YarramsettiNaresh
commited on
Commit
·
dc15597
1
Parent(s):
bebe1ed
Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +107 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1669.23 +/- 142.56
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe67223e057aca3937adf4860b3fcc73ac48bc28c85a92afa74fc9d6da3971d7
|
3 |
+
size 129246
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7c38413ffbe0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c38413ffc70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c38413ffd00>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c38413ffd90>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7c38413ffe20>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7c38413ffeb0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7c38413fff40>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c3841408040>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7c38414080d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c3841408160>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c38414081f0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7c3841408280>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7c38413f7440>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"num_timesteps": 2000000,
|
36 |
+
"_total_timesteps": 2000000,
|
37 |
+
"_num_timesteps_at_start": 0,
|
38 |
+
"seed": null,
|
39 |
+
"action_noise": null,
|
40 |
+
"start_time": 1690184656129947739,
|
41 |
+
"learning_rate": 0.00096,
|
42 |
+
"tensorboard_log": null,
|
43 |
+
"lr_schedule": {
|
44 |
+
":type:": "<class 'function'>",
|
45 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
46 |
+
},
|
47 |
+
"_last_obs": {
|
48 |
+
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANRqSj8qzKg//QrnPYtLmD+hOpy/NKUivUlch77J05a/7n5GPwOtz7xTvRs/w7AWwJ4Vn79fDhE/YHpgvezyYj8e1EC/q6gPvOTPIz9KETq/yi7IvvyRwD1k5kY+cFoPQKXjkr9nPQE/s5vnv5vYfb/lo2BAz5faPhbBCj+In7u/Ov1kvpWuIL+3J8O9ulZzP/eeUr5bzCJAeC8QwFA1grzXEH0+YKCoPkXm4T/K7iPAaakTPvc33z9ktcI/LD6DwNv0iD8z2bY/5RHfvxXxvT+l45K/R4v9v7Ob57+b2H2/UkgeP38omb4AOd8+2U4fPGL7Uj9ad1A/gWaeP1A+t79/TEY/x8AzPbD6F7+3PmE/LTTPvnXUz74P4ge/u4qiv80Ykz85+86+p+g6PzXsGj/E9zK/nzp6PK0nbz18C9G/peOSv2c9AT/1eg0/m9h9v0VLP71wUDC9ENQEP6Bt0r1PHdI/287Nv5AIlT/Lh0E/rBNFP+VjD75O0kC/86AYv0q1SD+cyS2+KLa3v6f5gD11Eqk/cRIHveXa2z4TLZG/8nEkv29bmz6gzkG/R1BJPqXjkr9nPQE/9XoNPwkWgT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
