|
import copy |
|
import math |
|
import numpy as np |
|
import scipy |
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
|
|
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d |
|
from torch.nn.utils import weight_norm, remove_weight_norm |
|
|
|
import commons |
|
from commons import init_weights, get_padding |
|
|
|
|
|
LRELU_SLOPE = 0.1 |
|
|
|
|
|
class LayerNorm(nn.Module): |
|
def __init__(self, channels, eps=1e-5): |
|
super().__init__() |
|
self.channels = channels |
|
self.eps = eps |
|
|
|
self.gamma = nn.Parameter(torch.ones(channels)) |
|
self.beta = nn.Parameter(torch.zeros(channels)) |
|
|
|
def forward(self, x): |
|
x = x.transpose(1, -1) |
|
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) |
|
return x.transpose(1, -1) |
|
|
|
|
|
class ConvReluNorm(nn.Module): |
|
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.hidden_channels = hidden_channels |
|
self.out_channels = out_channels |
|
self.kernel_size = kernel_size |
|
self.n_layers = n_layers |
|
self.p_dropout = p_dropout |
|
assert n_layers > 1, "Number of layers should be larger than 0." |
|
|
|
self.conv_layers = nn.ModuleList() |
|
self.norm_layers = nn.ModuleList() |
|
self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2)) |
|
self.norm_layers.append(LayerNorm(hidden_channels)) |
|
self.relu_drop = nn.Sequential( |
|
nn.ReLU(), |
|
nn.Dropout(p_dropout)) |
|
for _ in range(n_layers-1): |
|
self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2)) |
|
self.norm_layers.append(LayerNorm(hidden_channels)) |
|
self.proj = nn.Conv1d(hidden_channels, out_channels, 1) |
|
self.proj.weight.data.zero_() |
|
self.proj.bias.data.zero_() |
|
|
|
def forward(self, x, x_mask): |
|
x_org = x |
|
for i in range(self.n_layers): |
|
x = self.conv_layers[i](x * x_mask) |
|
x = self.norm_layers[i](x) |
|
x = self.relu_drop(x) |
|
x = x_org + self.proj(x) |
|
return x * x_mask |
|
|
|
|
|
class DDSConv(nn.Module): |
|
""" |
|
Dialted and Depth-Separable Convolution |
|
""" |
|
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.): |
|
super().__init__() |
|
self.channels = channels |
|
self.kernel_size = kernel_size |
|
self.n_layers = n_layers |
|
self.p_dropout = p_dropout |
|
|
|
self.drop = nn.Dropout(p_dropout) |
|
self.convs_sep = nn.ModuleList() |
|
self.convs_1x1 = nn.ModuleList() |
|
self.norms_1 = nn.ModuleList() |
|
self.norms_2 = nn.ModuleList() |
|
for i in range(n_layers): |
|
dilation = kernel_size ** i |
|
padding = (kernel_size * dilation - dilation) // 2 |
|
self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size, |
|
groups=channels, dilation=dilation, padding=padding |
|
)) |
|
self.convs_1x1.append(nn.Conv1d(channels, channels, 1)) |
|
self.norms_1.append(LayerNorm(channels)) |
|
self.norms_2.append(LayerNorm(channels)) |
|
|
|
def forward(self, x, x_mask, g=None): |
|
if g is not None: |
|
x = x + g |
|
for i in range(self.n_layers): |
|
y = self.convs_sep[i](x * x_mask) |
|
y = self.norms_1[i](y) |
|
y = F.gelu(y) |
|
y = self.convs_1x1[i](y) |
|
y = self.norms_2[i](y) |
|
y = F.gelu(y) |
|
y = self.drop(y) |
|
x = x + y |
|
return x * x_mask |
|
|
|
|
|
class WN(torch.nn.Module): |
|
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0): |
|
super(WN, self).__init__() |
|
assert(kernel_size % 2 == 1) |
|
self.hidden_channels =hidden_channels |
|
self.kernel_size = kernel_size, |
|
self.dilation_rate = dilation_rate |
|
self.n_layers = n_layers |
