YarramsettiNaresh commited on
Commit
dc15597
·
1 Parent(s): bebe1ed

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1669.23 +/- 142.56
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe67223e057aca3937adf4860b3fcc73ac48bc28c85a92afa74fc9d6da3971d7
3
+ size 129246
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7c38413ffbe0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c38413ffc70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c38413ffd00>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c38413ffd90>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7c38413ffe20>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7c38413ffeb0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c38413fff40>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c3841408040>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7c38414080d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c3841408160>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c38414081f0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c3841408280>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7c38413f7440>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "num_timesteps": 2000000,
36
+ "_total_timesteps": 2000000,
37
+ "_num_timesteps_at_start": 0,
38
+ "seed": null,
39
+ "action_noise": null,
40
+ "start_time": 1690184656129947739,
41
+ "learning_rate": 0.00096,
42
+ "tensorboard_log": null,
43
+ "lr_schedule": {
44
+ ":type:": "<class 'function'>",
45
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
46
+ },
47
+ "_last_obs": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANRqSj8qzKg//QrnPYtLmD+hOpy/NKUivUlch77J05a/7n5GPwOtz7xTvRs/w7AWwJ4Vn79fDhE/YHpgvezyYj8e1EC/q6gPvOTPIz9KETq/yi7IvvyRwD1k5kY+cFoPQKXjkr9nPQE/s5vnv5vYfb/lo2BAz5faPhbBCj+In7u/Ov1kvpWuIL+3J8O9ulZzP/eeUr5bzCJAeC8QwFA1grzXEH0+YKCoPkXm4T/K7iPAaakTPvc33z9ktcI/LD6DwNv0iD8z2bY/5RHfvxXxvT+l45K/R4v9v7Ob57+b2H2/UkgeP38omb4AOd8+2U4fPGL7Uj9ad1A/gWaeP1A+t79/TEY/x8AzPbD6F7+3PmE/LTTPvnXUz74P4ge/u4qiv80Ykz85+86+p+g6PzXsGj/E9zK/nzp6PK0nbz18C9G/peOSv2c9AT/1eg0/m9h9v0VLP71wUDC9ENQEP6Bt0r1PHdI/287Nv5AIlT/Lh0E/rBNFP+VjD75O0kC/86AYv0q1SD+cyS2+KLa3v6f5gD11Eqk/cRIHveXa2z4TLZG/8nEkv29bmz6gzkG/R1BJPqXjkr9nPQE/9XoNPwkWgT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
+ },
51
