Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +59 -35
- gpt2_no_positional_encoding_model.py +427 -0
- hop_surprisal/hop_surprisal.ipynb +223 -0
- impossible_llm.yaml +154 -0
- impossible_llm_update.yaml +162 -0
- requirements.txt +94 -0
- requirements_1.txt +51 -0
- requirements_2.txt +82 -0
- test.py +23 -0
- train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/artifacts/models--meta-llama--Llama-3.2-3B/refs/main +1 -0
- train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/artifacts/models--meta-llama--Llama-3.2-3B/snapshots/5cc0ffe09ee49f7be6ca7c794ee6bd7245e84e60/generation_config.json +9 -0
- train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/artifacts/models--meta-llama--Llama-3.2-3B/snapshots/5cc0ffe09ee49f7be6ca7c794ee6bd7245e84e60/model.safetensors.index.json +261 -0
- train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1050/tokenizer.json +3 -0
- train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1050/tokenizer_config.json +2078 -0
- train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1200/config.json +36 -0
- train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1200/rng_state_0.pth +3 -0
- train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1200/rng_state_1.pth +3 -0
- train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1200/rng_state_2.pth +3 -0
- train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1200/rng_state_3.pth +3 -0
- train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1200/rng_state_4.pth +3 -0
- train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1200/rng_state_5.pth +3 -0
- train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1200/rng_state_6.pth +3 -0
- train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1200/scheduler.pt +3 -0
- train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1200/training_args.bin +3 -0
- train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1350/config.json +36 -0
- train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1350/generation_config.json +9 -0
- train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1350/latest +1 -0
- train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1350/model.safetensors.index.json +262 -0
- train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1350/special_tokens_map.json +23 -0
- train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1350/trainer_state.json +96 -0
- train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1500/config.json +36 -0
- train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1500/generation_config.json +9 -0
- train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1500/latest +1 -0
- train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1500/model.safetensors.index.json +262 -0
- train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1500/rng_state_2.pth +3 -0
- train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1500/rng_state_6.pth +3 -0
- train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1500/special_tokens_map.json +23 -0
- train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1500/tokenizer_config.json +2078 -0
- train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1500/trainer_state.json +103 -0
- train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1500/zero_to_fp32.py +604 -0
- train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1650/config.json +36 -0
- train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1650/generation_config.json +9 -0
- train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1650/latest +1 -0
- train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1650/rng_state_3.pth +3 -0
- train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1650/rng_state_6.pth +3 -0
- train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1650/scheduler.pt +3 -0
- train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1650/training_args.bin +3 -0
- train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1650/zero_to_fp32.py +604 -0
- train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1800/config.json +36 -0
- train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1800/generation_config.json +9 -0
.gitattributes
CHANGED
@@ -1,35 +1,59 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
data/babylm_data/* filter=lfs diff=lfs merge=lfs -text
|
2 |
+
data/Perturbed_data/* filter=lfs diff=lfs merge=lfs -text
|
3 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-2080/rng_state_1.pth filter=lfs diff=lfs merge=lfs -text
|
4 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1200/rng_state_4.pth filter=lfs diff=lfs merge=lfs -text
|
5 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1200/training_args.bin filter=lfs diff=lfs merge=lfs -text
|
6 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1200/rng_state_0.pth filter=lfs diff=lfs merge=lfs -text
|
7 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-300/scheduler.pt filter=lfs diff=lfs merge=lfs -text
|
8 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1200/rng_state_5.pth filter=lfs diff=lfs merge=lfs -text
|
9 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1200/rng_state_1.pth filter=lfs diff=lfs merge=lfs -text
|
10 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-2080/rng_state_2.pth filter=lfs diff=lfs merge=lfs -text
|
11 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-2080/rng_state_5.pth filter=lfs diff=lfs merge=lfs -text
|
12 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-2080/training_args.bin filter=lfs diff=lfs merge=lfs -text
|
13 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-2080/scheduler.pt filter=lfs diff=lfs merge=lfs -text
|
14 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-2080/rng_state_4.pth filter=lfs diff=lfs merge=lfs -text
|
15 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-2080/rng_state_3.pth filter=lfs diff=lfs merge=lfs -text
|
16 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1650/training_args.bin filter=lfs diff=lfs merge=lfs -text
|
17 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1650/rng_state_6.pth filter=lfs diff=lfs merge=lfs -text
|
18 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1650/scheduler.pt filter=lfs diff=lfs merge=lfs -text
|
19 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1650/rng_state_3.pth filter=lfs diff=lfs merge=lfs -text
|
20 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1950/scheduler.pt filter=lfs diff=lfs merge=lfs -text
|
21 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-600/rng_state_0.pth filter=lfs diff=lfs merge=lfs -text
|
22 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-600/rng_state_5.pth filter=lfs diff=lfs merge=lfs -text
|
23 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-600/scheduler.pt filter=lfs diff=lfs merge=lfs -text
|
24 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-600/rng_state_2.pth filter=lfs diff=lfs merge=lfs -text
|
25 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1050/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
26 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-300/rng_state_3.pth filter=lfs diff=lfs merge=lfs -text
|
27 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-600/rng_state_1.pth filter=lfs diff=lfs merge=lfs -text
|
28 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-300/rng_state_4.pth filter=lfs diff=lfs merge=lfs -text
|
29 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-300/training_args.bin filter=lfs diff=lfs merge=lfs -text
|
30 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-600/training_args.bin filter=lfs diff=lfs merge=lfs -text
|
31 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-300/rng_state_2.pth filter=lfs diff=lfs merge=lfs -text
|
32 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-300/rng_state_5.pth filter=lfs diff=lfs merge=lfs -text
|
33 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-300/rng_state_1.pth filter=lfs diff=lfs merge=lfs -text
|
34 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1200/rng_state_6.pth filter=lfs diff=lfs merge=lfs -text
|
35 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1200/scheduler.pt filter=lfs diff=lfs merge=lfs -text
|
36 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-450/rng_state_2.pth filter=lfs diff=lfs merge=lfs -text
|
37 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1200/rng_state_3.pth filter=lfs diff=lfs merge=lfs -text
|
38 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-450/training_args.bin filter=lfs diff=lfs merge=lfs -text
|
39 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1200/rng_state_2.pth filter=lfs diff=lfs merge=lfs -text
|
40 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1500/rng_state_2.pth filter=lfs diff=lfs merge=lfs -text
|
41 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-450/rng_state_4.pth filter=lfs diff=lfs merge=lfs -text
|
42 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-450/rng_state_5.pth filter=lfs diff=lfs merge=lfs -text
|
43 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-900/rng_state_0.pth filter=lfs diff=lfs merge=lfs -text
|
44 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-900/rng_state_4.pth filter=lfs diff=lfs merge=lfs -text
|
45 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-900/rng_state_6.pth filter=lfs diff=lfs merge=lfs -text
|
46 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-900/rng_state_1.pth filter=lfs diff=lfs merge=lfs -text
|
47 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-450/scheduler.pt filter=lfs diff=lfs merge=lfs -text
|
48 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-900/rng_state_3.pth filter=lfs diff=lfs merge=lfs -text
|
49 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-450/rng_state_1.pth filter=lfs diff=lfs merge=lfs -text
|
50 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-900/rng_state_2.pth filter=lfs diff=lfs merge=lfs -text
|
51 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-450/rng_state_6.pth filter=lfs diff=lfs merge=lfs -text
|
52 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-900/rng_state_5.pth filter=lfs diff=lfs merge=lfs -text
|
53 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1800/rng_state_5.pth filter=lfs diff=lfs merge=lfs -text
|
54 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-900/scheduler.pt filter=lfs diff=lfs merge=lfs -text
|
55 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1800/training_args.bin filter=lfs diff=lfs merge=lfs -text
|
56 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1800/rng_state_1.pth filter=lfs diff=lfs merge=lfs -text
|
57 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1950/rng_state_0.pth filter=lfs diff=lfs merge=lfs -text
|
58 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-450/rng_state_3.pth filter=lfs diff=lfs merge=lfs -text
|
59 |
+
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1500/rng_state_6.pth filter=lfs diff=lfs merge=lfs -text
|
gpt2_no_positional_encoding_model.py
ADDED
@@ -0,0 +1,427 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# gpt2_no_positional_encoding_model.py
|
2 |
+
# Adapted from Huggingface's transformers library
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from transformers.models.gpt2.modeling_gpt2 import GPT2Block, GPT2PreTrainedModel
|
6 |
+
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions, BaseModelOutputWithPastAndCrossAttentions
|
7 |
+
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
|
8 |
+
from torch import nn
|
9 |
+
from torch.nn import CrossEntropyLoss
|
10 |
+
from typing import Optional, Tuple, Union
|
11 |
+
|
12 |
+
class GPT2NoPositionalEncodingModel(GPT2PreTrainedModel):
|
13 |
+
def __init__(self, config):
|
14 |
+
super().__init__(config)
|
15 |
+
|
16 |
+
self.embed_dim = config.hidden_size
|
17 |
+
|
18 |
+
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
|
19 |
+
|
20 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
21 |
+
self.h = nn.ModuleList([GPT2Block(config, layer_idx=i) for i in range(config.num_hidden_layers)])
|
22 |
+
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
23 |
+
|
24 |
+
# Model parallel
|
25 |
+
self.model_parallel = False
|
26 |
+
self.device_map = None
|
27 |
+
self.gradient_checkpointing = False
|
28 |
+
|
29 |
+
# Initialize weights and apply final processing
|
30 |
+
self.post_init()
|
31 |
+
|
32 |
+
def parallelize(self, device_map=None):
|
33 |
+
# Check validity of device_map
|
34 |
+
self.device_map = (
|
35 |
+
get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map
|
36 |
+
)
|
37 |
+
assert_device_map(self.device_map, len(self.h))
|
38 |
+
self.model_parallel = True
|
39 |
+
self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
|
40 |
+
self.last_device = "cuda:" + str(max(self.device_map.keys()))
|
41 |
+
self.wte = self.wte.to(self.first_device)
|
42 |
+
# Load onto devices
|
43 |
+
for k, v in self.device_map.items():
|
44 |
+
for block in v:
|
45 |
+
cuda_device = "cuda:" + str(k)
|
46 |
+
self.h[block] = self.h[block].to(cuda_device)
|
47 |
+
# ln_f to last
|
48 |
+
self.ln_f = self.ln_f.to(self.last_device)
|
49 |
+
|
50 |
+
def deparallelize(self):
|
51 |
+
self.model_parallel = False
|
52 |
+
self.device_map = None
|
53 |
+
self.first_device = "cpu"
|
54 |
+
self.last_device = "cpu"
|
55 |
+
self.wte = self.wte.to("cpu")
|
56 |
+
for index in range(len(self.h)):
|
57 |
+
self.h[index] = self.h[index].to("cpu")
|
58 |
+
self.ln_f = self.ln_f.to("cpu")
|
59 |
+
torch.cuda.empty_cache()
|
60 |
+
|
61 |
+
def get_input_embeddings(self):
|
62 |
+
return self.wte
|
63 |
+
|
64 |
+
def set_input_embeddings(self, new_embeddings):
|
65 |
+
self.wte = new_embeddings
|
66 |
+
|
67 |
+
def _prune_heads(self, heads_to_prune):
|
68 |
+
"""
|
69 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
|
70 |
+
"""
|
71 |
+
for layer, heads in heads_to_prune.items():
|
72 |
+
self.h[layer].attn.prune_heads(heads)
|
73 |
+
|
74 |
+
def forward(
|
75 |
+
self,
|
76 |
+
input_ids: Optional[torch.LongTensor] = None,
|
77 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
78 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
79 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
80 |
+
position_ids: Optional[torch.LongTensor] = None,
|
81 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
82 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
83 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
84 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
85 |
+
use_cache: Optional[bool] = None,
|
86 |
+
output_attentions: Optional[bool] = None,
|
87 |
+
output_hidden_states: Optional[bool] = None,
|
88 |
+
return_dict: Optional[bool] = None,
|
89 |
+
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
90 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
91 |
+
output_hidden_states = (
|
92 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
93 |
+
)
|
94 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
95 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
96 |
+
|
97 |
+
if input_ids is not None and inputs_embeds is not None:
|
98 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
99 |
+
elif input_ids is not None:
|
100 |
+
input_shape = input_ids.size()
|
101 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
102 |
+
batch_size = input_ids.shape[0]
|
103 |
+
elif inputs_embeds is not None:
|
104 |
+
input_shape = inputs_embeds.size()[:-1]
|
105 |
+
batch_size = inputs_embeds.shape[0]
|
106 |
+
else:
|
107 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
108 |
+
|
109 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
110 |
+
|
111 |
+
if token_type_ids is not None:
|
112 |
+
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
113 |
+
|
114 |
+
if past_key_values is None:
|
115 |
+
past_length = 0
|
116 |
+
past_key_values = tuple([None] * len(self.h))
|
117 |
+
else:
|
118 |
+
past_length = past_key_values[0][0].size(-2)
|
119 |
+
if position_ids is None:
|
120 |
+
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
|
121 |
+
position_ids = position_ids.unsqueeze(0)
|
122 |
+
|
123 |
+
# GPT2Attention mask.
|
124 |
+
if attention_mask is not None:
|
125 |
+
if batch_size <= 0:
|
126 |
+
raise ValueError("batch_size has to be defined and > 0")
|
127 |
+
attention_mask = attention_mask.view(batch_size, -1)
|
128 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
129 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
130 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
131 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
132 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
133 |
+
attention_mask = attention_mask[:, None, None, :]