|
self.gin_channels = gin_channels |
|
self.p_dropout = p_dropout |
|
|
|
self.in_layers = torch.nn.ModuleList() |
|
self.res_skip_layers = torch.nn.ModuleList() |
|
self.drop = nn.Dropout(p_dropout) |
|
|
|
if gin_channels != 0: |
|
cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1) |
|
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight') |
|
|
|
for i in range(n_layers): |
|
dilation = dilation_rate ** i |
|
padding = int((kernel_size * dilation - dilation) / 2) |
|
in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size, |
|
dilation=dilation, padding=padding) |
|
in_layer = torch.nn.utils.weight_norm(in_layer, name='weight') |
|
self.in_layers.append(in_layer) |
|
|
|
|
|
if i < n_layers - 1: |
|
res_skip_channels = 2 * hidden_channels |
|
else: |
|
res_skip_channels = hidden_channels |
|
|
|
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1) |
|
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight') |
|
self.res_skip_layers.append(res_skip_layer) |
|
|
|
def forward(self, x, x_mask, g=None, **kwargs): |
|
output = torch.zeros_like(x) |
|
n_channels_tensor = torch.IntTensor([self.hidden_channels]) |
|
|
|
if g is not None: |
|
g = self.cond_layer(g) |
|
|
|
for i in range(self.n_layers): |
|
x_in = self.in_layers[i](x) |
|
if g is not None: |
|
cond_offset = i * 2 * self.hidden_channels |
|
g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:] |
|
else: |
|
g_l = torch.zeros_like(x_in) |
|
|
|
acts = commons.fused_add_tanh_sigmoid_multiply( |
|
x_in, |
|
g_l, |
|
n_channels_tensor) |
|
acts = self.drop(acts) |
|
|
|
res_skip_acts = self.res_skip_layers[i](acts) |
|
if i < self.n_layers - 1: |
|
res_acts = res_skip_acts[:,:self.hidden_channels,:] |
|
x = (x + res_acts) * x_mask |
|
output = output + res_skip_acts[:,self.hidden_channels:,:] |
|
else: |
|
output = output + res_skip_acts |
|
return output * x_mask |
|
|
|
def remove_weight_norm(self): |
|
if self.gin_channels != 0: |
|
torch.nn.utils.remove_weight_norm(self.cond_layer) |
|
for l in self.in_layers: |
|
torch.nn.utils.remove_weight_norm(l) |
|
for l in self.res_skip_layers: |
|
torch.nn.utils.remove_weight_norm(l) |
|
|
|
|
|
class ResBlock1(torch.nn.Module): |
|
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): |
|
super(ResBlock1, self).__init__() |
|
self.convs1 = nn.ModuleList([ |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], |
|
padding=get_padding(kernel_size, dilation[0]))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], |
|
padding=get_padding(kernel_size, dilation[1]))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2], |
|
padding=get_padding(kernel_size, dilation[2]))) |
|
]) |
|
self.convs1.apply(init_weights) |
|
|
|
self.convs2 = nn.ModuleList([ |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, |
|
padding=get_padding(kernel_size, 1))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, |
|
padding=get_padding(kernel_size, 1))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, |
|
padding=get_padding(kernel_size, 1))) |
|
]) |
|
self.convs2.apply(init_weights) |
|
|
|
def forward(self, x, x_mask=None): |
|
for c1, c2 in zip(self.convs1, self.convs2): |
|
xt = F.leaky_relu(x, LRELU_SLOPE) |
|
if x_mask is not None: |
|
xt = xt * x_mask |
|
xt = c1(xt) |
|
xt = F.leaky_relu(xt, LRELU_SLOPE) |
|
if x_mask is not None: |
|
xt = xt * x_mask |
|
xt = c2(xt) |
|
x = xt + x |
|
if x_mask is not None: |
|
x = x * x_mask |