+ "_last_episode_starts": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
54
+ },
55
+ "_last_original_obs": {
56
+ ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACGYCi3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAUHfmPQAAAAD9Stm/AAAAAAJlyb0AAAAAQnDzPwAAAABlrrW9AAAAACEB9j8AAAAA6WYHPgAAAADi+t+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgRAbNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGZzCDgAAAAAAp/bvwAAAAAi3sO8AAAAAK737z8AAAAAPKOePQAAAADUmvY/AAAAAPOQ4jwAAAAADHLuvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPEyirYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAG5Vi9AAAAAOT1AMAAAAAA+ZIFvgAAAABdQ/4/AAAAAELWeb0AAAAAdWLkPwAAAADWaz09AAAAADMG6L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABCg0U2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA58+COwAAAABc7/+/AAAAANQBCD4AAAAAL370PwAAAACl8L+9AAAAAIul2T8AAAAAbTG7vQAAAACrhOu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
+ },
59
+ "_episode_num": 0,
60
+ "use_sde": true,
61
+ "sde_sample_freq": -1,
62
+ "_current_progress_remaining": 0.0,
63
+ "_stats_window_size": 100,
64
+ "ep_info_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJoerQZ4wAWMAWyUTegDjAF0lEdAqnxwdU83dnV9lChoBkdAmCv4AOrhi2gHTegDaAhHQKqDhCEYfnx1fZQoaAZHQJwzPrJKaodoB03oA2gIR0Cqg/zw2ETQdX2UKGgGR0CcrWshxHXmaAdN6ANoCEdAqoSmR/3Fk3V9lChoBkdAm4str9ETg2gHTegDaAhHQKqKcyIHkcV1fZQoaAZHQJZh7NeMQ3BoB03oA2gIR0CqkHrF4s3AdX2UKGgGR0CbImhYeT3ZaAdN6ANoCEdAqpDwwXZXdXV9lChoBkdAm+o40EX+EWgHTegDaAhHQKqRlSMLncN1fZQoaAZHQJgO6aw2VFBoB03oA2gIR0CqmRXb/Ot5dX2UKGgGR0CdXFMIu5BkaAdN6ANoCEdAqp8JMURFqnV9lChoBkdAkd3jWbwz+GgHTegDaAhHQKqfiuW8h9t1fZQoaAZHQJpB3Kq4pc5oB03oA2gIR0CqoDVwYLssdX2UKGgGR0CZKE8baRISaAdN6ANoCEdAqqYEvGp++nV9lChoBkdAmWKfNqxkd2gHTegDaAhHQKqsC/HHWBl1fZQoaAZHQJvLWhlDneVoB03oA2gIR0CqrIm2b5M2dX2UKGgGR0CZOamtyPuHaAdN6ANoCEdAqq1C1Vo6CHV9lChoBkdAmwxlvES/TWgHTegDaAhHQKq01Dc/MW51fZQoaAZHQJz01JXhfjVoB03oA2gIR0CquvJNTLntdX2UKGgGR0Cbu8GPPszEaAdN6ANoCEdAqrtmG0u14XV9lChoBkdAmfPeTibUgGgHTegDaAhHQKq8EDGLk0d1fZQoaAZHQJxI6IoE0SBoB03oA2gIR0CqweEEC/47dX2UKGgGR0CdClBas6q9aAdN6ANoCEdAqsidj3Ehq3V9lChoBkdAmgEHXyy2QWgHTegDaAhHQKrJUcriEQJ1fZQoaAZHQJrD+EWZZ0VoB03oA2gIR0CqylzFl05mdX2UKGgGR0CYoCYhMajvaAdN6ANoCEdAqtDFc4YJmnV9lChoBkdAmHDWalUIcGgHTegDaAhHQKrWyqgAZKp1fZQoaAZHQJ0rgyAQQMBoB03oA2gIR0Cq10d4mkWRdX2UKGgGR0CWU46nzg/DaAdN6ANoCEdAqtf4kZ75VXV9lChoBkdAnrDmTgVGkWgHTegDaAhHQKrd0WuX/o91fZQoaAZHQJh8+gmJFb5oB03oA2gIR0Cq5ZHX/YJ3dX2UKGgGR0CXLTgXdj5LaAdN6ANoCEdAquYKo60Y0nV9lChoBkdAkWbe2iL2pWgHTegDaAhHQKrmqZflZHN1fZQoaAZHQJaep+4LCvZoB03oA2gIR0Cq7GfVZs9CdX2UKGgGR0CNWdAxi5NHaAdN6ANoCEdAqvKBcs189nV9lChoBkdAjjwf+CK77WgHTegDaAhHQKry+dzXBgx1fZQoaAZHQJMGR8rqdH5oB03oA2gIR0Cq86IkiUxEdX2UKGgGR0CZoKQk5ZKWaAdN6ANoCEdAqvmaYZ2pynV9lChoBkdAnB7B0hePaWgHTegDaAhHQKsBP0/4Zdh1fZQoaAZHQJshbhvR7Z5oB03oA2gIR0CrAb8EeQuFdX2UKGgGR0Ccl7PYWcjJaAdN6ANoCEdAqwJn58BuGnV9lChoBkdAl5LhKxs2vWgHTegDaAhHQKsILDJEH+t1fZQoaAZHQJxa/eMyaeBoB03oA2gIR0CrDjW7voeQdX2UKGgGR0CaHuUYKpkxaAdN6ANoCEdAqw6uCqZMMHV9lChoBkdAnIskgr6LwWgHTegDaAhHQKsPVzoUzsR1fZQoaAZHQJu3YyfthNNoB03oA2gIR0CrFk/CqIacdX2UKGgGR0Ce6mNKyv9taAdN6ANoCEdAqxzmWfK6nXV9lChoBkdAnRi+1jRUm2gHTegDaAhHQKsdX50r9VF1fZQoaAZHQJ0hG4TbnHNoB03oA2gIR0CrHgOez2OAdX2UKGgGR0CcckioKlYVaAdN6ANoCEdAqyOqlrM1THV9lChoBkdAmNOa2F36h2gHTegDaAhHQKspjzGxUvR1fZQoaAZHQJ4Nya+evp1oB03oA2gIR0CrKgVM23rldX2UKGgGR0CcQ5o0Q9RraAdN6ANoCEdAqyqrbnHNo3V9lChoBkdAoANrY/Vy3mgHTegDaAhHQKsyOCUX5311fZQoaAZHQJ6wMDDCP6toB03oA2gIR0CrOBf8/D+BdX2UKGgGR0CfgBsRg7YDaAdN6ANoCEdAqziR4IKMN3V9lChoBkdAnIkxRhttRGgHTegDaAhHQKs5OtknTiN1fZQoaAZHQJyiD5RCQcRoB03oA2gIR0CrPvNqpLmIdX2UKGgGR0CYj4tTkyULaAdN6ANoCEdAq0ThyKekHnV9lChoBkdAnYAkEX+ERWgHTegDaAhHQKtFWi8Fpwl1fZQoaAZHQKA0ypd8iOhoB03oA2gIR0CrRjqbjLjhdX2UKGgGR0CeQALDye7MaAdN6ANoCEdAq0/RakhzNnV9lChoBkdAmmBbdrO7hGgHTegDaAhHQKtVxlijL0V1fZQoaAZHQJz43pPhybRoB03oA2gIR0CrVkaKcd5qdX2UKGgGR0CcMwXrMTviaAdN6ANoCEdAq1bnrhR64XV9lChoBkdAmrWVP3ztkWgHTegDaAhHQKtcomKIi1R1fZQoaAZHQJ+Zqv7m+0xoB03oA2gIR0CrY5AE2YOUdX2UKGgGR0CfvxNvwVj7aAdN6ANoCEdAq2RPmLcbi3V9lChoBkdAn3INcKPXCmgHTegDaAhHQKtlTMTviLl1fZQoaAZHQJ+mltsN2DBoB03oA2gIR0Cra0NO/L1VdX2UKGgGR0CeaiIdlum8aAdN6ANoCEdAq3EubAk9lnV9lChoBkdAmbSeAy2x6mgHTegDaAhHQKtxrBF/hEV1fZQoaAZHQJtl2hmGucNoB03oA2gIR0CrclEq2BrfdX2UKGgGR0CZ+QMDOkckaAdN6ANoCEdAq3gKIcinpHV9lChoBkdAnocpZW7vomgHTegDaAhHQKt/2M4LkS51fZQoaAZHQJ+yzTuv2XdoB03oA2gIR0CrgFgiu+yrdX2UKGgGR0CeQcB3A2ycaAdN6ANoCEdAq4D/5eqrBHV9lChoBkdAnBUa+zt1IWgHTegDaAhHQKuGtqhUR4B1fZQoaAZHQKCxdYlIEr5oB03oA2gIR0CrjImPPszEdX2UKGgGR0CWsTBzmwJPaAdN6ANoCEdAq40Bfx+a0HV9lChoBkdAmnOdkSVW0mgHTegDaAhHQKuNpgWrOqx1fZQoaAZHQJWrQ6/7BO5oB03oA2gIR0Crk8ymALApdX2UKGgGR0Ccns+1jRUnaAdN6ANoCEdAq5st2xIJ7nV9lChoBkdAlnreTV2A5WgHTegDaAhHQKubrpHqeK91fZQoaAZHQJTls2tMfzVoB03oA2gIR0CrnFggX/HYdX2UKGgGR0Cd604oqkM1aAdN6ANoCEdAq6IhiRW913V9lChoBkdAnOXOokzGgmgHTegDaAhHQKuoL0J4SpR1fZQoaAZHQJvte/IsAedoB03oA2gIR0CrqKh9b5dodX2UKGgGR0CdLwaRZEDyaAdN6ANoCEdAq6lQ5aNdaHV9lChoBkdAnGGMZDRc/2gHTegDaAhHQKuwVqZc9nt1fZQoaAZHQJh0SMJhOQBoB03oA2gIR0CrtqjhLoOhdX2UKGgGR0CbmerLyMDPaAdN6ANoCEdAq7ch84Pwu3V9lChoBkdAnGr+mNzbOGgHTegDaAhHQKu3xnA6+391fZQoaAZHQJ698oUi6hBoB03oA2gIR0CrvY9LQHAzdX2UKGgGR0CeiVJWNm16aAdN6ANoCEdAq8OEVvddmnV9lChoBkdAner2JWNm2GgHTegDaAhHQKvD/Q3PzFx1fZQoaAZHQJ6adokAxSJoB03oA2gIR0CrxKmiHqNZdX2UKGgGR0Cc5W1EE1VHaAdN6ANoCEdAq8xLT+ee4HV9lChoBkdAnE0casIVumgHTegDaAhHQKvSL85S3sp1fZQoaAZHQJqSu3kPtlZoB03oA2gIR0Cr0qgi3XqadX2UKGgGR0CZcGY02tMgaAdN6ANoCEdAq9NPyy2QXHVlLg=="
67
+ },
68
+ "ep_success_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
+ },
72
+ "_n_updates": 62500,
73
+ "n_steps": 8,
74
+ "gamma": 0.99,
75
+ "gae_lambda": 0.9,
76
+ "ent_coef": 0.0,
77
+ "vf_coef": 0.4,
78
+ "max_grad_norm": 0.5,
79
+ "normalize_advantage": false,
80
+ "observation_space": {
81
+ ":type:": "<class 'gym.spaces.box.Box'>",
82
+ ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
83
+ "dtype": "float32",
84
+ "_shape": [
85
+ 28
86
+ ],
87
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
88
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
89
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
90
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
91
+ "_np_random": null
92
+ },
93
+ "action_space": {
94
+ ":type:": "<class 'gym.spaces.box.Box'>",
95
+ ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
96
+ "dtype": "float32",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "bounded_below": "[ True True True True True True True True]",
103
+ "bounded_above": "[ True True True True True True True True]",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4
107
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:656d78d76f33a9178475ec1d9ece8570c0681187751f0d0e600bf8977b227cf6
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5eb5fc2f21cfd5c602d8e86204f6ec5eb67e1ecd97ddbe81ee61959c0bc229bf
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.6