+
},
|
51 |
+
"_last_episode_starts": {
|
52 |
+
":type:": "<class 'numpy.ndarray'>",
|
53 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
54 |
+
},
|
55 |
+
"_last_original_obs": {
|
56 |
+
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACGYCi3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAUHfmPQAAAAD9Stm/AAAAAAJlyb0AAAAAQnDzPwAAAABlrrW9AAAAACEB9j8AAAAA6WYHPgAAAADi+t+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgRAbNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGZzCDgAAAAAAp/bvwAAAAAi3sO8AAAAAK737z8AAAAAPKOePQAAAADUmvY/AAAAAPOQ4jwAAAAADHLuvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPEyirYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAG5Vi9AAAAAOT1AMAAAAAA+ZIFvgAAAABdQ/4/AAAAAELWeb0AAAAAdWLkPwAAAADWaz09AAAAADMG6L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABCg0U2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA58+COwAAAABc7/+/AAAAANQBCD4AAAAAL370PwAAAACl8L+9AAAAAIul2T8AAAAAbTG7vQAAAACrhOu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
+
},
|
59 |
+
"_episode_num": 0,
|
60 |
+
"use_sde": true,
|
61 |
+
"sde_sample_freq": -1,
|
62 |
+
"_current_progress_remaining": 0.0,
|
63 |
+
"_stats_window_size": 100,
|
64 |
+
"ep_info_buffer": {
|
65 |
+
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJoerQZ4wAWMAWyUTegDjAF0lEdAqnxwdU83dnV9lChoBkdAmCv4AOrhi2gHTegDaAhHQKqDhCEYfnx1fZQoaAZHQJwzPrJKaodoB03oA2gIR0Cqg/zw2ETQdX2UKGgGR0CcrWshxHXmaAdN6ANoCEdAqoSmR/3Fk3V9lChoBkdAm4str9ETg2gHTegDaAhHQKqKcyIHkcV1fZQoaAZHQJZh7NeMQ3BoB03oA2gIR0CqkHrF4s3AdX2UKGgGR0CbImhYeT3ZaAdN6ANoCEdAqpDwwXZXdXV9lChoBkdAm+o40EX+EWgHTegDaAhHQKqRlSMLncN1fZQoaAZHQJgO6aw2VFBoB03oA2gIR0CqmRXb/Ot5dX2UKGgGR0CdXFMIu5BkaAdN6ANoCEdAqp8JMURFqnV9lChoBkdAkd3jWbwz+GgHTegDaAhHQKqfiuW8h9t1fZQoaAZHQJpB3Kq4pc5oB03oA2gIR0CqoDVwYLssdX2UKGgGR0CZKE8baRISaAdN6ANoCEdAqqYEvGp++nV9lChoBkdAmWKfNqxkd2gHTegDaAhHQKqsC/HHWBl1fZQoaAZHQJvLWhlDneVoB03oA2gIR0CqrIm2b5M2dX2UKGgGR0CZOamtyPuHaAdN6ANoCEdAqq1C1Vo6CHV9lChoBkdAmwxlvES/TWgHTegDaAhHQKq01Dc/MW51fZQoaAZHQJz01JXhfjVoB03oA2gIR0CquvJNTLntdX2UKGgGR0Cbu8GPPszEaAdN6ANoCEdAqrtmG0u14XV9lChoBkdAmfPeTibUgGgHTegDaAhHQKq8EDGLk0d1fZQoaAZHQJxI6IoE0SBoB03oA2gIR0CqweEEC/47dX2UKGgGR0CdClBas6q9aAdN6ANoCEdAqsidj3Ehq3V9lChoBkdAmgEHXyy2QWgHTegDaAhHQKrJUcriEQJ1fZQoaAZHQJrD+EWZZ0VoB03oA2gIR0CqylzFl05mdX2UKGgGR0CYoCYhMajvaAdN6ANoCEdAqtDFc4YJmnV9lChoBkdAmHDWalUIcGgHTegDaAhHQKrWyqgAZKp1fZQoaAZHQJ0rgyAQQMBoB03oA2gIR0Cq10d4mkWRdX2UKGgGR0CWU46nzg/DaAdN6ANoCEdAqtf4kZ75VXV9lChoBkdAnrDmTgVGkWgHTegDaAhHQKrd0WuX/o91fZQoaAZHQJh8+gmJFb5oB03oA2gIR0Cq5ZHX/YJ3dX2UKGgGR0CXLTgXdj5LaAdN6ANoCEdAquYKo60Y0nV9lChoBkdAkWbe2iL2pWgHTegDaAhHQKrmqZflZHN1fZQoaAZHQJaep+4LCvZoB03oA2gIR0Cq7GfVZs9CdX2UKGgGR0CNWdAxi5NHaAdN6ANoCEdAqvKBcs189nV9lChoBkdAjjwf+CK77WgHTegDaAhHQKry+dzXBgx1fZQoaAZHQJMGR8rqdH5oB03oA2gIR0Cq86IkiUxEdX2UKGgGR0CZoKQk5ZKWaAdN6ANoCEdAqvmaYZ2pynV9lChoBkdAnB7B0hePaWgHTegDaAhHQKsBP0/4Zdh1fZQoaAZHQJshbhvR7Z5oB03oA2gIR0CrAb8EeQuFdX2UKGgGR0Ccl7PYWcjJaAdN6ANoCEdAqwJn58BuGnV9lChoBkdAl5LhKxs2vWgHTegDaAhHQKsILDJEH+t1fZQoaAZHQJxa/eMyaeBoB03oA2gIR0CrDjW7voeQdX2UKGgGR0CaHuUYKpkxaAdN6ANoCEdAqw6uCqZMMHV9lChoBkdAnIskgr6LwWgHTegDaAhHQKsPVzoUzsR1fZQoaAZHQJu3YyfthNNoB03oA2gIR0CrFk/CqIacdX2UKGgGR0Ce6mNKyv9taAdN6ANoCEdAqxzmWfK6nXV9lChoBkdAnRi+1jRUm2gHTegDaAhHQKsdX50r9VF1fZQoaAZHQJ0hG4TbnHNoB03oA2gIR0CrHgOez2OAdX2UKGgGR0CcckioKlYVaAdN6ANoCEdAqyOqlrM1THV9lChoBkdAmNOa2F36h2gHTegDaAhHQKspjzGxUvR1fZQoaAZHQJ4Nya+evp1oB03oA2gIR0CrKgVM23rldX2UKGgGR0CcQ5o0Q9RraAdN6ANoCEdAqyqrbnHNo3V9lChoBkdAoANrY/Vy3mgHTegDaAhHQKsyOCUX5311fZQoaAZHQJ6wMDDCP6toB03oA2gIR0CrOBf8/D+BdX2UKGgGR0CfgBsRg7YDaAdN6ANoCEdAqziR4IKMN3V9lChoBkdAnIkxRhttRGgHTegDaAhHQKs5OtknTiN1fZQoaAZHQJyiD5RCQcRoB03oA2gIR0CrPvNqpLmIdX2UKGgGR0CYj4tTkyULaAdN6ANoCEdAq0ThyKekHnV9lChoBkdAnYAkEX+ERWgHTegDaAhHQKtFWi8Fpwl1fZQoaAZHQKA0ypd8iOhoB03oA2gIR0CrRjqbjLjhdX2UKGgGR0CeQALDye7MaAdN6ANoCEdAq0/RakhzNnV9lChoBkdAmmBbdrO7hGgHTegDaAhHQKtVxlijL0V1fZQoaAZHQJz43pPhybRoB03oA2gIR0CrVkaKcd5qdX2UKGgGR0CcMwXrMTviaAdN6ANoCEdAq1bnrhR64XV9lChoBkdAmrWVP3ztkWgHTegDaAhHQKtcomKIi1R1fZQoaAZHQJ+Zqv7m+0xoB03oA2gIR0CrY5AE2YOUdX2UKGgGR0CfvxNvwVj7aAdN6ANoCEdAq2RPmLcbi3V9lChoBkdAn3INcKPXCmgHTegDaAhHQKtlTMTviLl1fZQoaAZHQJ+mltsN2DBoB03oA2gIR0Cra0NO/L1VdX2UKGgGR0CeaiIdlum8aAdN6ANoCEdAq3EubAk9lnV9lChoBkdAmbSeAy2x6mgHTegDaAhHQKtxrBF/hEV1fZQoaAZHQJtl2hmGucNoB03oA2gIR0CrclEq2BrfdX2UKGgGR0CZ+QMDOkckaAdN6ANoCEdAq3gKIcinpHV9lChoBkdAnocpZW7vomgHTegDaAhHQKt/2M4LkS51fZQoaAZHQJ+yzTuv2XdoB03oA2gIR0CrgFgiu+yrdX2UKGgGR0CeQcB3A2ycaAdN6ANoCEdAq4D/5eqrBHV9lChoBkdAnBUa+zt1IWgHTegDaAhHQKuGtqhUR4B1fZQoaAZHQKCxdYlIEr5oB03oA2gIR0CrjImPPszEdX2UKGgGR0CWsTBzmwJPaAdN6ANoCEdAq40Bfx+a0HV9lChoBkdAmnOdkSVW0mgHTegDaAhHQKuNpgWrOqx1fZQoaAZHQJWrQ6/7BO5oB03oA2gIR0Crk8ymALApdX2UKGgGR0Ccns+1jRUnaAdN6ANoCEdAq5st2xIJ7nV9lChoBkdAlnreTV2A5WgHTegDaAhHQKubrpHqeK91fZQoaAZHQJTls2tMfzVoB03oA2gIR0CrnFggX/HYdX2UKGgGR0Cd604oqkM1aAdN6ANoCEdAq6IhiRW913V9lChoBkdAnOXOokzGgmgHTegDaAhHQKuoL0J4SpR1fZQoaAZHQJvte/IsAedoB03oA2gIR0CrqKh9b5dodX2UKGgGR0CdLwaRZEDyaAdN6ANoCEdAq6lQ5aNdaHV9lChoBkdAnGGMZDRc/2gHTegDaAhHQKuwVqZc9nt1fZQoaAZHQJh0SMJhOQBoB03oA2gIR0CrtqjhLoOhdX2UKGgGR0CbmerLyMDPaAdN6ANoCEdAq7ch84Pwu3V9lChoBkdAnGr+mNzbOGgHTegDaAhHQKu3xnA6+391fZQoaAZHQJ698oUi6hBoB03oA2gIR0CrvY9LQHAzdX2UKGgGR0CeiVJWNm16aAdN6ANoCEdAq8OEVvddmnV9lChoBkdAner2JWNm2GgHTegDaAhHQKvD/Q3PzFx1fZQoaAZHQJ6adokAxSJoB03oA2gIR0CrxKmiHqNZdX2UKGgGR0Cc5W1EE1VHaAdN6ANoCEdAq8xLT+ee4HV9lChoBkdAnE0casIVumgHTegDaAhHQKvSL85S3sp1fZQoaAZHQJqSu3kPtlZoB03oA2gIR0Cr0qgi3XqadX2UKGgGR0CZcGY02tMgaAdN6ANoCEdAq9NPyy2QXHVlLg=="
|
67 |
+
},
|
68 |
+
"ep_success_buffer": {
|
69 |
+
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
+
},
|
72 |
+
"_n_updates": 62500,
|
73 |
+
"n_steps": 8,
|
74 |
+
"gamma": 0.99,
|
75 |
+
"gae_lambda": 0.9,
|
76 |
+
"ent_coef": 0.0,
|
77 |
+
"vf_coef": 0.4,
|
78 |
+
"max_grad_norm": 0.5,
|
79 |
+
"normalize_advantage": false,
|
80 |
+
"observation_space": {
|
81 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
82 |
+
":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
83 |
+
"dtype": "float32",
|
84 |
+
"_shape": [
|
85 |
+
28
|
86 |
+
],
|
87 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
88 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
89 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
90 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
91 |
+
"_np_random": null
|
92 |
+
},
|
93 |
+
"action_space": {
|
94 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
95 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
96 |
+
"dtype": "float32",
|
97 |
+
"_shape": [
|
98 |
+
8
|
99 |
+
],
|
100 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
101 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
102 |
+
"bounded_below": "[ True True True True True True True True]",
|
103 |
+
"bounded_above": "[ True True True True True True True True]",
|
104 |
+
"_np_random": null
|
105 |
+
},
|
106 |
+
"n_envs": 4
|
107 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:656d78d76f33a9178475ec1d9ece8570c0681187751f0d0e600bf8977b227cf6
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5eb5fc2f21cfd5c602d8e86204f6ec5eb67e1ecd97ddbe81ee61959c0bc229bf