|
134 |
+
|
135 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
136 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
137 |
+
# positions we want to attend and the dtype's smallest value for masked positions.
|
138 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
139 |
+
# effectively the same as removing these entirely.
|
140 |
+
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
141 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
142 |
+
|
143 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
144 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
145 |
+
if self.config.add_cross_attention and encoder_hidden_states is not None:
|
146 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
147 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
148 |
+
if encoder_attention_mask is None:
|
149 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
150 |
+
encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
151 |
+
else:
|
152 |
+
encoder_attention_mask = None
|
153 |
+
|
154 |
+
# Prepare head mask if needed
|
155 |
+
# 1.0 in head_mask indicate we keep the head
|
156 |
+
# attention_probs has shape bsz x n_heads x N x N
|
157 |
+
# head_mask has shape n_layer x batch x n_heads x N x N
|
158 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
159 |
+
|
160 |
+
if inputs_embeds is None:
|
161 |
+
inputs_embeds = self.wte(input_ids)
|
162 |
+
hidden_states = inputs_embeds
|
163 |
+
|
164 |
+
if token_type_ids is not None:
|
165 |
+
token_type_embeds = self.wte(token_type_ids)
|
166 |
+
hidden_states = hidden_states + token_type_embeds
|
167 |
+
|
168 |
+
hidden_states = self.drop(hidden_states)
|
169 |
+
|
170 |
+
output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
|
171 |
+
|
172 |
+
if self.gradient_checkpointing and self.training:
|
173 |
+
if use_cache:
|
174 |
+
use_cache = False
|
175 |
+
|
176 |
+
presents = () if use_cache else None
|
177 |
+
all_self_attentions = () if output_attentions else None
|
178 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
179 |
+
all_hidden_states = () if output_hidden_states else None
|
180 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
181 |
+
# Model parallel
|
182 |
+
if self.model_parallel:
|
183 |
+
torch.cuda.set_device(hidden_states.device)
|
184 |
+
# Ensure layer_past is on same device as hidden_states (might not be correct)
|
185 |
+
if layer_past is not None:
|
186 |
+
layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
|
187 |
+
# Ensure that attention_mask is always on the same device as hidden_states
|
188 |
+
if attention_mask is not None:
|
189 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
190 |
+
if isinstance(head_mask, torch.Tensor):
|
191 |
+
head_mask = head_mask.to(hidden_states.device)
|
192 |
+
if output_hidden_states:
|
193 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
194 |
+
|
195 |
+
if self.gradient_checkpointing and self.training:
|
196 |
+
outputs = self._gradient_checkpointing_func(
|
197 |
+
block.__call__,
|
198 |
+
hidden_states,
|
199 |
+
None,
|
200 |
+
attention_mask,
|
201 |
+
head_mask[i],
|
202 |
+
encoder_hidden_states,
|
203 |
+
encoder_attention_mask,
|
204 |
+
use_cache,
|
205 |
+
output_attentions,
|
206 |
+
)
|
207 |
+
else:
|
208 |
+
outputs = block(
|
209 |
+
hidden_states,
|
210 |
+
layer_past=layer_past,
|
211 |
+
attention_mask=attention_mask,
|
212 |
+
head_mask=head_mask[i],
|
213 |
+
encoder_hidden_states=encoder_hidden_states,
|
214 |
+
encoder_attention_mask=encoder_attention_mask,
|
215 |
+
use_cache=use_cache,
|
216 |
+
output_attentions=output_attentions,
|
217 |
+
)
|
218 |
+
|
219 |
+
hidden_states = outputs[0]
|
220 |
+
if use_cache is True:
|
221 |
+
presents = presents + (outputs[1],)
|
222 |
+
|
223 |
+
if output_attentions:
|
224 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
225 |
+
if self.config.add_cross_attention:
|
226 |
+
all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
|
227 |
+
|
228 |
+
# Model Parallel: If it's the last layer for that device, put things on the next device
|
229 |
+
if self.model_parallel:
|
230 |
+
for k, v in self.device_map.items():
|
231 |
+
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
232 |
+
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
233 |
+
|
234 |
+
hidden_states = self.ln_f(hidden_states)
|
235 |
+
|
236 |
+
hidden_states = hidden_states.view(output_shape)
|
237 |
+
# Add last hidden state
|
238 |
+
if output_hidden_states:
|
239 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
240 |
+
|
241 |
+
if not return_dict:
|
242 |
+
return tuple(
|
243 |
+
v
|
244 |
+
for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
|
245 |
+
if v is not None
|
246 |
+
)
|
247 |
+
|
248 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
249 |
+
last_hidden_state=hidden_states,
|
250 |
+
past_key_values=presents,
|
251 |
+
hidden_states=all_hidden_states,
|
252 |
+
attentions=all_self_attentions,
|
253 |
+
cross_attentions=all_cross_attentions,
|
254 |
+
)
|
255 |
+
|
256 |
+
class GPT2NoPositionalEncodingLMHeadModel(GPT2PreTrainedModel):
|
257 |
+
_tied_weights_keys = ["lm_head.weight"]
|
258 |
+
|
259 |
+
def __init__(self, config):
|
260 |
+
super().__init__(config)
|
261 |
+
self.transformer = GPT2NoPositionalEncodingModel(config)
|
262 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
263 |
+
|
264 |
+
# Model parallel
|
265 |
+
self.model_parallel = False
|
266 |
+
self.device_map = None
|
267 |
+
|
268 |
+
# Initialize weights and apply final processing
|
269 |
+
self.post_init()
|
270 |
+
|
271 |
+
def parallelize(self, device_map=None):
|
272 |
+
self.device_map = (
|
273 |
+
get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
|
274 |
+
if device_map is None
|
275 |
+
else device_map
|
276 |
+
)
|
277 |
+
assert_device_map(self.device_map, len(self.transformer.h))
|
278 |
+
self.transformer.parallelize(self.device_map)
|
279 |
+
self.lm_head = self.lm_head.to(self.transformer.first_device)
|
280 |
+
self.model_parallel = True
|
281 |
+
|
282 |
+
def deparallelize(self):
|
283 |
+
self.transformer.deparallelize()
|
284 |
+
self.transformer = self.transformer.to("cpu")
|
285 |
+
self.lm_head = self.lm_head.to("cpu")
|
286 |
+
self.model_parallel = False
|
287 |
+
torch.cuda.empty_cache()
|
288 |
+
|
289 |
+
def get_output_embeddings(self):
|
290 |
+
return self.lm_head
|
291 |
+
|
292 |
+
def set_output_embeddings(self, new_embeddings):
|
293 |
+
self.lm_head = new_embeddings
|
294 |
+
|
295 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
|
296 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
297 |
+
# Omit tokens covered by past_key_values
|
298 |
+
if past_key_values:
|
299 |
+
past_length = past_key_values[0][0].shape[2]
|
300 |
+
|
301 |
+
# Some generation methods already pass only the last input ID
|
302 |
+
if input_ids.shape[1] > past_length:
|
303 |
+
remove_prefix_length = past_length
|
304 |
+
else:
|
305 |
+
# Default to old behavior: keep only final ID
|
306 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
307 |
+
|
308 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
309 |
+
if token_type_ids is not None:
|
310 |
+
token_type_ids = token_type_ids[:, -input_ids.shape[1] :]
|
311 |
+
|
312 |
+
attention_mask = kwargs.get("attention_mask", None)
|
313 |
+
position_ids = kwargs.get("position_ids", None)
|
314 |
+
|
315 |
+
if attention_mask is not None and position_ids is None:
|
316 |
+
# create position_ids on the fly for batch generation
|
317 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
318 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
319 |
+
if past_key_values:
|
320 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
321 |
+
else:
|
322 |
+
position_ids = None
|
323 |
+
|
324 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
325 |
+
if inputs_embeds is not None and past_key_values is None:
|
326 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
327 |
+
else:
|
328 |
+
model_inputs = {"input_ids": input_ids}
|
329 |
+
|
330 |
+
model_inputs.update(
|
331 |
+
{
|
332 |
+
"past_key_values": past_key_values,
|
333 |
+
"use_cache": kwargs.get("use_cache"),
|
334 |
+
"position_ids": position_ids,
|
335 |
+
"attention_mask": attention_mask,
|
336 |
+
"token_type_ids": token_type_ids,
|
337 |
+
}
|
338 |
+
)
|
339 |
+
|
340 |
+
return model_inputs
|
341 |
+
|
342 |
+
def forward(
|
343 |
+
self,
|
344 |
+
input_ids: Optional[torch.LongTensor] = None,
|
345 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
346 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
347 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
348 |
+
position_ids: Optional[torch.LongTensor] = None,
|
349 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
350 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
351 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
352 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
353 |
+
labels: Optional[torch.LongTensor] = None,
|
354 |
+
use_cache: Optional[bool] = None,
|
355 |
+
output_attentions: Optional[bool] = None,
|
356 |
+
output_hidden_states: Optional[bool] = None,
|
357 |
+
return_dict: Optional[bool] = None,
|
358 |
+
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
|
359 |
+
r"""
|
360 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
361 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
362 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
363 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
364 |
+
"""
|
365 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
366 |
+
|
367 |
+
transformer_outputs = self.transformer(
|
368 |
+
input_ids,
|
369 |
+
past_key_values=past_key_values,
|
370 |
+
attention_mask=attention_mask,
|
371 |
+
token_type_ids=token_type_ids,
|
372 |
+
position_ids=position_ids,
|
373 |
+
head_mask=head_mask,
|
374 |
+
inputs_embeds=inputs_embeds,
|
375 |
+
encoder_hidden_states=encoder_hidden_states,
|
376 |
+
encoder_attention_mask=encoder_attention_mask,
|
377 |
+
use_cache=use_cache,
|
378 |
+
output_attentions=output_attentions,
|
379 |
+
output_hidden_states=output_hidden_states,
|
380 |
+
return_dict=return_dict,
|
381 |
+
)
|
382 |
+
hidden_states = transformer_outputs[0]
|
383 |
+
|
384 |
+
# Set device for model parallelism
|
385 |
+
if self.model_parallel:
|
386 |
+
torch.cuda.set_device(self.transformer.first_device)
|
387 |
+
hidden_states = hidden_states.to(self.lm_head.weight.device)
|
388 |
+
|
389 |
+
lm_logits = self.lm_head(hidden_states)
|
390 |
+
|
391 |
+
loss = None
|
392 |
+
if labels is not None:
|
393 |
+
# move labels to correct device to enable model parallelism
|
394 |
+
labels = labels.to(lm_logits.device)
|
395 |
+
# Shift so that tokens < n predict n
|
396 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
397 |
+
shift_labels = labels[..., 1:].contiguous()
|
398 |
+
# Flatten the tokens
|
399 |
+
loss_fct = CrossEntropyLoss()
|
400 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
401 |
+
|
402 |
+
if not return_dict:
|
403 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
404 |
+
return ((loss,) + output) if loss is not None else output
|
405 |
+
|
406 |
+
return CausalLMOutputWithCrossAttentions(
|
407 |
+
loss=loss,
|
408 |
+
logits=lm_logits,
|
409 |
+
past_key_values=transformer_outputs.past_key_values,
|
410 |
+
hidden_states=transformer_outputs.hidden_states,
|
411 |
+
attentions=transformer_outputs.attentions,
|
412 |
+
cross_attentions=transformer_outputs.cross_attentions,
|
413 |
+
)
|
414 |
+
|
415 |
+
@staticmethod
|
416 |
+
def _reorder_cache(
|
417 |
+
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
|
418 |
+
) -> Tuple[Tuple[torch.Tensor]]:
|
419 |
+
"""
|
420 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
421 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
422 |
+
beam_idx at every generation step.
