRwBaBZHQKNIAkqtozx1fZQoaAZoCWgPQwhuoSsRqARDQJSGlFKUaBVLz2gWR0CjSNW+GoJidX2UKGgGaAloD0MIxqUqbTE5cUCUhpRSlGgVTTMBaBZHQKNKmiJwbVB1fZQoaAZoCWgPQwitNCkFXW9sQJSGlFKUaBVNLwFoFkdAo0t+K0lZ5nV9lChoBmgJaA9DCEDCMGAJDHJAlIaUUpRoFU1GAWgWR0CjTG18stkGdX2UKGgGaAloD0MIwOrIkc6eRUCUhpRSlGgVS/xoFkdAo00YK2KEWnV9lChoBmgJaA9DCMqIC0DjS3JAlIaUUpRoFU1cAWgWR0CjTrPMjeKsdX2UKGgGaAloD0MIQdMSK6ObTUCUhpRSlGgVS/BoFkdAo09dAzHjqHV9lChoBmgJaA9DCAoTRrOy8FFAlIaUUpRoFU3oA2gWR0CjU2HEuQIVdX2UKGgGaAloD0MIg2kYPqLTakCUhpRSlGgVTT0BaBZHQKNUU371qWV1fZQoaAZoCWgPQwgzFk1np2JxQJSGlFKUaBVNIQFoFkdAo1XEWAPNFHV9lChoBmgJaA9DCDpZar3f/G9AlIaUUpRoFU1LAWgWR0CjVshPKuB+dX2UKGgGaAloD0MIK/uuCH7ccUCUhpRSlGgVTTABaBZHQKNXrrxAjY91fZQoaAZoCWgPQwgSiULLem1zQJSGlFKUaBVNXAFoFkdAo1k85wOvuHV9lChoBmgJaA9DCPw1WaOeGG1AlIaUUpRoFU1NAWgWR0CjWj0Cq6vrdX2UKGgGaAloD0MI7+NojuxFcECUhpRSlGgVTVMBaBZHQKNbPgE2YOV1fZQoaAZoCWgPQwh7h9uhIUxyQJSGlFKUaBVNTAFoFkdAo1zZWzWwvHV9lChoBmgJaA9DCHxCdt7G9m9AlIaUUpRoFU1LAWgWR0CjXfym65G0dX2UKGgGaAloD0MI0EcZcQHBakCUhpRSlGgVTU4BaBZHQKNfS0zj3mF1fZQoaAZoCWgPQwhQilbuhYZuQJSGlFKUaBVNaQFoFkdAo2HO1SflIXV9lChoBmgJaA9DCPje36D9knFAlIaUUpRoFU1LAWgWR0CjYyfZ/Tb4dX2UKGgGaAloD0MI4c/wZg3pUkCUhpRSlGgVS8poFkdAo2P6MWGh3HV9lChoBmgJaA9DCIekFkomW29AlIaUUpRoFU17AWgWR0CjZX3K0UoKdX2UKGgGaAloD0MIEeM1r+pZbUCUhpRSlGgVTVIBaBZHQKNnLmKZUkx1fZQoaAZoCWgPQwh8Yp0qX7pvQJSGlFKUaBVNWAFoFkdAo2gzABT4tnV9lChoBmgJaA9DCF9egH20cnBAlIaUUpRoFU1gAWgWR0CjaTxIatLddX2UKGgGaAloD0MI2ht8YTKtMkCUhpRSlGgVTQEBaBZHQKNqk/JvHcV1fZQoaAZoCWgPQwg5Yi0+BcZxQJSGlFKUaBVNWAFoFkdAo2uNijL0SXV9lChoBmgJaA9DCFTgZBu4c0FAlIaUUpRoFU0PAWgWR0CjbEq2BreqdX2UKGgGaAloD0MIzTrj+yJ+cECUhpRSlGgVTUYBaBZHQKNt4JhOP/91fZQoaAZoCWgPQwhmoDL+fVNsQJSGlFKUaBVNNgFoFkdAo27MFpwjuHV9lChoBmgJaA9DCM77/zhhLjFAlIaUUpRoFUv0aBZHQKNvdPcBU711fZQoaAZoCWgPQwiBPSZS2nRwQJSGlFKUaBVNdwFoFkdAo3Cb+irT6XV9lChoBmgJaA9DCBB6Nqs+zzNAlIaUUpRoFU0dAWgWR0CjcgHRLK3edX2UKGgGaAloD0MIjPLMy2GZbUCUhpRSlGgVTUcBaBZHQKNy96ZYxL11fZQoaAZoCWgPQwjObi2T4dtmQJSGlFKUaBVN6ANoFkdAo3cTUG3WnXV9lChoBmgJaA9DCB9Hc2SlAnBAlIaUUpRoFU1NAWgWR0CjeBETHsC1dX2UKGgGaAloD0MI6wCIu7oscUCUhpRSlGgVTSMBaBZHQKN5mOmzjWF1fZQoaAZoCWgPQwg+r3jqkf9wQJSGlFKUaBVNEgFoFkdAo3qhQemvXHV9lChoBmgJaA9DCGeAC7LlF25AlIaUUpRoFU1HAWgWR0Cje/FEZzgddX2UKGgGaAloD0MIOQ8nMJ2ecUCUhpRSlGgVTXcBaBZHQKN+hOh0yQB1fZQoaAZoCWgPQwhC6QshZ4tvQJSGlFKUaBVNWAFoFkdAo4AIZMtbtHV9lChoBmgJaA9DCCgn2lVIuVdAlIaUUpRoFU3oA2gWR0CjhHzijtXxdX2UKGgGaAloD0MIke9S6pLcakCUhpRSlGgVTTQBaBZHQKOFYrXlKbt1fZQoaAZoCWgPQwgqGmt/5yxxQJSGlFKUaBVNMAFoFkdAo4bdWp6yB3V9lChoBmgJaA9DCFFKCFZVIG5AlIaUUpRoFU0eAWgWR0Cjh6qRdQfqdX2UKGgGaAloD0MIejTVk3nRbECUhpRSlGgVTUEBaBZHQKOIn61LJ0Z1fZQoaAZoCWgPQwh/+zpwzs9wQJSGlFKUaBVNRwFoFkdAo4mcAFPi1nV9lChoBmgJaA9DCCDu6lVk4llAlIaUUpRoFU3oA2gWR0CjjdkvTPSldX2UKGgGaAloD0MILNUFvMy8YUCUhpRSlGgVTegDaBZHQKOSF2QGOdZ1ZS4="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 3908,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d94f2d55740f8ba6164bad5f656e1b490346c0bb4d0774999f9b0946dd9f5a0
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76030fdd99d51d1ebc09df54cc1f05f0e180c6cad243a39dcd185e36939c3ceb
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (241 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 241.83323894812247, "std_reward": 20.711792111870647, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-21T13:54:25.538783"}
|