|
3 |
+
size 56894
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.6
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c38413ffbe0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c38413ffc70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c38413ffd00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c38413ffd90>", "_build": "<function ActorCriticPolicy._build at 0x7c38413ffe20>", "forward": "<function ActorCriticPolicy.forward at 0x7c38413ffeb0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c38413fff40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c3841408040>", "_predict": "<function ActorCriticPolicy._predict at 0x7c38414080d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c3841408160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c38414081f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c3841408280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c38413f7440>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690184656129947739, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANRqSj8qzKg//QrnPYtLmD+hOpy/NKUivUlch77J05a/7n5GPwOtz7xTvRs/w7AWwJ4Vn79fDhE/YHpgvezyYj8e1EC/q6gPvOTPIz9KETq/yi7IvvyRwD1k5kY+cFoPQKXjkr9nPQE/s5vnv5vYfb/lo2BAz5faPhbBCj+In7u/Ov1kvpWuIL+3J8O9ulZzP/eeUr5bzCJAeC8QwFA1grzXEH0+YKCoPkXm4T/K7iPAaakTPvc33z9ktcI/LD6DwNv0iD8z2bY/5RHfvxXxvT+l45K/R4v9v7Ob57+b2H2/UkgeP38omb4AOd8+2U4fPGL7Uj9ad1A/gWaeP1A+t79/TEY/x8AzPbD6F7+3PmE/LTTPvnXUz74P4ge/u4qiv80Ykz85+86+p+g6PzXsGj/E9zK/nzp6PK0nbz18C9G/peOSv2c9AT/1eg0/m9h9v0VLP71wUDC9ENQEP6Bt0r1PHdI/287Nv5AIlT/Lh0E/rBNFP+VjD75O0kC/86AYv0q1SD+cyS2+KLa3v6f5gD11Eqk/cRIHveXa2z4TLZG/8nEkv29bmz6gzkG/R1BJPqXjkr9nPQE/9XoNPwkWgT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACGYCi3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAUHfmPQAAAAD9Stm/AAAAAAJlyb0AAAAAQnDzPwAAAABlrrW9AAAAACEB9j8AAAAA6WYHPgAAAADi+t+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgRAbNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGZzCDgAAAAAAp/bvwAAAAAi3sO8AAAAAK737z8AAAAAPKOePQAAAADUmvY/AAAAAPOQ4jwAAAAADHLuvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPEyirYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAG5Vi9AAAAAOT1AMAAAAAA+ZIFvgAAAABdQ/4/AAAAAELWeb0AAAAAdWLkPwAAAADWaz09AAAAADMG6L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABCg0U2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA58+COwAAAABc