|
423 |
+
"""
|
424 |
+
return tuple(
|
425 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
426 |
+
for layer_past in past_key_values
|
427 |
+
)
|
hop_surprisal/hop_surprisal.ipynb
ADDED
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"# For importing utils\n",
|
10 |
+
"import sys\n",
|
11 |
+
"sys.path.append(\"..\")"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "code",
|
16 |
+
"execution_count": 2,
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [
|
19 |
+
{
|
20 |
+
"name": "stderr",
|
21 |
+
"output_type": "stream",
|
22 |
+
"text": [
|
23 |
+
"/nlp/scr/kallini/miniconda3/envs/llmenv/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
24 |
+
" from .autonotebook import tqdm as notebook_tqdm\n"
|
25 |
+
]
|
26 |
+
}
|
27 |
+
],
|
28 |
+
"source": [
|
29 |
+
"import numpy as np\n",
|
30 |
+
"import pandas as pd\n",
|
31 |
+
"import matplotlib.pyplot as plt\n",
|
32 |
+
"from matplotlib.patches import Patch\n",
|
33 |
+
"from scipy import stats\n",
|
34 |
+
"from utils import PERTURBATIONS"
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"cell_type": "code",
|
39 |
+
"execution_count": 3,
|
40 |
+
"metadata": {},
|
41 |
+
"outputs": [],
|
42 |
+
"source": [
|
43 |
+
"def get_surprisal_differences(perturbation, seed, ckpt, pos_encodings=True):\n",
|
44 |
+
"\n",
|
45 |
+
" # Load surprisal DataFrame\n",
|
46 |
+
" surprisals_path = \"hop_surprisal_results/{}_100M{}/randinit_seed{}.csv\"\n",
|
47 |
+
" nps = \"\" if pos_encodings else \"_no_positional_encodings\"\n",
|
48 |
+
" surprisal_df = pd.read_csv(surprisals_path.format(perturbation, nps, seed))\n",
|
49 |
+
" \n",
|
50 |
+
" # Get summary stats for suprisal differences\n",
|
51 |
+
" marker_token_surprisals = surprisal_df[f\"Marker Token Surprisals (ckpt {ckpt})\"]\n",
|
52 |
+
" nomarker_token_surprisals = surprisal_df[f\"No Marker Token Surprisals (ckpt {ckpt})\"]\n",
|
53 |
+
" differences = nomarker_token_surprisals - marker_token_surprisals\n",
|
54 |
+
" avg_differences = differences.mean()\n",
|
55 |
+
"\n",
|
56 |
+
" return avg_differences\n",
|
57 |
+
"\n",
|
58 |
+
"def get_summary_stats(l):\n",
|
59 |
+
" # Calculate confidence interval using t-distribution\n",
|
60 |
+
" mean = np.mean(l)\n",
|
61 |
+
" sem = stats.sem(l)\n",
|
62 |
+
" ci_lower, ci_upper = stats.t.interval(0.95, df=len(l)-1, loc=mean, scale=sem)\n",
|
63 |
+
" return mean, (ci_upper - ci_lower) / 2\n",
|
64 |
+
" "
|
65 |
+
]
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"cell_type": "code",
|
69 |
+
"execution_count": 4,
|
70 |
+
"metadata": {},
|
71 |
+
"outputs": [],
|
72 |
+
"source": [
|
73 |
+
"def plot_surprisal_differences(ax, seeds, ckpt, colors, hatches, pos_encodings):\n",
|
74 |
+
"\n",
|
75 |
+
" hop_control_seeds = []\n",
|
76 |
+
" hop_tokens4_seeds = []\n",
|
77 |
+
" hop_words4_seeds = []\n",
|
78 |
+
" for seed in seeds:\n",
|
79 |
+
" # Get summary stats for each hop model\n",
|
80 |
+
" avg_hop_control = get_surprisal_differences(\"hop_control\", seed, ckpt, pos_encodings)\n",
|
81 |
+
" avg_hop_tokens4 = get_surprisal_differences(\"hop_tokens4\", seed, ckpt, pos_encodings)\n",
|
82 |
+
" avg_hop_words4 = get_surprisal_differences(\"hop_words4\", seed, ckpt, pos_encodings)\n",
|
83 |
+
"\n",
|
84 |
+
" # Append results\n",
|
85 |
+
" hop_control_seeds.append(avg_hop_control)\n",
|
86 |
+
" hop_tokens4_seeds.append(avg_hop_tokens4)\n",
|
87 |
+
" hop_words4_seeds.append(avg_hop_words4)\n",
|
88 |
+
"\n",
|
89 |
+
" if len(seeds) > 1:\n",
|
90 |
+
" # Prepare data to plot\n",
|
91 |
+
" summary_stats = [\n",
|
92 |
+
" get_summary_stats(hop_control_seeds),\n",
|
93 |
+
" get_summary_stats(hop_tokens4_seeds),\n",
|
94 |
+
" get_summary_stats(hop_words4_seeds)\n",
|
95 |
+
" ]\n",
|
96 |
+
" else:\n",
|
97 |
+
" summary_stats = [\n",
|
98 |
+
" (hop_control_seeds[0], 0),\n",
|
99 |
+
" (hop_tokens4_seeds[0], 0),\n",
|
100 |
+
" (hop_words4_seeds[0], 0),\n",
|
101 |
+
" ]\n",
|
102 |
+
"\n",
|
103 |
+
" x = np.arange(3) # label locations\n",
|
104 |
+
" width = 0.8 # width of the bars\n",
|
105 |
+
"\n",
|
106 |
+
" # Iterate over pos / no pos groups\n",
|
107 |
+
" for i, (avg, err) in enumerate(summary_stats):\n",
|
108 |
+
" # Iterate over models and plot bars\n",
|
109 |
+
" color = colors[i]\n",
|
110 |
+
" hatch = hatches[i]\n",
|
111 |
+
" ax.bar(x[i], avg, width, yerr=err, label=None,\n",
|
112 |
+
" color=color, hatch=hatch, edgecolor=\"w\", zorder=2)\n",
|
113 |
+
"\n",
|
114 |
+
" ax.set_xticks([])\n",
|
115 |
+
" ax.grid(zorder=0, color=\"lightgray\")\n",
|
116 |
+
" ax.set_title(f\"{ckpt} Steps\")\n",
|
117 |
+
"\n",
|
118 |
+
"\n",
|
119 |
+
"def plot_surprisal_differences_checkpoints(seeds, checkpoints, pos_encodings=True):\n",
|
120 |
+
"\n",
|
121 |
+
" # Colors patterns for bars\n",
|
122 |
+
" color1=PERTURBATIONS[\"hop_control\"][\"color\"]\n",
|
123 |
+
" color2=PERTURBATIONS[\"hop_tokens4\"][\"color\"]\n",
|
124 |
+
" color3=PERTURBATIONS[\"hop_words4\"][\"color\"]\n",
|
125 |
+
" colors = [color1, color2, color3]\n",
|
126 |
+
"\n",
|
127 |
+
" hatch1 = ''\n",
|
128 |
+
" hatch2 = '///'\n",
|
129 |
+
" hatch3 = '..'\n",
|
130 |
+
" hatches = [hatch1, hatch2, hatch3]\n",
|
131 |
+
"\n",
|
132 |
+
" # Create a figure with multiple subplots\n",
|
133 |
+
" fig, axs = plt.subplots(2, 3, figsize=(6, 4), sharey=True)\n",
|
134 |
+
" axes_flat = axs.flatten()\n",
|
135 |
+
"\n",
|
136 |
+
" # Call individual plot function with different parameters for each subplot\n",
|
137 |
+
" for i, checkpoint in enumerate(checkpoints):\n",
|
138 |
+
" plot_surprisal_differences(\n",
|
139 |
+
" axes_flat[i], seeds, checkpoint, colors, hatches, pos_encodings)\n",
|
140 |
+
"\n",
|
141 |
+
" legend_elements = [Patch(facecolor=color1, hatch=hatch1,\n",
|
142 |
+
" edgecolor=\"w\", label='NoHop'),\n",
|
143 |
+
" Patch(facecolor=color2, hatch=hatch2,\n",
|
144 |
+
" edgecolor=\"w\", label='TokenHop'),\n",
|
145 |
+
" Patch(facecolor=color3, hatch=hatch3,\n",
|
146 |
+
" edgecolor=\"w\", label='WordHop')]\n",
|
147 |
+
" fig.legend(handles=legend_elements, ncol=3, loc=\"center\",\n",
|
148 |
+
" bbox_to_anchor=(0.55, 0), frameon=False)\n",
|
149 |
+
" \n",
|
150 |
+
" fig.supylabel(\"Surprisal Difference\", fontsize=12, x=0.04)\n",
|
151 |
+
"\n",
|
152 |
+
" # Adjust layout and show plot\n",
|
153 |
+
" plt.tight_layout()"
|
154 |
+
]
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"cell_type": "code",
|
158 |
+
"execution_count": 5,