|
return x |
|
|
|
def remove_weight_norm(self): |
|
for l in self.convs1: |
|
remove_weight_norm(l) |
|
for l in self.convs2: |
|
remove_weight_norm(l) |
|
|
|
|
|
class ResBlock2(torch.nn.Module): |
|
def __init__(self, channels, kernel_size=3, dilation=(1, 3)): |
|
super(ResBlock2, self).__init__() |
|
self.convs = nn.ModuleList([ |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], |
|
padding=get_padding(kernel_size, dilation[0]))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], |
|
padding=get_padding(kernel_size, dilation[1]))) |
|
]) |
|
self.convs.apply(init_weights) |
|
|
|
def forward(self, x, x_mask=None): |
|
for c in self.convs: |
|
xt = F.leaky_relu(x, LRELU_SLOPE) |
|
if x_mask is not None: |
|
xt = xt * x_mask |
|
xt = c(xt) |
|
x = xt + x |
|
if x_mask is not None: |
|
x = x * x_mask |
|
return x |
|
|
|
def remove_weight_norm(self): |
|
for l in self.convs: |
|
remove_weight_norm(l) |
|
|
|
|
|
class Log(nn.Module): |
|
def forward(self, x, x_mask, reverse=False, **kwargs): |
|
if not reverse: |
|
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask |
|
logdet = torch.sum(-y, [1, 2]) |
|
return y, logdet |
|
else: |
|
x = torch.exp(x) * x_mask |
|
return x |
|
|
|
|
|
class Flip(nn.Module): |
|
def forward(self, x, *args, reverse=False, **kwargs): |
|
x = torch.flip(x, [1]) |
|
if not reverse: |
|
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device) |
|
return x, logdet |
|
else: |
|
return x |
|
|
|
|
|
class ElementwiseAffine(nn.Module): |
|
def __init__(self, channels): |
|
super().__init__() |
|
self.channels = channels |
|
self.m = nn.Parameter(torch.zeros(channels,1)) |
|
self.logs = nn.Parameter(torch.zeros(channels,1)) |
|
|
|
def forward(self, x, x_mask, reverse=False, **kwargs): |
|
if not reverse: |
|
y = self.m + torch.exp(self.logs) * x |
|
y = y * x_mask |
|
logdet = torch.sum(self.logs * x_mask, [1,2]) |
|
return y, logdet |
|
else: |
|
x = (x - self.m) * torch.exp(-self.logs) * x_mask |
|
return x |
|
|
|
|
|
class ResidualCouplingLayer(nn.Module): |
|
def __init__(self, |
|
channels, |
|
hidden_channels, |
|
kernel_size, |
|
dilation_rate, |
|
n_layers, |
|
p_dropout=0, |
|
gin_channels=0, |
|
mean_only=False): |
|
assert channels % 2 == 0, "channels should be divisible by 2" |
|
super().__init__() |
|
self.channels = channels |
|
self.hidden_channels = hidden_channels |
|
self.kernel_size = kernel_size |
|
self.dilation_rate = dilation_rate |
|
self.n_layers = n_layers |
|
self.half_channels = channels // 2 |
|
self.mean_only = mean_only |
|
|
|
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1) |
|
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels) |
|
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1) |
|
self.post.weight.data.zero_() |
|
self.post.bias.data.zero_() |
|
|
|
def forward(self, x, x_mask, g=None, reverse=False): |
|
x0, x1 = torch.split(x, [self.half_channels]*2, 1) |
|
h = self.pre(x0) * x_mask |
|
h = self.enc(h, x_mask, g=g) |
|
stats = self.post(h) * x_mask |
|
if not self.mean_only: |
|
m, logs = torch.split(stats, [self.half_channels]*2, 1) |
|
else: |
|
m = stats |
|
logs = torch.zeros_like(m) |
|
|
|
if not reverse: |
|
x1 = m + x1 * torch.exp(logs) * x_mask |
|
x = torch.cat([x0, x1], 1) |
|
logdet = torch.sum(logs, [1,2]) |
|
return x, logdet |
|
else: |
|
x1 = (x1 - m) * torch.exp(-logs) * x_mask |
|
x = torch.cat([x0, x1], 1) |
|
return x |
|
|