7/+/AAAAANQBCD4AAAAAL370PwAAAACl8L+9AAAAAIul2T8AAAAAbTG7vQAAAACrhOu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJoerQZ4wAWMAWyUTegDjAF0lEdAqnxwdU83dnV9lChoBkdAmCv4AOrhi2gHTegDaAhHQKqDhCEYfnx1fZQoaAZHQJwzPrJKaodoB03oA2gIR0Cqg/zw2ETQdX2UKGgGR0CcrWshxHXmaAdN6ANoCEdAqoSmR/3Fk3V9lChoBkdAm4str9ETg2gHTegDaAhHQKqKcyIHkcV1fZQoaAZHQJZh7NeMQ3BoB03oA2gIR0CqkHrF4s3AdX2UKGgGR0CbImhYeT3ZaAdN6ANoCEdAqpDwwXZXdXV9lChoBkdAm+o40EX+EWgHTegDaAhHQKqRlSMLncN1fZQoaAZHQJgO6aw2VFBoB03oA2gIR0CqmRXb/Ot5dX2UKGgGR0CdXFMIu5BkaAdN6ANoCEdAqp8JMURFqnV9lChoBkdAkd3jWbwz+GgHTegDaAhHQKqfiuW8h9t1fZQoaAZHQJpB3Kq4pc5oB03oA2gIR0CqoDVwYLssdX2UKGgGR0CZKE8baRISaAdN6ANoCEdAqqYEvGp++nV9lChoBkdAmWKfNqxkd2gHTegDaAhHQKqsC/HHWBl1fZQoaAZHQJvLWhlDneVoB03oA2gIR0CqrIm2b5M2dX2UKGgGR0CZOamtyPuHaAdN6ANoCEdAqq1C1Vo6CHV9lChoBkdAmwxlvES/TWgHTegDaAhHQKq01Dc/MW51fZQoaAZHQJz01JXhfjVoB03oA2gIR0CquvJNTLntdX2UKGgGR0Cbu8GPPszEaAdN6ANoCEdAqrtmG0u14XV9lChoBkdAmfPeTibUgGgHTegDaAhHQKq8EDGLk0d1fZQoaAZHQJxI6IoE0SBoB03oA2gIR0CqweEEC/47dX2UKGgGR0CdClBas6q9aAdN6ANoCEdAqsidj3Ehq3V9lChoBkdAmgEHXyy2QWgHTegDaAhHQKrJUcriEQJ1fZQoaAZHQJrD+EWZZ0VoB03oA2gIR0CqylzFl05mdX2UKGgGR0CYoCYhMajvaAdN6ANoCEdAqtDFc4YJmnV9lChoBkdAmHDWalUIcGgHTegDaAhHQKrWyqgAZKp1fZQoaAZHQJ0rgyAQQMBoB03oA2gIR0Cq10d4mkWRdX2UKGgGR0CWU46nzg/DaAdN6ANoCEdAqtf4kZ75VXV9lChoBkdAnrDmTgVGkWgHTegDaAhHQKrd0WuX/o91fZQoaAZHQJh8+gmJFb5oB03oA2gIR0Cq5ZHX/YJ3dX2UKGgGR0CXLTgXdj5LaAdN6ANoCEdAquYKo60Y0nV9lChoBkdAkWbe2iL2pWgHTegDaAhHQKrmqZflZHN1fZQoaAZHQJaep+4LCvZoB03oA2gIR0Cq7GfVZs9CdX2UKGgGR0CNWdAxi5NHaAdN6ANoCEdAqvKBcs189nV9lChoBkdAjjwf+CK77WgHTegDaAhHQKry+dzXBgx1fZQoaAZHQJMGR8rqdH5oB03oA2gIR0Cq86IkiUxEdX2UKGgGR0CZoKQk5ZKWaAdN6ANoCEdAqvmaYZ2pynV9lChoBkdAnB7B0hePaWgHTegDaAhHQKsBP0/4Zdh1fZQoaAZHQJshbhvR7Z5oB03oA2gIR0CrAb8EeQuFdX2UKGgGR0Ccl7PYWcjJaAdN6ANoCEdAqwJn58BuGnV9lChoBkdAl5LhKxs2vWgHTegDaAhHQKsILDJEH+t1fZQoaAZHQJxa/eMyaeBoB03oA2gIR0CrDjW7voeQdX2UKGgGR0CaHuUYKpkxaAdN6ANoCEdAqw6uCqZMMHV9lChoBkdAnIskgr6LwWgHTegDaAhHQKsPVzoUzsR1fZQoaAZHQJu3YyfthNNoB03oA2gIR0CrFk/CqIacdX2UKGgGR0Ce6mNKyv9taAdN6ANoCEdAqxzmWfK6nXV9lChoBkdAnRi+1jRUm2gHTegDaAhHQKsdX50r9VF1fZQoaAZHQJ0hG4TbnHNoB03oA2gIR0CrHgOez2OAdX2UKGgGR0CcckioKlYVaAdN6ANoCEdAqyOqlrM1THV9lChoBkdAmNOa2F36h2gHTegDaAhHQKspjzGxUvR1fZQoaAZHQJ4Nya+evp1oB03oA2gIR0CrKgVM23rldX2UKGgGR0CcQ5o0Q9RraAdN6ANoCEdAqyqrbnHNo3V9lChoBkdAoANrY/Vy3mgHTegDaAhHQKsyOCUX5311fZQoaAZHQJ6wMDDCP6toB03oA2gIR0CrOBf8/D+BdX2UKGgGR0CfgBsRg7YDaAdN6ANoCEdAqziR4IKMN3V9lChoBkdAnIkxRhttRGgHTegDaAhHQKs5OtknTiN1fZQoaAZHQJyiD5RCQcRoB03oA2gIR0CrPvNqpLmIdX2UKGgGR0CYj4tTkyULaAdN6ANoCEdAq0ThyKekHnV9lChoBkdAnYAkEX+ERWgHTegDaAhHQKtFWi8Fpwl1fZQoaAZHQKA0ypd8iOhoB03oA2gIR0CrRjqbjLjhdX2UKGgGR0CeQALDye7MaAdN6ANoCEdAq0/RakhzNnV9lChoBkdAmmBbdrO7hGgHTegDaAhHQKtVxlijL0V1fZQoaAZHQJz43pPhybRoB03oA2gIR0CrVkaKcd5qdX2UKGgGR0CcMwXrMTviaAdN6ANoCEdAq1bnrhR64XV9lChoBkdAmrWVP3ztkWgHTegDaAhHQKtcomKIi1R1fZQoaAZHQJ+Zqv7m+0xoB03oA2gIR0CrY5AE2YOUdX2UKGgGR0CfvxNvwVj7aAdN6ANoCEdAq2RPmLcbi3V9lChoBkdAn3INcKPXCmgHTegDaAhHQKtlTMTviLl1fZQoaAZHQJ+mltsN2DBoB03oA2gIR0Cra0NO/L1VdX2UKGgGR0CeaiIdlum8aAdN6ANoCEdAq3EubAk9lnV9lChoBkdAmbSeAy2x6mgHTegDaAhHQKtxrBF/hEV1fZQoaAZHQJtl2hmGucNoB03oA2gIR0CrclEq2BrfdX2UKGgGR0CZ+QMDOkckaAdN6ANoCEdAq3gKIcinpHV9lChoBkdAnocpZW7vomgHTegDaAhHQKt/2M4LkS51fZQoaAZHQJ+yzTuv2XdoB03oA2gIR0CrgFgiu+yrdX2UKGgGR0CeQcB3A2ycaAdN6ANoCEdAq4D/5eqrBHV9lChoBkdAnBUa+zt1IWgHTegDaAhHQKuGtqhUR4B1fZQoaAZHQKCxdYlIEr5oB03oA2gIR0CrjImPPszEdX2UKGgGR0CWsTBzmwJPaAdN6ANoCEdAq40Bfx+a0HV9lChoBkdAmnOdkSVW0mgHTegDaAhHQKuNpgWrOqx1fZQoaAZHQJWrQ6/7BO5oB03oA2gIR0Crk8ymALApdX2UKGgGR0Ccns+1jRUnaAdN6ANoCEdAq5st2xIJ7nV9lChoBkdAlnreTV2A5WgHTegDaAhHQKubrpHqeK91fZQoaAZHQJTls2tMfzVoB03oA2gIR0CrnFggX/HYdX2UKGgGR0Cd604oqkM1aAdN6ANoCEdAq6IhiRW913V9lChoBkdAnOXOokzGgmgHTegDaAhHQKuoL0J4SpR1fZQoaAZHQJvte/IsAedoB03oA2gIR0CrqKh9b5dodX2UKGgGR0CdLwaRZEDyaAdN6ANoCEdAq6lQ5aNdaHV9lChoBkdAnGGMZDRc/2gHTegDaAhHQKuwVqZc9nt1fZQoaAZHQJh0SMJhOQBoB03oA2gIR0CrtqjhLoOhdX2UKGgGR0CbmerLyMDPaAdN6ANoCEdAq7ch84Pwu3V9lChoBkdAnGr+mNzbOGgHTegDaAhHQKu3xnA6+391fZQoaAZHQJ698oUi6hBoB03oA2gIR0CrvY9LQHAzdX2UKGgGR0CeiVJWNm16aAdN6ANoCEdAq8OEVvddmnV9lChoBkdAner2JWNm2GgHTegDaAhHQKvD/Q3PzFx1fZQoaAZHQJ6adokAxSJoB03oA2gIR0CrxKmiHqNZdX2UKGgGR0Cc5W1EE1VHaAdN6ANoCEdAq8xLT+ee4HV9lChoBkdAnE0casIVumgHTegDaAhHQKvSL85S3sp1fZQoaAZHQJqSu3kPtlZoB03oA2gIR0Cr0qgi3XqadX2UKGgGR0CZcGY02tMgaAdN6ANoCEdAq9NPyy2QXHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8319d32b4d4c94ede263bfec24d5a479de4d13079ca351fc3ba01781ca492316
|
3 |
+
size 1084292
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1669.2327139992528, "std_reward": 142.5613701519824, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-24T09:18:02.416037"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76475cc5371638a7049ef4cdac44e777a861a7fa35b889d5c80d48e05f041e87
|
3 |
+
size 2176
|