|
159 |
+
"metadata": {},
|
160 |
+
"outputs": [
|
161 |
+
{
|
162 |
+
"data": {
|
163 |
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAGhCAYAAABvQ8DIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB/DUlEQVR4nO3dd1hT59sH8O9JgLCXbAVliaMOpG4FcSHuXfeordZaq/VVq60DV13Vqq2L1p9oa62r1Vr33ntWRRTFjVu2MpLn/SMlGjNITgKcJPfnunJJznlynufInfDNmRxjjIEQQgghxMKJSnsAhBBCCCFCQKGIEEIIIQQUigghhBBCAFAoIoQQQggBQKGIEEIIIQQAhSJCCCGEEAAUigghhBBCAFAoIoQQQggBQKGIEEIIIQQAhSJCCCGEEAAUigTl6tWr6NatG4KCgmBvbw8PDw9ERkZi69atatsnJiaiVatWcHR0hLu7O/r27Ytnz56ptJPJZJgzZw4CAwNha2uL6tWrY+3atTqP6+jRo4iNjUXZsmVha2uLgIAAtGvXDr///ruiTU5ODuLi4nDw4EG915uYn/Pnz6N9+/Zwd3eHvb09PvjgAyxatEil3fHjx9GoUSPY29vDx8cHX375JbKyslTa5ebm4uuvv4afnx/s7OxQt25d7NmzR+fxbN26FVFRUfDy8oK9vT2CgoLQvXt37Ny5U9Hm0aNHiIuLw8WLF3mtMzEP586dQ6tWreDs7AwnJye0bNlSY01Q/ZohRgRj27ZtLCYmhsXFxbH4+Hi2YMEC1rhxYwaALV++XKnt/fv3mYeHBwsODmYLFy5kM2bMYG5ubqxGjRosNzdXqe24ceMYAPbpp5+y+Ph41qZNGwaArV27tsgxrV+/nnEcx8LDw9ns2bNZfHw8Gz9+PGvYsCFr0qSJot2zZ88YADZ58mSj/F8Q07Vr1y5mY2PD6taty+bPn8/i4+PZ119/zcaMGaPU7sKFC8zW1paFh4ezpUuXsm+//ZZJJBLWqlUrlWX26NGDWVlZsdGjR7Ply5ez+vXrMysrK3bkyJEixzN37lwGgEVFRbH58+ezZcuWsdGjR7OaNWuy/v37K9qdOXOGAWArV6409L+AmKhz584xW1tbFhoayr7//ns2Z84cVqFCBebs7MyuX7+u1Jbq1zxRKBK4goICVqNGDRYWFqY0fejQoczOzo7dvXtXMW3Pnj0qAerBgwfM2tqaDRs2TDFNJpOxxo0bs3LlyrGCggKt/VepUoVVrVpVJWgxxtiTJ08UP1MoIowxlp6ezry9vVmnTp2YVCrV2jY2Npb5+vqy9PR0xbSff/6ZAWC7du1STDt16hQDwObOnauY9vr1axYcHMzq16+vtY/8/Hzm7OzMWrRooXb+uzVMf1RI69atmZubG3v+/Lli2qNHj5ijoyPr3LmzUluqX/NEocgEtG3blnl7eytN8/LyYt26dVNpW7FiRdasWTPF88WLFzMA7OrVq0rtfv/9dwagyG8qEomEDRgwQGublJQUBkDl8W5ASkxMZF26dGFubm5MIpGwiIgItmXLFqXlrFy5kgFghw4dYoMHD2bu7u7MycmJ9e3bl718+VKp7ZkzZ1jLli1ZmTJlmK2tLatQoQIbOHCg1nGS4rd06VIGgF27do0xxlhWVpbacJSens6srKxUth7l5uYyR0dHNmjQIMW0MWPGMLFYrPTHhzHGvvvuOwaA3bt3T+N4UlNTGQAWFxenddwHDhxQW8Pv/oE5efIki4mJYc7OzszOzo5FRkayo0ePKi1n8uTJDABLTExk3bp1Y05OTszd3Z19+eWX7PXr10ptd+/ezRo2bMhcXFyYg4MDq1ixIhs/frzWcZLi5eTkpPZztU2bNszGxoZlZmYyxqh+GTPf+qVjigQoOzsbz58/x61bt/DDDz9gx44daNasmWL+w4cP8fTpU3z44Ycqr61Tpw4uXLigeH7hwgU4ODigcuXKKu0K52tTvnx57Nu3Dw8ePNDYxtPTE0uXLgUAdOrUCb/++it+/fVXdO7cGYD8WKl69eohMTER48aNw7x58+Dg4ICOHTvir7/+UlneF198gcTERMTFxaFfv35Ys2YNOnbsCMYYAODp06do2bIl7ty5g3HjxuHHH39E7969cfLkSa3rQorf3r174ezsjIcPHyIsLAyOjo5wdnbG0KFD8ebNG0W7f//9FwUFBSo1bGNjg5o1a6rUcMWKFeHs7KzUtrCGtR1D4eXlBTs7O2zduhUvX77U2K5y5cqYOnUqAGDw4MGKGo6MjAQA7N+/H5GRkcjIyMDkyZPx3XffIS0tDU2bNsXp06dVlte9e3e8efMGM2fOROvWrbFo0SIMHjxYMf/q1ato27YtcnNzMXXqVMybNw/t27fHsWPHNI6RFL/c3FzY2dmpTLe3t0deXh6uXLkCgOrXrOu3tFMZUTVkyBBF0heJRKxr165KW0oKN5OuXr1a5bVjxoxhANibN28YY/JvOEFBQSrtsrOzGQA2btw4rWNZsWIFA8BsbGxYdHQ0mzhxIjty5IjKt39tu8+aNWvGqlWrphgTY/JdeA0aNGChoaGKaYVbiiIiIlheXp5i+pw5cxgAxZalv/76iwFgZ86c0Tp2UvKqV6/O7O3tmb29PRs+fDjbtGkTGz58OAPAevTooWi3YcMGBoAdPnxYZRndunVjPj4+iudVq1ZlTZs2VWl39epVBoAtW7ZM65gmTZrEADAHBwcWGxvLZsyYwc6dO6fSTtPuB5lMxkJDQ1lMTAyTyWSK6Tk5OSwwMFBp10bhN+327dsrLePzzz9nANilS5cYY4z98MMPDAB79uyZ1rGTklWtWjVWsWJFpcMKcnNzWUBAAAPANm7cyBij+jXn+qUtRQI0cuRI7NmzB6tWrUJsbCykUiny8vIU81+/fg0AkEgkKq+1tbVVavP69Wud2mny8ccfY+fOnWjSpAmOHj2KadOmoXHjxggNDcXx48eLXJeXL19i//796N69OzIzM/H8+XM8f/4cL168QExMDG7evImHDx8qvWbw4MGwtrZWPB86dCisrKywfft2AICrqysA4J9//kF+fn6RYyAlJysrCzk5OejXrx8WLVqEzp07Y9GiRRgyZAj++OMP3Lx5E0DRNfxuXRpaw1OmTMHvv/+O8PBw7Nq1C99++y0iIiJQq1YtJCYmFrlOFy9exM2bN9GrVy+8ePFCUcPZ2dlo1qwZDh8+DJlMpvSaYcOGKT0fPnw4AKjU8JYtW1ReS0rP559/jhs3bmDQoEG4du0arly5gn79+iE1NRWA8ucqQPVrjvVLoUiAKlWqhObNm6Nfv374559/kJWVhXbt2il2HxVu3s3NzVV5beEuisI2dnZ2OrXTJiYmBrt27UJaWhoOHz6MYcOG4e7du2jbti2ePn2q9bXJyclgjGHixInw9PRUekyePBkAVJYRGhqq9NzR0RG+vr64c+cOACAqKgpdunTBlClT4OHhgQ4dOmDlypVq15OUrMJ66tmzp9L0Xr16AQBOnDih1E5Tbb5bl8ao4Z49e+LIkSN49eoVdu/ejV69euHChQto166d0m49dQqDXP/+/VVq+JdffkFubi7S09OVXvN+DQcHB0MkEilq+KOPPkLDhg3xySefwNvbGz169MD69evN7g+Mqfnss8/wzTff4Pfff0fVqlVRrVo13Lp1C2PHjgUg/ywCqH7NuX6tSnsApGhdu3bFkCFDcOPGDYSFhcHX1xcAFN9e3pWamgp3d3fFNxNfX18cOHAAjDFwHKfUDgD8/Px0Hoe9vT0aN26Mxo0bw8PDA1OmTMGOHTvQv39/ja8pfJOMHj0aMTExatuEhIToPAYA4DgOGzduxMmTJ7F161bs2rULH3/8MebNm4eTJ08qPrhIyfPz88PVq1fh7e2tNN3LywsA8OrVKwAosobfrUtfX1+VrYnvvlafGnZ2dkaLFi3QokULWFtbY9WqVTh16hSioqI0vqawhufOnYuaNWuqbVNUzb373gPkfwgPHz6MAwcOYNu2bdi5cyfWrVuHpk2bYvfu3RCLxTqvEzGuGTNmYPTo0bh69SpcXFxQrVo1fPPNNwCAihUrAqD6Nef6pS1FJqBw82phmi9btiw8PT1x9uxZlbanT59WKvyaNWsiJydHZTPrqVOnFPP5KDzAsPCN/f6bplBQUBAAwNraGs2bN1f7cHJyUnpN4TebQllZWUhNTUWFChWUpterVw8zZszA2bNnsWbNGly9ehV//PEHr/UhxhEREQEAKn8EHj16BEB+UD4AfPDBB7CyslKp4by8PFy8eFGlhm/cuIGMjAyltiVVw8HBwQDkf5A01fC7u3sB1RpOTk6GTCZTqmGRSIRmzZph/vz5uHbtGmbMmIH9+/fjwIEDvNaHGI+bmxsaNWqEatWqAZCfQFCuXDlUqlQJANUvYL71S6FIQNTtisrPz8fq1athZ2eHKlWqKKZ36dIF//zzD+7fv6+Ytm/fPty4cQPdunVTTOvQoQOsra2xZMkSxTTGGJYtW4ayZcuiQYMGWse0b98+tdML9y2HhYUBkG9FAoC0tDSldl5eXmjSpAmWL1+u9luVuitwx8fHKx0rtHTpUhQUFCA2NhaAfGtD4a7EQoUfLLQLrXR1794dALBixQql6b/88gusrKzQpEkTAICLiwuaN2+O3377DZmZmYp2v/76K7KyspRquGvXrpBKpYiPj1dMy83NxcqVK1G3bl34+/trHE9OTo5il937duzYAeBtDTs4OABQreGIiAgEBwfj+++/V3u1YnU1vHjxYqXnP/74IwAoaljdmURUw8K0bt06nDlzBiNHjoRIJP+TSfVrvvVLu88EZMiQIcjIyEBkZCTKli2Lx48fY82aNbh+/TrmzZuntInzm2++wYYNGxAdHY0RI0YgKysLc+fORbVq1TBw4EBFu3LlymHkyJGYO3cu8vPzUbt2bWzevBlHjhzBmjVritzM2aFDBwQGBqJdu3YIDg5GdnY29u7di61bt6J27dpo164dAChC27p161CxYkW4u7vjgw8+wAcffIDFixcrvnV9+umnCAoKwpMnT3DixAk8ePAAly5dUuozLy8PzZo1Q/fu3ZGUlIQlS5agUaNGaN++PQBg1apVWLJkCTp16oTg4GBkZmbi559/hrOzM1q3bm2sXwfhITw8HB9//DH+97//oaCgAFFRUTh48CA2bNiA8ePHK+0qmDFjBho0aICoqCgMHjwYDx48wLx589CyZUu0atVK0a5u3bro1q0bxo8fj6dPnyIkJASrVq3CnTt3VMLX+3JyctCgQQPUq1cPrVq1gr+/P9LS0hTvgY4dOyI8PByA/Bu1q6srli1bBicnJzg4OKBu3boIDAzEL7/8gtjYWFStWhUDBw5E2bJl8fDhQxw4cADOzs4qt+JJSUlB+/bt0apVK5w4cQK//fYbevXqhRo1agAApk6disOHD6NNmzYoX748nj59iiVLlqBcuXJo1KiRsX4dRE+HDx/G1KlT0bJlS5QpUwYnT57EypUr0apVK4wYMUKpLdWvmdZvqZ77RpSsXbuWNW/enHl7ezMrKyvm5ubGmjdvrnKRw0JXrlxhLVu2ZPb29szV1ZX17t2bPX78WKWdVCpl3333HStfvjyzsbFhVatWZb/99pvOY+rRowcLDg5mdnZ2zNbWllWpUoV9++23LCMjQ6nt8ePHWUREBLOxsVE5Pf/WrVusX79+zMfHh1lbW7OyZcuytm3bKk5xZUz14o1ubm7M0dGR9e7dm7148ULR7vz586xnz54sICCASSQS5uXlxdq2bcvOnj2r0zqR4pWXl8fi4uJY+fLlmbW1NQsJCWE//PCD2rZHjhxhDRo0YLa2tszT05MNGzZMpa4Yk18BePTo0czHx4dJJBJWu3ZttnPnziLHkp+fz37++WfWsWNHVr58eSaRSJi9vT0LDw9nc+fOVblS+5YtW1iVKlWYlZWVyunNFy5cYJ07d2ZlypRhEomElS9fnnXv3p3t27dP0abwlOZr166xrl27MicnJ+bm5sa++OILpYvf7du3j3Xo0IH5+fkxGxsb5ufnx3r27Mlu3LhR5DqR4pOcnMxatmzJPDw8mEQiYZUqVWIzZ85Ue0V/xqh+zbF+Ocbe2w9BSClJSEjAwIEDcebMGbUXpiRE6OLi4jBlyhQ8e/YMHh4epT0cQvRC9UvHFBFCCCGEAKBQRAghhBACgEIRIYQQQggAgI4pIoQQQggBbSkihBBCCAFAoYgQQgghBIAFXrxRJpPh0aNHcHJy0nhZdEKMiTGGzMxM+Pn5Ka6IawiqYVKSqH6JqdOnhi0uFD169EjrZdUJKS73799HuXLlDF4O1TApDVS/xNTpUsMWF4oKbz56//59ODs7l/JoiCXIyMiAv7+/yo1v+aIaJiWJ6