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c38413ffbe0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c38413ffc70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c38413ffd00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c38413ffd90>", "_build": "<function ActorCriticPolicy._build at 0x7c38413ffe20>", "forward": "<function ActorCriticPolicy.forward at 0x7c38413ffeb0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c38413fff40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c3841408040>", "_predict": "<function ActorCriticPolicy._predict at 0x7c38414080d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c3841408160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c38414081f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c3841408280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c38413f7440>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690184656129947739, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANRqSj8qzKg//QrnPYtLmD+hOpy/NKUivUlch77J05a/7n5GPwOtz7xTvRs/w7AWwJ4Vn79fDhE/YHpgvezyYj8e1EC/q6gPvOTPIz9KETq/yi7IvvyRwD1k5kY+cFoPQKXjkr9nPQE/s5vnv5vYfb/lo2BAz5faPhbBCj+In7u/Ov1kvpWuIL+3J8O9ulZzP/eeUr5bzCJAeC8QwFA1grzXEH0+YKCoPkXm4T/K7iPAaakTPvc33z9ktcI/LD6DwNv0iD8z2bY/5RHfvxXxvT+l45K/R4v9v7Ob57+b2H2/UkgeP38omb4AOd8+2U4fPGL7Uj9ad1A/gWaeP1A+t79/TEY/x8AzPbD6F7+3PmE/LTTPvnXUz74P4ge/u4qiv80Ykz85+86+p+g6PzXsGj/E9zK/nzp6PK0nbz18C9G/peOSv2c9AT/1eg0/m9h9v0VLP71wUDC9ENQEP6Bt0r1PHdI/287Nv5AIlT/Lh0E/rBNFP+VjD75O0kC/86AYv0q1SD+cyS2+KLa3v6f5gD11Eqk/cRIHveXa2z4TLZG/8nEkv29bmz6gzkG/R1BJPqXjkr9nPQE/9XoNPwkWgT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACGYCi3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAUHfmPQAAAAD9Stm/AAAAAAJlyb0AAAAAQnDzPwAAAABlrrW9AAAAACEB9j8AAAAA6WYHPgAAAADi+t+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgRAbNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGZzCDgAAAAAAp/bvwAAAAAi3sO8AAAAAK737z8AAAAAPKOePQAAAADUmvY/AAAAAPOQ4jwAAAAADHLuvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPEyirYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAG5Vi9AAAAAOT1AMAAAAAA+ZIFvgAAAABdQ/4/AAAAAELWeb0AAAAAdWLkPwAAAADWaz09AAAAADMG6L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABCg0U2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA58+COwAAAABc7/+/AAAAANQBCD4AAAAAL370PwAAAACl8L+9AAAAAIul2T8AAAAAbTG7vQAAAACrhOu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJoerQZ4wAWMAWyUTegDjAF0lEdAqnxwdU83dnV9lChoBkdAmCv4AOrhi2gHTegDaAhHQKqDhCEYfnx1fZQoaAZHQJwzPrJKaodoB03oA2gIR0Cqg/zw2ETQdX2UKGgGR0CcrWshxHXmaAdN6ANoCEdAqoSmR/3Fk3V9lChoBkdAm4str9ETg2gHTegDaAhHQKqKcyIHkcV1fZQoaAZHQJZh7NeMQ3BoB03oA2gIR0CqkHrF4s3AdX2UKGgGR0CbImhYeT3ZaAdN6ANoCEdAqpDwwXZXdXV9lChoBkdAm+o40EX+EWgHTegDaAhHQKqRlSMLncN1fZQoaAZHQJgO6aw2VFBoB03oA2gIR0CqmRXb/Ot5dX2UKGgGR0CdXFMIu5BkaAdN6ANoCEdAqp8JMURFqnV9lChoBkdAkd3jWbwz+GgHTegDaAhHQKqfiuW8h9t1fZQoaAZHQJpB3Kq4pc5oB03oA2gIR0CqoDVwYLssdX2UKGgGR0CZKE8baRISaAdN6ANoCEdAqqYEvGp++nV9lChoBkdAmWKfNqxkd2gHTegDaAhHQKqsC/HHWBl1fZQoaAZHQJvLWhlDneVoB03oA2gIR0CqrIm2b5M2dX2UKGgGR0CZOamtyPuHaAdN6ANoCEdAqq1C1Vo6CHV9lChoBkdAmwxlvES/TWgHTegDaAhHQKq01Dc/MW51fZQoaAZHQJz01JXhfjVoB03oA2gIR0CquvJNTLntdX2UKGgGR0Cbu8GPPszEaAdN6ANoCEdAqrtmG0u14XV9lChoBkdAmfPeTibUgGgHTegDaAhHQKq8EDGLk0d1fZQoaAZHQJxI6IoE0SBoB03oA2gIR0CqweEEC/47dX2UKGgGR0CdClBas6q9aAdN6ANoCEdAqsidj3Ehq3V9lChoBkdAmgEHXyy2QWgHTegDaAhHQKrJUcriEQJ1fZQoaAZHQJrD+EWZZ0VoB03oA2gIR0CqylzFl05mdX2UKGgGR0CYoCYhMajvaAdN6ANoCEdAqtDFc4YJmnV9lChoBkdAmHDWalUIcGgHTegDaAhHQKrWyqgAZKp1fZQoaAZHQJ0rgyAQQMBoB03oA2gIR0Cq10d4mkWRdX2UKGgGR0CWU46nzg/DaAdN6ANoCEdAqtf4kZ75VXV9lChoBkdAnrDmTgVGkWgHTegDaAhHQKrd0WuX/o91fZQoaAZHQJh8+gmJFb5oB03oA2gIR0Cq5ZHX/YJ3dX2UKGgGR0CXLTgXdj5LaAdN6ANoCEdAquYKo60Y0nV9lChoBkdAkWbe2iL2pWgHTegDaAhHQKrmqZflZHN1fZQoaAZHQJaep+4LCvZoB03oA2gIR0Cq7GfVZs9CdX2UKGgGR0CNWdAxi5NHaAdN6ANoCEdAqvKBcs189nV9lChoBkdAjjwf+CK77WgHTegDaAhHQKry+dzXBgx1fZQoaAZHQJMGR8rqdH5oB03oA2gIR0Cq86IkiUxEdX2UKGgGR0CZoKQk5ZKWaAdN6ANoCEdAqvmaYZ2pynV9lChoBkdAnB7B0hePaWgHTegDaAhHQKsBP0/4Zdh1fZQoaAZHQJshbhvR7Z5oB03oA2gIR0CrAb8EeQuFdX2UKGgGR0Ccl7PYWcjJaAdN6ANoCEdAqwJn58BuGnV9lChoBkdAl5LhKxs2vWgHTegDaAhHQKsILDJEH+t1fZQoaAZHQJxa/eMyaeBoB03oA2gIR0CrDjW7voeQdX2UKGgGR0CaHuUYKpkxaAdN6ANoCEdAqw6uCqZMMHV9lChoBkdAnIskgr6LwWgHTegDaAhHQKsPVzoUzsR1fZQoaAZHQJu3YyfthNNoB03oA2gIR0CrFk/CqIacdX2UKGgGR0Ce6mNKyv9taAdN6ANoCEdAqxzmWfK6nXV9lChoBkdAnRi+1jRUm2gHTegDaAhHQKsdX50r9VF1fZQoaAZHQJ0hG4TbnHNoB03oA2gIR0CrHgOez2OAdX2UKGgGR0CcckioKlYVaAdN6ANoCEdAqyOqlrM1THV9lChoBkdAmNOa2F36h2gHTegDaAhHQKspjzGxUvR1fZQoaAZHQJ4Nya+evp1oB03oA2gIR0CrKgVM23rldX2UKGgGR0CcQ5o0Q9RraAdN6ANoCEdAqyqrbnHNo3V9lChoBkdAoANrY/Vy3mgHTegDaAhHQKsyOCUX5311fZQoaAZHQJ6wMDDCP6toB03oA2gIR0CrOBf8/D+BdX2UKGgGR0CfgBsRg7YDaAdN6ANoCEdAqziR4IKMN3V9lChoBkdAnIkxRhttRGgHTegDaAhHQKs5OtknTiN1fZQoaAZHQJyiD5RCQcRoB03oA2gIR0CrPvNqpLmIdX2UKGgGR0CYj4tTkyULaAdN6ANoCEdAq0ThyKekHnV9lChoBkdAnYAkEX+ERWgHTegDaAhHQKtFWi8Fpwl1fZQoaAZHQKA0ypd8iOhoB03oA2gIR0CrRjqbjLjhdX2UKGgGR0CeQALDye7MaAdN6ANoCEdAq0/RakhzNnV9lChoBkdAmmBbdrO7hGgHTegDaAhHQKtVxlijL0V1fZQoaAZHQJz43pPhybRoB03oA2gIR0CrVkaKcd5qdX2UKGgGR0CcMwXrMTviaAdN6ANoCEdAq1bnrhR64XV9lChoBkdAmrWVP3ztkWgHTegDaAhHQKtcomKIi1R1fZQoaAZHQJ+Zqv7m+0xoB03oA2gIR0CrY5AE2YOUdX2UKGgGR0CfvxNvwVj7aAdN6ANoCEdAq2RPmLcbi3V9lChoBkdAn3INcKPXCmgHTegDaAhHQKtlTMTviLl1fZQoaAZHQJ+mltsN2DBoB03oA2gIR0Cra0NO/L1VdX2UKGgGR0CeaiIdlum8aAdN6ANoCEdAq3EubAk9lnV9lChoBkdAmbSeAy2x6mgHTegDaAhHQKtxrBF/hEV1fZQoaAZHQJtl2hmGucNoB03oA2gIR0CrclEq2BrfdX2UKGgGR0CZ+QMDOkckaAdN6ANoCEdAq3gKIcinpHV9lChoBkdAnocpZW7vomgHTegDaAhHQKt/2M4LkS51fZQoaAZHQJ+yzTuv2XdoB03oA2gIR0CrgFgiu+yrdX2UKGgGR0CeQcB3A2ycaAdN6ANoCEdAq4D/5eqrBHV9lChoBkdAnBUa+zt1IWgHTegDaAhHQKuGtqhUR4B1fZQoaAZHQKCxdYlIEr5oB03oA2gIR0CrjImPPszEdX2UKGgGR0CWsTBzmwJPaAdN6ANoCEdAq40Bfx+a0HV9lChoBkdAmnOdkSVW0mgHTegDaAhHQKuNpgWrOqx1fZQoaAZHQJWrQ6/7BO5oB03oA2gIR0Crk8ymALApdX2UKGgGR0Ccns+1jRUnaAdN6ANoCEdAq5st2xIJ7nV9lChoBkdAlnreTV2A5WgHTegDaAhHQKubrpHqeK91fZQoaAZHQJTls2tMfzVoB03oA2gIR0CrnFggX/HYdX2UKGgGR0Cd604oqkM1aAdN6ANoCEdAq6IhiRW913V9lChoBkdAnOXOokzGgmgHTegDaAhHQKuoL0J4SpR1fZQoaAZHQJvte/IsAedoB03oA2gIR0CrqKh9b5dodX2UKGgGR0CdLwaRZEDyaAdN6ANoCEdAq6lQ5aNdaHV9lChoBkdAnGGMZDRc/2gHTegDaAhHQKuwVqZc9nt1fZQoaAZHQJh0SMJhOQBoB03oA2gIR0CrtqjhLoOhdX2UKGgGR0CbmerLyMDPaAdN6ANoCEdAq7ch84Pwu3V9lChoBkdAnGr+mNzbOGgHTegDaAhHQKu3xnA6+391fZQoaAZHQJ698oUi6hBoB03oA2gIR0CrvY9LQHAzdX2UKGgGR0CeiVJWNm16aAdN6ANoCEdAq8OEVvddmnV9lChoBkdAner2JWNm2GgHTegDaAhHQKvD/Q3PzFx1fZQoaAZHQJ6adokAxSJoB03oA2gIR0CrxKmiHqNZdX2UKGgGR0Cc5W1EE1VHaAdN6ANoCEdAq8xLT+ee4HV9lChoBkdAnE0casIVumgHTegDaAhHQKvSL85S3sp1fZQoaAZHQJqSu3kPtlZoB03oA2gIR0Cr0qgi3XqadX2UKGgGR0CZcGY02tMgaAdN6ANoCEdAq9NPyy2QXHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8319d32b4d4c94ede263bfec24d5a479de4d13079ca351fc3ba01781ca492316
3
+ size 1084292
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1669.2327139992528, "std_reward": 142.5613701519824, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-24T09:18:02.416037"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76475cc5371638a7049ef4cdac44e777a861a7fa35b889d5c80d48e05f041e87
3
+ size 2176