peYOn1q2OJCUeHmWmdnZ3pDkhJlrF0FVMOkNFD9ElOnSw3TgdaEEEIIIaBQRAghhBACgEIRIYQQQggACkWEEEIIIQAoFBFCCCGEAKBQRAghhBACgEIRIYQQQggACkWEEEIIIQAoFBFCCCGEAKBQRAghhBACgEIRIYQQQggACkWEEEIIIQAEGIoOHz6Mdu3awc/PDxzHYfPmzUrzBwwYAI7jlB6tWrUqncESQgghxGwILhRlZ2ejRo0aWLx4scY2rVq1QmpqquKxdu3aEhwhIYQQQsyRVWkP4H2xsbGIjY3V2kYikcDHx6eERkQIIcQUZWdnw9HREQCQlZUFBweHUh4RETrBhSJdHDx4EF5eXnBzc0PTpk0xffp0lClTRm3b3Nxc5ObmKp5nZGQAAKRSKaRSaYmMl1g2Q+uMapiUJlOu33eXT+8Xy6XP793kQlGrVq3QuXNnBAYG4tatW/jmm28QGxuLEydOQCwWq7SfOXMmpkyZojI9KSlJ8Q2CkOKUlZVl0OuphklpKun6tba2VvtZzkdOTo7i5zt37sDe3t4oy5VKpcjPzzfKskjx06eGOcYYK8axGITjOPz111/o2LGjxja3b99GcHAw9u7di2bNmqnMV/ctxd/fHy9fvoSzs3NxDJsQJRkZGXB3d0d6ejqvmqMaJqWppOuX4ziIRMY53LW4dp/JZDII+E8neY8+NWxyW4reFxQUBA8PDyQnJ6sNRRKJBBKJRGW6WCw22rcRQrQxtM6ohklpKo36Xb58OVJTUw3qFwDy8vIUP8+YMQM2NjYGL9PX1xdDhgwxeDmk5OhTwyYfih48eIAXL17A19e3tIdCiFmhg1RJaUlNTcXdu3cNXs67u7ju3bsHa2trg5dJzJvgQlFWVhaSk5MVz1NSUnDx4kW4u7vD3d0dU6ZMQZcuXeDj44Nbt25h7NixCAkJQUxMTCmOmhBCiNBYW1tjwIABpT0MYkIEF4rOnj2L6OhoxfNRo0YBAPr374+lS5fi8uXLWLVqFdLS0uDn54eWLVti2rRpajfPEkIIIYToSnChqEmTJloPYNu1a1cJjoYQ0yOTyYx2oGpxMYUxEkIsj+BCESHEMCKRyCgHqhbHQaoAHahKCBEuCkWEmCFjHahaeDyGMc4EIoQQoaPt14QQQgghoFBECCGEEAKAQhEhhBBCCAAKRYQQQgghACgUEUIIIYQAoFBECCGEEAKAQhEhhBBCCAAKRYQQQgghACgUEUIIIYQAoFBECCGEEAKAQhEhhBBCCAAKRYQQQgghACgUEUIIIYQAoFBECCGEEAKAQhEhhBBCCAAKRYQQQgghACgUEUIsQHZ2NjiOA8dxyM7OLu3hEEIEikIRIYQQQggoFBFCCCGEAKBQRAghhBACgEIRIYQQQggACkWEEEIIIQAoFBFCCCGEAKBQRAghhBACgEIRIYQQQggACkWEEEKI4NEFSEsGhSJCCCGEEFAoIoQQQggBQKGIECJgTCYt7SEUyRTGSAjRjVVpD4AQQjThRGIU/DkWXKVmEFVuAenhpWBJ+7W+RhTeBeLavSA98ztkFzYBAPJzCxTz8//XC/kS+UcfF9YU4sihkCXugexovPaxBNSCuPlYsPvnId03H5AVgPMIglXnuQauJSFEKAQXig4fPoy5c+fi3LlzSE1NxV9//YWOHTsq5jPGMHnyZPz8889IS0tDw4YNsXTpUoSGhpbeoAkhxUYRiLZOBLv4p9a2osafyQPRgYWQHVn2dkae7O3PT64DNiJwNTvLA9G59ZBtnwqAaR5DaBTEzceAJR+CdOMoQJYPaH0FIcQUCW73WXZ2NmrUqIHFixernT9nzhwsWrQIy5Ytw6lTp+Dg4ICYmBi8efOmhEdKCCkJegWi6BGqgUgNrmZniNtN0z0QdVsElnxYKRARQsyP4LYUxcbGIjY2Vu08xhgWLFiACRMmoEOHDgCA1atXw9vbG5s3b0aPHj1UXpObm4vc3FzF84yMDACAVCqFVErHApDiZ2id6VvDYrHYoP5Kii7/L2KxWL7LzJiBqHp7owcic/4sofpVr6R/5+/2R3+/9KPP/5XgQpE2KSkpePz4MZo3b66Y5uLigrp16+LEiRNqQ9HMmTMxZcoUlelJSUlwdHQs1vESAgBZWVkGvV6fGra1tUVISIhB/ZWUlJQUrVt4C9elyGOI9AhEACBuPcnoW4iKWhdTRvWrXkn/znNychQ/X79+Hfb29iXWt6nTp4ZNKhQ9fvwYAODt7a003dvbWzHvfePHj8eoUaMUzzMyMuDv74+wsDA4OzsX32Ah3xXo4uICAEhPT4eDg0Ox9keEqfCbMV+lWcPFKTAw0OBl6BuIAEB2YRNkB+bAmLvMjLEuQkX1q15J/87fvWBjpUqV6O+JHvSpYZMKRXxIJBJIJBKV6WKxuNg30767/JLojwiTob/30qzh4mTo2PXdZQZ8DwCQ7ZoF2HCa2+oRiDhP+VYNU/49FIXqVz1dxs5kUnAi46xjcf09MeYYhUqf/yuTCkU+Pj4AgCdPnsDX11cx/cmTJ6hZs2YpjYoQUtL0Pqi66TgUhiL5FiL1oUivQORXDeLWk/itALEI8ktKjAF7flt1psgK4majwPnXgnTvHLB757UuS1qrn+Lndy8roY66y1KoHR9dUkKFSYWiwMBA+Pj4YN++fYoQlJGRgVOnTmHo0KGlOzhCSIngdZbZ0dVFLlfvQNRnBdire+B8Kuu9DsRysOe3gcfXlCeKrCHuOh+cfzikG4aD3TykZQkcRK0nQVSp6dtJ/11WQh2Nl6VQJ6yp9vkWSHChKCsrC8nJyYrnKSkpuHjxItzd3REQEICRI0di+vTpCA0NRWBgICZOnAg/Pz+laxkRQswT79Pud83S3pZPIHp2E9K98yAauIbXuhALVRiIQiIh3fClboEoojukG74uetH6vj8iaWPC+wQXis6ePYvo6GjF88ID9Pr374+EhASMHTsW2dnZGDx4MNLS0tCoUSPs3LkTtra2pTVkQkgJEMJ1iJQC0ZpPAfcKPNeGWCS+gWjrRLDLf2tfNJ/3R+IeiKvE8FgR8yW4UNSkSRMwpuUDjOMwdepUTJ06tQRHRQgpTYYGIgcbEfKmVFJta0ggysvR2JYQFYYEouK6cOn5DRSK3iO4K1qXNplMVnSjUmYKYyTEWEThXYS3hYgCEdGHEAPRdtqwoI7gthSVNpFIhOXLlyM1NdXgZeXl5Sl+njFjBmxsbAxepq+vL4YMGWLwcggxFboeNEqBiAiSyEqggYju3KcOhSI1UlNTcffuXYOXk5//9oP23r17sLa2NniZhFga6ZnfKRARkyU/7T6cApGJoFBECBE0bddZASgQEWHj/Gvpftq9lkD07nFxFIiKDx1TRAgxWRSIiNBJ986hLUQmhEIRIcQkCSIQufhqnkcIUMSVqikQCQ2FIkKIyRFEIHKvAKs2qnd/J0Q3FIiEiEIRIcSkCCYQ9UsA8mm3GuFDGIGIC6jFZ/BmjQ60LkbW1tYYMGBAaQ+DELMhqECUm4mCnTNh3XcF/xUiFkgggSg0CuLmY/msgFmjLUWEEJMguEC0eiDwOo33+hBLJKBA1G0R2H1txztZJgpFhBDBE2Qgyn7Of4WIBRJYIEo+DOm++XxWxKxRKCKECBoX1pQCETFxAgxEG0cBsgI+K2PWKBQRQgRNHDmUAhExacIMRJrfH5aMdyjKyMjArFmzEBMTg/DwcJw+fRoA8PLlS8yfPx/JyclGGyQhxHLJEvdQICImS9RoMAUiE8Lr7LMHDx4gKioK9+/fR2hoKK5fv46srCwAgLu7O5YvX467d+9i4cKFRh0sIcTyyI7GgwIRMVWiyi0oEJkQXqFozJgxyMzMxMWLF+Hl5QUvLy+l+R07dsQ///xjlAESQogmFIiI0EkPL6VAZEJ47T7bvXs3vvzyS1SpUgUcx6nMDwoKwv379w0eHCGEaCKIQGTnynv8xDKwpP1a51MgEhZeoej169fw9PTUOD8zM5P3gAghpCiCCEQOHrBqG8d7HQihQCQ8vEJRlSpVcPjwYY3zN2/ejPDwcN6DIoQQTQQTiPqtBKzt+a8IsWhCCEScZwjf4ZstXqFo5MiR+OOPPzB79mykp6cDAGQyGZKTk9G3b1+cOHECX331lVEHSgghggpEEicUbJvMf2WIxRJEIPKrBnHrSXxXwWzxOtC6T58+uHv3LiZMmIBvv/0WANCqVSswxiASifDdd9+hY8eOxhwnIcTCCS4QrR4A2NCWIqIfwQSiPivAXt0D51OZ76qYJd43hP3222/Rt29fbNq0CcnJyZDJZAgODkbnzp0RFBRkzDESQiycIAPRyzuATxW+q0QskKAC0bObkO6dB9HANXxXxyzxDkUAEBAQQLvJCCHFiguoBXHzMcILRKUkOzsbjo6OAICsrCw4ODiU2liI7gQXiNZ8CrhX4Lk25ovXMUXnz5/HkiVLNM5fsmQJLl68yHdMhBCiIG4+lgIRMWmCDETa3h8WjFco+vbbb7F3716N8/fv348JEybwHhQhhBRi989TICImSxTehQKRCeEVis6dO4fGjRtrnN+4cWOcPXuW96AIIaSQdN98CkTEZIlr96JA9J7s7GxwHAeO45CdnV3aw1HCKxRlZmbCykrz4UgikUhxqj4hhBhEVqBxFgUiInTSM79TIDIhvEJRaGgodu/erXH+zp076Qw0QkixEkQgsrblOXpiKWQXNmmdT4FIWHiFokGDBmHbtm0YNWoU0tLSFNPT0tLw1VdfYefOnRg0aJCxxkgIIUoEEYhs7CGOpWMnCX8UiISH1yn5X375JS5evIgFCxZg0aJF8PPzAwA8evQIMpkMffv2pVP1CSHFQjCBqPfP4NwCdB63VAaIeX0NLRlCH5+5EUQgcvE1YA3ME69QxHEcVq5ciX79+mHTpk24ffs2AKBDhw7o0qULmjRpYswxEkIIAIEFIs9QSLdPhVWn2TqNXSwC+h4GXubKnz99o76dvRjwtgNSstTPl77zusbbAbGaPXhetvr1UckF+DWy6HUgxiGIQOReAVZtphiwFubJoIs3RkdHIzo62lhj0UlcXBymTFH+RYaFheH69eslOg5CSMkSXCD6bRCYTKrXOjhZASsbyX9uvQfY/1h5vqMVcLEDUMER+DER+Oq06jJmfQBc+O/n5Awg573/hqY+wJZmhvVBio9gAlG/BCA/B0AZncYtZYCY06lpqTHG1k6DQlFpqVq1qtJ1krSdCUcIMX2CDESP/tX7Nh81ywBW/31oN/RWDSz+DvKwAgAt/NQvo5mvcvukXOX5jbwN74MUD0EFotxMFOycCeu+K3Qa+7uBaHkS8MsN5fmBjsD6/7aRpGQC3Q+qLmNDE6CCk/K0d7d2floRGBzGrw9jbe3klSYYY4iPj8eKFStw+/ZtvHr1SqUNx3EoKNB8Kq0hrKys4OPjUyzLJoQIC+cZAnHsBOEFIh623AOquMp/XnFTdX5iunzrTQs/YPw59cuYdOHtz9czAE6iPH/FTaCpr2F9EOMTXCBaPRBw8tJrHS68ALILgBmXgUfvdXPhpXJdXXip+vqvzgAzI4B/kt9Ou/TqbQ3PuPz2/cG3D0PxCkVjx47F/PnzUbNmTfTp0wdubm7GHpdWN2/ehJ+fH2xtbVG/fn3MnDkTAQHqD3jMzc1Fbu7br1IZGRkAAKlUCqlUddO3WCwunkEbmbqxE2Ey9HdlyTUsFoshbj0J7GmSoAORruvy9A3QZKf2dkXtztr+UPv8hzn8+1C3HlS/6un6OwcEGoiynytCka7rMvi49iBSVO1uvS9/sFz18w2p3UKG1jCvULRq1Sp06dIF69ev5/Nyg9StWxcJCQkICwtDamoqpkyZgsaNG+PKlStwcnJSaT9z5kyVY5AAICkpSXFTxUK2trYICQkptrEbU0pKCt680XAUJRGUrCwNR8zqyFJruHBd2Kt7gg5E+qyL0KlbD6pf9XT9nXNhTSGOHCq8QMRjXUyBoTXMKxS9fv0azZs35/NSg8XGxip+rl69OurWrYvy5ctj/fr1aq+NNH78eIwaNUrxPCMjA/7+/ggLC4Ozs3OJjLk4BAYGlvYQiI4KvxnzZek1LN0xXdCBCCjZ9yMncYA4QfMfVkOoWw+qX/V0/Z0LPRDpsy6mwNAa5hWKmjVrhjNnzmDw4MF8Xm5Urq6uqFixIpKTk9XOl0gkkEgkKtPFYrHJbKZVx5THbmkM/V1ZfA3na9kiKoBABJjP+1HdelD9qqfr2GWJewQdiPRZF2MpzmBvaA3zOnltyZIlOHnyJL777ju8ePGCzyKMJisrC7du3YKvL12EihCLIoRAJKIzX4l2sqPxEHIgIsp4haKwsDDcvn0bEydOhJeXFxwcHODs7Kz0cHFxMfZYAQCjR4/GoUOHcOfOHRw/fhydOnWCWCxGz549i6U/IifkuxoTCySIQGQNcbNRmufrwE4MbIwGzrcDwt3VtxlRBbjWUf6vOrXc5a/fGC1fHp8+etKtKkuFKQciodRuYR/GqmFeX3O6dOkCjiudqzg9ePAAPXv2xIsXL+Dp6YlGjRrh5MmT8PT0LJXxEEJKmFACUdf54Pxr8VwJudblgI7/nTg7thrQ89B73XDAnAj5BenmRMhPR5a9t9FhTDWgurv8EVsO+POu/n2MqGzQahAeBBGI7Fx5j18otVvYxwjV86x44RWKEhISjNM7D3/88Uep9U0IKWVCCkQhkZDunQOrVt/yXBn56c2Z+YCTNXAgVXW+jAFHnwJRPvJ/3/+jAshf162CfDkX1ZwurUsfF18CER68V4PoSRCByMEDVm3jeK+DUGq3sA9j1TDtECeEmAahBaINX4JlPuO5MnK3M4HgTYCbDXArU32bVnuAUGfgpoYTaOJvAPtSgVd5b++rpm8fX5wCTrThtw5EP4IJRP1WAtb2vNdDKLVb2IeDlXFqmPddQu7du4fPPvsMYWFhcHNzw+HDhwEAz58/x5dffokLFy4UsQRCCNGREAPRzUOa2+rhZa7mD3wAyJcB19Lk/2pyK1P9HxVd+yjQsmxiPIIKRBInFGybzH9lIIzaLezDWDXMa0vRtWvX0LhxY8hkMtStWxfJycmKW3p4eHjg6NGjyM7OxooVut1ThRBCNHLxhVXsRLMMRMRyCC4QrR4A2PDfUmSueN/mw9XVFSdPngTHcfDyUr5/Sps2bbBu3TqjDJAQYtms2kwBXr+iQERMliAD0cs7et/Q2BLw2n12+PBhDB06FJ6enmrPQgsICMDDh0XcoIcQQnSRn0OBiJgsLqCWMAMRUYtXKJLJZLC317zZ7dmzZ2qvYEoIIfoq+CfObAKRiAOGhskfYg1XNWnqA0yqAZTV8BFb1l4+v6mP+vliI/RBjEfcfKzZBKKu5c2/dnntPqtVqxa2bduGzz//XGVeQUEB/vjjD9SrV8/gwRFCCF6naZ5nQoEIADoHAF9Xf/t8aZLy/LL2wPYWgJUIaOqr/o7hayKBRt7yA0uDN8nvLP6uwRWBH9/5+OXTBzEedv+8WQQiwDJql9eWovHjx2Pnzp0YOnQorly5AgB48uQJ9u7di5YtWyIxMRHjxo0z6kAJIUSJiQUiYpmk++abRSCyFLy2FMXGxiIhIQEjRoxAfHw8AKBPnz5gjMHZ2RmrV69GZGSkUQdKCCEKgghEHESN9Lsp9p/3gAf//c2Lv6E6/2EO0HoP0NAbWHFT/TJ6HQYGhQLHnqh+035/uXz7IEYkK9A4y9QC0ezL8vo159rlffHGvn37onPnztizZw9u3rwJmUyG4OBgxMTEwMnJSNfbJoSQ9wklELWeBFHlFnoNXcZUdwm8b/9j+UOTRznAtEua50uN0AcpfoIIRNa2eo154135VaY1MYfa1TsU5eTkwN/fH+PGjcOYMWPQsWPHYhgWMQYmk4ITqbnLnoCYwhiJgAgpEEV0h/TwUlhFDeO5MsRSCSIQ2dhDHDuB5xqYL71Dkb29PaysrODg4FAc4yFGxInEKPhzDNjLexA3GwXOvxake+eA3Tuv9XWiRoMhqtwC0sNLwZL2AwDyc99uAs7/Xy/kS+SlIwrvAnHtXpCe+R2yC5u0jyesKcSRQyFL3APZ0XhwHkGw6jzXwLUkFkNogWjrRLDH1wEKRUQPgglEvX8G5xbAcy3MF6/dZ126dMHGjRsxdOhQtdcpIsLBXt6DuNGn4PzDId0wXOddAtKtE8Eu/vl2Vt4711B/ch2wEUHU+DN5IDqwELIjy7SOg6vZWR6Izq2HbPtUAAxq7g9IiHpCDEQX/6SL3xG9CCoQeYZCun0qrDrN5rk25olXKOrRowc+//xzREdH49NPP0WFChVgZ2en0q5WrVoGD5AYRr6FKJzfB74WosafQRw9QvdA1G6aUiAiRGd2rvIPbqEFIiMpIwFctdzw0lr09qaamu4hFewEpOUBLzTcQ6qoPqx43wWT6Epwgei3QWAyKc+1kRNC7Rb2Yawa5hWKmjRpovj5yJEjKvMZY+A4DlKpYf/hxHCcfy3dtxDpGogaDDLpQJSdnQ1HR0cAQFZWFu0KFjirtnGA2MYsA1GQE3CuHeBkDXx+Qv0ZNztbAFE+wKHHQLNdqvMHVwSW1Acy84GIrfI7i+vbx091jbM+RD1BBqJH/xq0pVMotVvYxzkt/0364BWKVq5caZzeSbGT7p1j9A98cdQwkw1ExARZ26MgoY/ZBSIACHeXf+ADQLSv6oe+iAMa/XdryUZe8uey995G0b7yf52sgZruqn9YdOmjprvh60LU4zxDII6dILxAZCCh1G5hH8aqYV6hqH///sbpnRQ77QdV8/vAlx5aDNlZ7cGYAhExloJtk80yEAHA9gfA5ntAkCMwR82wZQwYe07+jTr+huofFUD+ujBn4HYWsOMBvz4WJgKjqhq+PkSVuPUksKdJZhWIAOHUbmEf2x4Yp4Z5X6eoUGpqKp4+fYqQkBDaDWFS9N9lBnwNAJAdXwHYaN6BS4GIGFV6quZ5JhyIAOC1FOh6QHubhdfkD00uvARqbTWsj7W3KRQVF/bqntkFIkA4tVvYR7i7cWqY96FJW7ZsQaVKlVCuXDnUqlULp06dAgA8f/4c4eHh+OuvvwwfHSkmPA6q1vG0Y30CEReg+4H4Ug0H6QmJKYzRrJh4ICKWQbpjutkFInPGa0vR1q1b0blzZ9SvXx+9evVCXFycYp6HhwfKli2LhIQEdOrUyVjjJEbD8yyz7XOKXrI+gSg0CuLmY3UetVgE9D0MXE/X+SUaSd+8/bnxdkCs30Vd1arkAvxKd7YpOQIJRKLwLvzGTyxH/hvN8ygQCQ6vUDR16lRERkbiwIEDePHihVIoAoD69etj+fLlxhgfMSoDTrs/vkL7kvUNRN0Wgd0/Dy5Q99Nerqdrv8S8rtg7p35eegVwEsOXSUqQUALRf9fpIoQXIQQikcFH0JgdXrvPrly5gu7du2uc7+3tjadPn/IeFCkOwrgOkSIQJR+W3z2aEH0IKRBFj4D0zO/81oNYNkEEImuIm43iuQLmi1cosre3R3Z2tsb5t2/fRpkyZXgPihibAAPRxlFa7x6tTVl74GAr+cPPXn2bH+oAVzsC7fzVjEPigI77GK6nMSxorP7kAEP7IMVAaIHowMIib23zPi9bw+uqnb98/g911M+n2hU4oQSirvPB+et3geX4BuZfu7xCUXR0NFatWoWCAtU/ao8fP8bPP/+Mli1bGjw4YhzGCEQONiLkTamEvCmV4PDfmWeGBaJ83uszKBRo5C1/DApVnV/ZBRheGQhzAWZGqF/GrAj5/OGV5e2Low9iREIMREV8YVCnQwDVrkUTUiAKiYR0b9HHir4rvIz51y6vUDRjxgw8ePAAtWvXxvLly8FxHHbt2oUJEyagWrVqYIxh8uTJxh4r4UHUaLAAtxDxD0QAcPQJUCCTP449UZ1/Lxu4kyX/ec8j9cvY/d/0O1ny9sXRBzESa1uzCEQAcPEF1a7FElog2vBlkTcHf58l1C6vo6zCwsJw9OhRjBgxAhMnTgRjDHPnyu923qRJEyxevBgVKlQw5jgJT2pv7qqunYkEIgDY/xgI/m+vxUM1Z7pmFwA1tgABDkCihrPVvjoNxCfJ32TZavbi6dtHOF0RuNiIYyeAcy1n8oEIAM68EF7tkhIgxEB085Det/nosA+4kmbetatTKLp8+TLKly8PF5e327uqVq2KvXv34tWrV0hOToZMJkNQUBA8PT2LZ6SEF+nhpWYViAqpe8O8K7ug6DdNUfON0QcxHOcWAOmvA00+EBWi2rUwLr6wip0ovEDEw9M32mvLHGpXp91n4eHh2LZtm+J506ZNsW/fPgCAm5sbateujbp161IgEiCWtF/rfFMMRMSySLdPNZtARCyPVZspZhGILIVOocjOzg45OW/j28GDB/HkiZodfsSkUCAipoA9S9Y8kwIREbr8HApEJkSn3Wc1atTA/PnzIRaLFbvQzpw5A1tb7ZcC7ty5s+EjJMVCCIGI8wzhO3xCKBARk1DwTxwFIhOiUyhasGABunXrhkGDBgEAOI7DwoULsXDhQo2v4TgOUqnUOKMkRiWIQORXDeLWk/Qadws/zVe07l4BCHQEFl8HstQcwFfdDegUAPx1D7j8SnW+oxUwrBKQkgWsv8OvD1KCBBKIuLCmPAavTAi1G+pswAoQ7V6naZ5n4oFICLVb2IexjjPSKRTVrl0bycnJuHXrFp48eYImTZrgm2++QYsWLYwzClJiBBOI+qwAe3UPnE9lncf+XQRw6hlw6L09t018gN+j5D+XcwCGn3qvPwB7WgJlbIHPKwE+61TXZGYEMLSS/Ocnr/n1QUqIUAJRzc4QRw7lsQJvCaV2l9QzaDUIHyYeiIRSu4V9pOXCKHQKRX///Tc+/PBDhIWFISwsDP3790e7du1Qt67u960ytsWLF2Pu3Ll4/PgxatSogR9//BF16mi4TCYBILBA9OwmpHvnQTRwDd/VUWCah2Y0JdEH0YGQAlG7aZAl7oG4SgyPFZGj2rVQgghEHESNBvNcAfOtXZ1CUadOnfDrr7+iVy/5zQ8PHTqETp06FevAtFm3bh1GjRqFZcuWoW7duliwYAFiYmKQlJQELy+vUhuXkAkuEK35FHCvoNc6fHNO9ZsEIJ/W69DbTazvYwBa7AY6BgCb76lfm/HngAfZ8s24fPsgxUxogejcesjObzAoFAmldj8/+fYbOSlmQglErSdBVJn/3h6h1G5hH9fTjVPDOoUiJycnpKWlKZ7fuXMHWVlZhvfO0/z58/Hpp59i4MCBAIBly5Zh27Zt+N///odx48Yptc3NzUVu7tvtaunp8h2Pr169UnvMk1gshqurq9JrhMTV1RUZGRk6Ha8lFotRYF8WXONYiCO6Q3rgF8gu7wNc1Fw//T9caCTEDT+B7MxmyE78DrhoPhiaK1cD4uiRYNeOQnpoCeBUQXNbjyCIW34Ndv86pHvmAnZlwdmXhZUe63LrKVBdw7H91x8D1wEEWUF9Vb8GNifJf9S0jB3J2udr6yPICsjIgNp1ycjIAAAwnl97qIbLgrkxiKO+AOdVA9It08CePtJax6L6AyAKbQrpjvlgKf9qb1u9Pe/3B1emgl41HGQFSN+rr9KuXQCQ5lD96opX/br892XRzgVWMeOBfCsU/DMRkFprrjdrW4hbjAFn6wvppolg2W80txVZ8Xp/yA6vhji8M+/6FULtFvYR6mycGuaYDq1atmyJq1ev4pNPPoGLiwtGjx6NXr16oVYtzTeT4zgOX331VZED0FdeXh7s7e2xceNGdOzYUTG9f//+SEtLw5YtW5Tax8XFYcqUKUYfByH6un//PsqVK6f366iGiRBQ/RJTp0sN6xSKkpOT0a9fP5w8eVL+Io4rMnEV19lnjx49QtmyZXH8+HHUr19fMX3s2LE4dOgQTp1SPhLr/W8pMpkML1++RJkyZcBxdHgsKX6MMWRmZsLPzw8ikf63G6QaJqWJ6peYOn1qWKfdZyEhITh+/DjevHmDp0+fokKFCliwYAE6dOhglAEXJ4lEAolEojTN1dW1dAZDLNa7t8jRF9UwKW1Uv8TU6VrDet0Q1tbWFgEBAZg8eTKaNm2K8uXL8xqcITw8PCAWi1WuqP3kyRP4+PiU+HgIIYQQYh703xYKYPLkyfjggw+MPRad2NjYICIiQnHvNUC+OXbfvn1Ku9MIIYQQQvSh05aijz/+GBzHIT4+HmKxGB9//HGRr+E4DitWrDB4gOqMGjUK/fv3x4cffog6depgwYIFyM7OVpyNRgghhBCiL51C0f79+yESiSCTySAWi7F///4iD5ArzgPoPvroIzx79gyTJk3C48ePUbNmTezcuRPe3t7F1ichhBBCzJtOZ58RQgghhJg7XscUEUIIIYSYG73OPiuUmZmJo0eP4tatW8jMzISTkxNCQkLQqFEjODo6GnuMhBBCCCHFTq9QJJVKMWHCBPz000/IyclRuoAjx3Gwt7fHiBEjMHXqVF4X+SKEEEIIKS16HVPUo0cPrF+/HlWqVEHPnj3xwQcfwNHREVlZWfj333/x+++/IykpCT179sRvv/1WnOMmhBBCCDEqnUPR3r170bJlSwwbNgwLFy5UuyVIJpNh+PDhWLZsGfbs2YOmTZsafcCEEEIIIcVB51DUr18/nDhxAjdu3NB6ur1MJkNYWBgaNGiAVatWGW2ghBBCCCHFSecDf06fPo3OnTsXef0hkUiEzp07q9yYlRBCCCFEyHQORampqQgJCdGpbUhICFJTU3kPihBCCCGkpOkcirKysuDg4KBTW3t7e2RlZfEeFCGEEEJISdM5FDHGivXWHYQQQgghpUnnA61FIhH8/f3h4uJSZNv09HQ8ePAAUqnU4AESQgghhJQEnS/eGBkZqfOWojJlyiAoKIj3oAghhBBCShrdEJYQQgghBHRDWEIIIYQQABSKCCGEEEIAUCgihBBCCAFAoYgQQgghBACFolKTlZWFyZMno1WrVnB3dwfHcUhISFBpJ5PJkJCQgPbt28Pf3x8ODg744IMPMH36dLx580btslesWIHKlSvD1tYWoaGh+PHHH9W2e/jwIbp37w5XV1c4OzujQ4cOuH37tk7jz8vLw8KFCxEeHg5nZ2e4urqiatWqGDx4MK5fv65od/z4ccTFxSEtLU2n5RLToGv9AsCAAQPAcZzKo1KlSiptZTIZ5syZg8DAQNja2qJ69epYu3at2uUmJiaiVatWcHR0hLu7O/r27Ytnz57pNf4PPvgADg4OKFOmDGrWrIkRI0bg0aNHinbbt29HXFycTsskpuXq1avo1q0bgoKCYG9vDw8PD0RGRmLr1q1q2+tab1TDJo6RUpGSksIAsICAANakSRMGgK1cuVKlXWZmJgPA6tWrx6ZPn87i4+PZwIEDmUgkYk2aNGEymUyp/bJlyxgA1qVLFxYfH8/69u3LALBZs2apLDc0NJR5eXmx2bNns/nz5zN/f39Wrlw59vz58yLH37ZtWyYWi1mfPn3Y4sWL2YIFC9hnn33GypUrp7Qec+fOZQBYSkoKn/8mIlC61i9jjPXv359JJBL266+/Kj3+/vtvlbbjxo1jANinn37K4uPjWZs2bRgAtnbtWqV29+/fZx4eHiw4OJgtXLiQzZgxg7m5ubEaNWqw3NxcrWPPy8tj4eHhzM7Ojn322Wds2bJl7Pvvv2cDBw5kHh4e7MCBA4q2w4YNY/QxaZ62bdvGYmJiWFxcHIuPj2cLFixgjRs3ZgDY8uXLldrqU29Uw6aN/qdKyZs3b1hqaipjjLEzZ85o/KOSm5vLjh07pjJ9ypQpDADbs2ePYlpOTg4rU6YMa9OmjVLb3r17MwcHB/by5UvFtNmzZzMA7PTp04ppiYmJTCwWs/Hjx2sd++nTpxkANmPGDJV5BQUFSqGKQpF50rV+GZOHIgcHhyKX+eDBA2Ztbc2GDRummCaTyVjjxo1ZuXLlWEFBgWL60KFDmZ2dHbt7965i2p49e9T+QXvf+vXrGQC2Zs0alXmvX79m6enpiuf0B8WyFBQUsBo1arCwsDCl6brWG9Ww6dPpf6pChQosMDBQr0dQUFBxj91sFPVHRZ3Lly8zAGzRokWKadu2bWMA2LZt25TaHj9+nAFgv/76q2Ja7dq1We3atVWW27JlSxYcHKy177Vr1zIA7ODBg1rbTZ48mQFQebwbkH799VdWq1YtZmtry9zc3NhHH33E7t27p7ScqKgoVrVqVXb27FlWv359ZmtryypUqMCWLl2q0ueiRYtYlSpVmJ2dHXN1dWURERFqPziI8egaigoKCpQ+rN+3ePFiBoBdvXpVafrvv//OALAjR44opnl5ebFu3bqpLKNixYqsWbNmWsc7c+ZMBoDduXNHa7v+/furrd9CUqmU/fDDD6xKlSpMIpEwLy8vNnjwYKUvH4wxVr58edamTRu2a9cuVqNGDSaRSFjlypXZpk2blNrl5eWxuLg4FhISwiQSCXN3d2cNGzZku3fv1jpOYlxt27Zl3t7eStN0rTeqYdOvYZ2uaB0VFUX3PROYx48fAwA8PDwU0y5cuAAA+PDDD5XaRkREQCQS4cKFC+jTpw9kMhkuX76Mjz/+WGW5derUwe7du5GZmQknJye1fZcvXx4AsGbNGjRs2BBWVurLqHPnzrhx4wbWrl2LH374QTFWT09PAMCMGTMwceJEdO/eHZ988gmePXuGH3/8EZGRkbhw4QJcXV0Vy3r16hVat26N7t27o2fPnli/fj2GDh0KGxsbxXr8/PPP+PLLL9G1a1eMGDECb968weXLl3Hq1Cn06tWryP9TUnxycnLg7OyMnJwcuLm5oWfPnpg9ezYcHR0VbS5cuAAHBwdUrlxZ6bV16tRRzG/UqBEePnyIp0+fqtR5Ydvt27drHUth/a5evRoTJkzQ+Nk2ZMgQPHr0CHv27MGvv/6qdn5CQgIGDhyIL7/8EikpKfjpp59w4cIFHDt2DNbW1oq2N2/exEcffYTPPvsM/fv3x8qVK9GtWzfs3LkTLVq0AADExcVh5syZ+OSTT1CnTh1kZGTg7NmzOH/+vKINMb7s7Gy8fv0a6enp+Pvvv7Fjxw589NFHivn61BvVsBnUcGmnMsJvS1Hz5s2Zs7Mze/XqlWLasGHDmFgsVtve09OT9ejRgzHG2LNnzxgANnXqVJV2hd90rl+/rrFvmUzGoqKiGADm7e3NevbsyRYvXqy0GbiQpt1nd+7cYWKxWGUX3L///susrKyUphf2NW/ePMW03NxcVrNmTebl5cXy8vIYY4x16NCBVa1aVeO4SfEoqn7HjRvHvv76a7Zu3Tq2du1axbfXhg0bsvz8fEW7Nm3aqN3CnJ2dzQCwcePGKfW3evVqlbZjxoxhANibN280jjcnJ4eFhYUxAKx8+fJswIABbMWKFezJkycqbTXtejhy5Ija3Rc7d+5UmV6+fHkGQOlbdXp6OvP19WXh4eGKaTVq1FDZ9U2K35AhQxRbUEQiEevatavSlhJ96o1q2PRrmM4+M0Hfffcd9u7di1mzZiltTXn9+jVsbGzUvsbW1havX79WtAMAiUSitt27bdThOA67du3C9OnT4ebmhrVr12LYsGEoX748PvroI53ONPvzzz8hk8nQvXt3PH/+XPHw8fFBaGgoDhw4oNTeysoKQ4YMUTy3sbHBkCFD8PTpU5w7dw4A4OrqigcPHuDMmTNF9k9KzsyZMzFr1ix0794dPXr0QEJCAmbMmIFjx45h48aNinavX7/WqSYNrV87OzucOnUKY8aMAQAkJCRg0KBB8PX1xfDhw5Gbm1vkOm3YsAEuLi5o0aKFUv1GRETA0dFRpX79/PzQqVMnxXNnZ2f069cPFy5cUGz1dXV1xdWrV3Hz5s0i+yfGM3LkSOzZswerVq1CbGwspFIp8vLyFPP1qTeqYdOvYYNCUX5+Pv79918cPXoUhw8fVnkQ41u3bh0mTJiAQYMGYejQoUrz7OzslN7M73rz5g3s7OwU7QCofeMUnuZf2EYTiUSCb7/9FomJiXj06BHWrl2LevXqYf369fjiiy+KXI+bN2+CMYbQ0FB4enoqPRITE/H06VOl9n5+fnBwcFCaVrFiRQDAnTt3AABff/01HB0dUadOHYSGhmLYsGE4duxYkWMhJe+rr76CSCTC3r17FdPs7Ox0qklj1K+LiwvmzJmDO3fu4M6dO1ixYgXCwsLw008/Ydq0aUWO/+bNm0hPT4eXl5dK/WZlZanUb0hIiMoujvfrd+rUqUhLS0PFihVRrVo1jBkzBpcvXy5yLMQwlSpVQvPmzdGvXz/8888/yMrKQrt27cD+uy2oPvVGNWz6NazTMUXvk8lkGD9+PJYsWYKcnByN7aRSKe+BEVV79uxBv3790KZNGyxbtkxlvq+vL6RSKZ4+fQovLy/F9Ly8PLx48QJ+fn4AAHd3d0gkEqSmpqoso3BaYVtd+Pr6okePHujSpQuqVq2K9evXIyEhQeOxRoC8hjiOw44dOyAWi1Xmv3usia4qV66MpKQk/PPPP9i5cyc2bdqEJUuWYNKkSZgyZYreyyPFx87ODmXKlMHLly8V03x9fXHgwAEwxpQ+fN+vSV9fX6Xp70pNTVXUt67Kly+Pjz/+GJ06dUJQUBDWrFmD6dOna32NTCaDl5cX1qxZo3Z+4XFz+oiMjMStW7ewZcsW7N69G7/88gt++OEHLFu2DJ988oneyyP8dO3aFUOGDMGNGzcQFhamV71RDZt+DfMKRd999x3mzp2LIUOGoFGjRujbty9mz54NV1dXLFmyBBzHYc6cOcYeq0U7deoUOnXqhA8//BDr169XGzhq1qwJADh79ixat26tmH727FnIZDLFfJFIhGrVquHs2bNq+wkKCtJ4kLU21tbWqF69Om7evKnYFabpAMDg4GAwxhAYGKj4tqHNo0ePkJ2drbS16MaNGwCAChUqKKY5ODjgo48+wkcffYS8vDx07twZM2bMwPjx4xWbpUnpy8zMxPPnz5U+eGvWrIlffvkFiYmJqFKlimL6qVOnFPMBoGzZsvD09FRbv6dPn1a005ebmxuCg4Nx5coVxTRt9bt37140bNiwyG/0AJCcnKzyh1Jd/bq7u2PgwIEYOHAgsrKyEBkZibi4OJP5g2IOCndbpaenA9Cv3qiGzaCG+RyIFBwczD766CPGGGPPnz9nHMexffv2McbkB8DWqlWryGvdkLeKOlD12rVrrEyZMqxq1aoqp0q+Kycnh7m7u7O2bdsqTe/Tpw+zt7dnL168UEybNWsWA8DOnDmjmHb9+nUmFovZ119/rXW8N27cUHtQ9atXr5ifnx9zc3NTXI9j6dKlDAC7cOGCUtvk5GQmFotZr169VC5AKZPJlK51pO1Aa09PT8WB1uouOjlmzBgmEolYRkaG1nUi/Gmr39evX6v9vy88mPTPP/9UTLt//77Ga7yULVtW6Rovn332GbOzs1O6fMPevXsZALWXanjXxYsX2bNnz1Sm37lzh9nZ2bHq1asrpn399dcMgNIJDYwxdvDgQQZA7edcfn6+UnttB6nWrFlTMU1d/Xbr1o15eHhoXR/Cj7qDkvPy8litWrWYnZ0dy8zMVEzXtd6ohk2/hnltKXrw4AHGjh0L4O2BYoX7QW1sbNCnTx/Mnz8f3333Hd+sZhF++uknpKWlKS7JvnXrVjx48AAAMHz4cLi4uCAzMxMxMTF49eoVxowZg23btiktIzg4GPXr1wcg3yUxbdo0DBs2DN26dUNMTAyOHDmC3377DTNmzIC7u7vidZ9//jl+/vlntGnTBqNHj4a1tTXmz58Pb29v/N///Z/WcV+6dAm9evVCbGwsGjduDHd3dzx8+BCrVq3Co0ePsGDBAsUusYiICADAt99+ix49esDa2hrt2rVDcHAwpk+fjvHjx+POnTvo2LEjnJyckJKSgr/++guDBw/G6NGjFX36+flh9uzZuHPnDipWrIh169bh4sWLiI+PV5w22rJlS/j4+KBhw4bw9vZGYmIifvrpJ7Rp04bXli+inS71+/jxY4SHh6Nnz56K23rs2rUL27dvR6tWrdChQwfF8sqVK4eRI0di7ty5yM/PR+3atbF582YcOXIEa9asUdrN+s0332DDhg2Ijo7GiBEjkJWVhblz56JatWoYOHCg1nHv2bMHkydPRvv27VGvXj04Ojri9u3b+N///ofc3FylWyIU1u+XX36JmJgYiMVi9OjRA1FRURgyZAhmzpyJixcvomXLlrC2tsbNmzexYcMGLFy4EF27dlUsp2LFihg0aBDOnDkDb29v/O9//8OTJ0+wcuVKRZsqVaqgSZMmiIiIgLu7O86ePYuNGzfqdIwe0d+QIUOQkZGByMhIlC1bFo8fP8aaNWtw/fp1zJs3T2kXvq71RjVsBjXMJ0n5+fkpfWt3cXFhP/74o+L5/PnzdbqCraUrTN/qHoWnsBfeTkHTo3///irLjY+PZ2FhYczGxoYFBwezH374QWVrDGPybzVdu3Zlzs7OzNHRkbVt25bdvHmzyHE/efKEzZo1i0VFRTFfX19mZWXF3NzcWNOmTdnGjRtV2k+bNo2VLVuWiUQildPzN23axBo1asQcHByYg4MDq1SpEhs2bBhLSkpStFF38cby5cuzn376Samf5cuXs8jISFamTBkmkUhYcHAwGzNmjNYLBhL+dKnfV69esT59+rCQkBBmb2/PJBIJq1q1Kvvuu+8UW/jeJZVK2XfffcfKly/PbGxsWNWqVdlvv/2mtv8rV66wli1bMnt7e+bq6sp69+7NHj9+XOS4b9++zSZNmsTq1avHvLy8mJWVFfP09GRt2rRh+/fvV2pbUFDAhg8fzjw9PRnHcSqnNsfHx7OIiAhmZ2fHnJycWLVq1djYsWPZo0ePlP6fCi98V716dSaRSFilSpXYhg0blJY1ffp0VqdOHebq6srs7OxYpUqV2IwZM9T+PxHDrV27ljVv3px5e3srPsOaN2/OtmzZora9rvVGNWzaNcwx9t8h9npo27YtnJycFDe569SpE/7991+sWrUKMpkM/fr1g5+fH535Q4yiSZMmeP78udJ+ckJMRYUKFfDBBx/gn3/+Ke2hEMKLJdUwr1PyBw8ejNzcXMXphDNmzEBaWhoiIyMRFRWFjIwMzJs3z6gDJYQQQggpTryOKWrfvj3at2+veF6lShXcunULBw4cgJWVFRo0aKB0/AohhBBCiNDxCkXquLi4oGPHjsZaHCGEEEJIieJ1TNG9e/dw7949NGrUSDHt0qVLmDdvHnJzc9GzZ08KSIQQQggxKbxCUceOHZGVlaW4RP+TJ09QuXJl5OXlwcnJCU+fPsWGDRvQuXNnow+YEEIIIaQ48DrQ+vTp02jRooXi+erVq/H69WtcunQJDx8+RLNmzfD9998bbZCEEEIIIcWN1zFFL1++VLq31j///IOoqCgEBwcDADp37oxvvvnGOCM0MplMhkePHsHJyUnj5c8JMSbGGDIzM+Hn5weRyKB7MAOgGiYli+qXmDp9aphXKPL09MTdu3cBAGlpaTh58iRmzZqlmF9QUICCggI+iy52jx49gr+/f2kPg1ig+/fvo1y5cgYvh2qYlAaqX2LqdKlhXqGoefPmWLRoEZydnXHw4EHIZDKlA6uvXbsm2KIvvN3D/fv34ezsXMqjIZYgIyMD/v7+RrvVCNUwKUlUv8TU6VPDvELRrFmzcOPGDYwePRo2Njb4/vvvERgYCADIzc3F+vXr0atXLz6LLnaFm2udnZ3pDUlKlLF2FVANk9JA9UtMnS41zCsUeXt749ixY0hPT4ednR1sbGwU82QyGfbt2yfYLUWEEEIIIeoYdPFGFxcXlWl2dnaoUaOGIYslhBBCCClxOoWi1atXAwD69u0LjuMUz4vSr18//iMjhBBCCClBOl28USQSgeM4vH79GjY2NjqdlslxHKRSqVEGaUwZGRlwcXFBeno67c8mJcLYNUc1TEoS1S8xdfrUnE5bilJSUgBAcexQ4XNCCCFEqLKzs+Ho6AgAyMrKgoODQymPiAidTqGofPnyip/z8/ORnp4Od3d3o1yzghBCCCFECPS+PKlIJEJERAT+/PPP4hgPIYQQCyaTyUp7CEUyhTESfvQ++0wsFqN8+fLIzc0tjvEQQgixYCKRCMuXL0dqaqrBy8rLy1P8PGPGDKXLx/Dl6+uLIUOGGLwcIky8TskfPnw4fvrpJwwaNAju7u7GHhMhRADoeAxSWlJTUxW3kjLUgAEDFMskpCi8QpFUKoVEIkFwcDC6du2KChUqwM7OTqkNx3H46quvjDJIQgghhJDixisUjR49WvHzihUr1LahUEQIIYQQU8IrFNEp+YQQQggxN7xC0bun6BNCCCGEmAO9T8l/18uXL7F+/XrMmTMHc+bMwfr16/HixQuDBnT48GG0a9cOfn5+4DgOmzdvVpo/YMAAcByn9GjVqpVBfRaX7OxsxRizs7NLeziEEEII0YL3DWHj4uIwe/ZslVPzbWxsMHbsWEydOpXXcrOzs1GjRg18/PHH6Ny5s9o2rVq1wsqVKxXPJRIJr74IMUcymUynW/GUJlMYIyHE8vAKRdOmTcPUqVPRpk0bfPHFF6hYsSIAICkpCT/99BNmzJgBa2trTJw4Ue9lx8bGIjY2VmsbiUQCHx8fnZaXm5urFNwyMjIAyM+gK+57s727/JLojwiTob93fWtYLBYb5TovxXGNF+DtdV7o/WAaSqN+TQHVr+nQ53fFKxQtW7YM7dq1w5YtW5SmBwYGolWrVmjXrh2WLl3KKxTp4uDBg/Dy8oKbmxuaNm2K6dOno0yZMmrbzpw5E1OmTFGZnpSUpLgGSyFra2sEBwfDyor3BjQl7765xWKx0d7sBQUFuHXrFvLz842yPFK8srKyDHq9PjVsa2uLkJAQo1zn5d36unfvHqytrQ1a3vtSUlLw5s0boy6TGF9p1K8poPo1HfrUMK+//unp6VqP42ndujUOHjzIZ9FFatWqFTp37ozAwEDcunUL33zzDWJjY3HixAm1oWP8+PEYNWqU4nlGRgb8/f0RFham9m65xvqWDRTv1VRN5YODvP1mzJe+NWwqAgMDS3sIRAdUv+pR/ZoOfWqYVyhq2LAhTp06haFDh6qdf+rUKTRs2JDPoovUo0cPxc/VqlVD9erVERwcjIMHD6JZs2Yq7SUSidpjjrRtuTHW1VSL85u2qWxiJob/rvjUsCkw5bFbEqpf9Ux57JZGn98VryMdly1bhhMnTuCrr75CcnIyZDIZZDIZkpOTMXLkSJw8eRLLli3js2i9BQUFwcPDA8nJySXSHyGWwtraGgMGDMCAAQOMvuuMEEKEiNeWourVq0Mmk2HRokVYtGiR4iySwjsHSyQSVK9eXek1HMchPT3dwOGqevDgAV68eAFfX1+jL9tQhX9UCCGEECJ8vEJRly5dwHGcsccCQH5A1LtbfVJSUnDx4kW4u7vD3d0dU6ZMQZcuXeDj44Nbt25h7NixCAkJQUxMTLGMhxBCCCGWgVcoSkhIMPIw3jp79iyio6MVzwsP0Ovfvz+WLl2Ky5cvY9WqVUhLS4Ofnx9atmyJadOm0bWKCCGEEGIQvUNRTk4OGjdujE8//RSfffaZ0QfUpEkTMMY0zt+1a5fR+ySEEEII0ftAa3t7e6SkpBTb7jNCCCGEkNLA6+yzVq1a0RYbQgghhJgVXqFo4sSJuHHjBvr27YujR4/i4cOHePnypcqDEEIIIcRU8DrQumrVqgCAa9eu4ffff9fYju4NQwghhBBTwSsUTZo0iY4pIoQQQohZ4RWK4uLijDwMQgghhJDSxeuYIkIIIYQQc8NrS9HUqVOLbMNxHCZOnMhn8YQQQgghJc7ou884jgNjjEIRIYQQQkwKr91nMplM5VFQUIBbt27hq6++wocffoinT58ae6yEEEIIIcXGaMcUiUQiBAYG4vvvv0doaCiGDx9urEUTQgghhBS7YjnQOjIyEtu3by+ORRNCCCGEFItiCUVnz56FSEQnthFCCCHEdPA60Hr16tVqp6elpeHw4cP4888/8cknnxg0MEIIIYSQksQrFA0YMEDjPA8PD4wbNw6TJk3iOyZCCCGEkBLHKxSlpKSoTOM4Dm5ubnBycjJ4UIQQQgghJY1XKCpfvryxx0EIIYQQUqp4haL3Xb9+HRs2bEBqairCwsIwcOBAODs7G2PRhBBCCCElQudQ9NNPP2HRokU4fvw4PDw8FNO3bt2Kbt26IS8vTzHtxx9/xMmTJ5XaEUIIIYSf7OxsODo6AgCysrLg4OBQyiMyTzqfN//3338jODhYKegUFBTgk08+gVgsxsqVK/Hvv/9i1qxZuHv3LmbMmFEsAyaEEEIIKQ46h6Jr166hXr16StMOHDiAZ8+e4auvvkL//v1RtWpVjB07Ft27d6eLNxJCCCHEpOgcil68eAF/f3+lafv27QPHcejUqZPS9IYNG+LevXvGGSEhhBBCSAnQORR5e3vj8ePHStOOHDkCe3t71KhRQ2m6jY0NbGxsjDNCQgghhJASoHMo+vDDD7Fq1SpkZmYCAK5evYrTp08jJiYGVlbKx2tfv34d5cqVM+5ICSGEEEKKkc6haPLkybh79y5CQ0PRrFkzNGzYEBzHYfz48Spt//rrLzRo0MCoAyWEEEJMCZNJS3sIRWIyWWkPQVB0PiW/WrVq2L9/P2bMmIHbt2+jXr16GD16NCIiIpTaHTx4EPb29ujWrZvRB0sIIYSYCk4kRsGfY8Ce33470c4VVm3jAGt7FGybDKSnal6AtS3EsRPAuQWg4O8Jisn5/+uFfMl7f75FVhA3GwXOvxake+eA3TuvdWyiRoMhqtwCHN28XYleF29s0KABtm3bprVNkyZN8O+//xo0KEIIMSa6xgspLez5beDxNfkTBw9YdZoNiG1QkNAHeHlH8wtt7CHu/TM413KQ/joQ7M6lt/OeXAds3gkzImuIu84H5x8O6YbhYDcPaRkRB1HrSRBVbgHp4aWwihpmyOqZHYqIhBBCSHFz8IBVv5WAxAkFqwfoFog8QyH9bRDYIy0bGgoDUUgkpBu+1C0QRXSHdOtEsKT9PFfGfFEoIjrJzs4Gx3HgOA7Z2dmlPRxCCDEdQgxEF//kuTLmzSj3PiOEEEKIGnau8l1mBgYiBxsR8qZUetuWAlGxoFBECCGEFBOrtnHyY4hoC5FJENzus8OHD6Ndu3bw8/MDx3HYvHmz0nzGGCZNmgRfX1/Y2dmhefPmuHnzZukMlhBCCNHG2p4CkQkRXCjKzs5GjRo1sHjxYrXz58yZg0WLFmHZsmU4deoUHBwcEBMTgzdv3pTwSAkhhBDtCrZNpkBkQgS3+yw2NhaxsbFq5zHGsGDBAkyYMAEdOnQAAKxevRre3t7YvHkzevToUZJDJYQUMyaTghOJS3sYWjGZjK71QjTTdh0iCkSCI7hQpE1KSgoeP36M5s2bK6a5uLigbt26OHHihNpQlJubi9zcXMXzjIwMAIBUKoVUqnq1UbFY2B/AhdSNvaT60/R/R9Qz9P/KkmtYLFZz8Tu8vfCc9PDSIk8rFoV3Aap0UDxXe+G7/3BhTSGOHApZ4h7IjsZrXS4XUAviFl+DE1uZ9fuB6lc9XetXIwEFInOuX0C/9TOpUFR4Q1pvb2+l6epuVlto5syZmDJlisr0pKQkxcXcCtna2iIkJMRIoy1eKSkpJbrLMCcnR/Hz9evXYW9vX2J9m7qsrCyDXm+pNVy4LkoXv3v3wnM6fOCLGn8Gce1ekG6f83bi+xe+K1xyzc7yQHRuPWTbpwJgGpfLhUZB3HwM2L1z4ALrlvj7sSRR/aqna/2qJZBAJArvotO6mDp9atikQhEf48ePx6hRoxTPMzIy4O/vj7CwMDg7O5fiyAwTGBhYov29e22iSpUq0RWB9VD4zZgvquFCen7gN/4M4ugRkB5YCNnxFdqXXLMzxO2m6R6Iui0CSz4M6dGfIfpkXYm/H0sS1a96vH/nQglE/31hAEr+70lJ06eGTSoU+fj4AACePHkCX19fxfQnT56gZs2aal8jkUggkUhUpovFYpPZTKtOSY/93f5M/f+upBn6f0U1DBgUiI4s075kvoFo4yjAK5THupgWql/1eI1dSIEoegSkZ36HuHavEv89lPRtd/RZP5M6OjAwMBA+Pj7Yt2+fYlpGRgZOnTqF+vXrl+LIhMk07tAs/DGS0ifIQCTL57MqxFIJLRAdWAjZhU381sWMCW5LUVZWFpKTkxXPU1JScPHiRbi7uyMgIAAjR47E9OnTERoaisDAQEycOBF+fn7o2LFj6Q1aoDiRGIzJdD9otPlYsPvnId03H5AVKM3Pz337vODvCWCdp4O9ugfpjulAvpZ90S6+sGozBcjPQcE/ccDrtLd9egTBqvNcPqtGLIjioGoKRMRUCTEQHVkG+FThtz5mTHCh6OzZs4iOjlY8L9wX3b9/fyQkJGDs2LHIzs7G4MGDkZaWhkaNGmHnzp2wtbUtrSELmixxD2Qbv4JOB40mH9L8gZ8nU/wobvk12NMkSNd8CuTlqLYt5F4BVrETgdevULB6IJD9XGm25hER8hYFImLSrG2FGYiIWoILRU2aNAFjWj6gOA5Tp07F1KlTS3BUpku+hci4H/js+S1I//qy6EDULwHIzVQbiAjRlfTwUoM/8N+9bxQFIlKSxLETwLmWo0BkIkzqmCJiXPp84HO+VRU/S9cNo0BESkyR1yGiLUREwDi3AApEJoRCkYXSKxD5VYO4x5K3E/Jea16wPoHIzlXvcRPyLgpEROik26dSIDIhFIoskN6BqM8KsOe3il6wPoHIwUN+92hCeBJCIOI8TeNCg6T0sGfJmmdSIBIcCkUWhlcgenZTvstMG30DUb+VgDVdFZvwI4hA5FcN4taT+K4CsXQUiASJQpEF4R2I1nxqvF1mhYFI4iS/ezQhehJMIOqzAuzVPb6rQSyZQAIRF9aUx+DNG4UiC2FYIDLSQdXvBqLVA7TfPZoQNQQViJ7dlF+nixB9CCUQ/XevP11JZUW3KW3GGKPgTsknxmeMQPTuKc0KhgSil3fowmFEL4ILRGs+Bdwr8Fwb/kr6FgnEiIQUiNpNgyxxD8RVYnQauvidTSizLwMb7yrP97IFtjQDrETAhRfA4OOqy4hvAISXAQreCS+NtwPi/y4z2LU88HV1fn1UcgF+jdRpVbSiUGTm5FeqHiOsLUQv7/BdHWKhBBmItL0/CHmf0ALRufWQnd+gcyh614Mc4MJL5Wll3zlENLtAdX7h9PddegVw/90ar56n4X0YikKRmRM3H6v9StX/oUBEhEoU3gXi2r0oEBHTJcRAtH0q4FNZr9WYfVkeVuJvqM57mAO03gM09AZW3FT/+l6HgUGhwOG76ue/u1y+fRiKQpGZY/fPUyAiJo0CETFpIithBiIeN1raeFf71pn9j+UPTR7lANMuASxX/XwpA5YmaR9DUX0YikKRmZPf3JUCETFd0jO/UyAiJkvcbBQ4/3CTD0SWgkKRuZOp2Yn7HwpExBTILmzSOp8CEREyzr8WpBuGUyAyEXRKvoUSRCCytuU5esNkZ2eD4zhwHIfs7OxSGQMxDgpEROike+dQIDIhFIoskCACkY09xLETeK4BIQIJRC6+BqwBsQTs3nktc007EJWRAMFOmudbi4AqrvJ/NQlylC/H0D6sjJRmKBRZGMEEot4/g3ML4LkWxNIJIhC5V4BVmykGrAWxbKYdiIKcgOQuQFJnYHBF9W12tgAud5D/q8nFDvLlBKkJPvr08VNd/ddBHQpFFkRQgcgzFNLtU3muCbFkgglE/RKAfNqtRvgQRiDiAmrxGTwAINwdcLKW/xytZoOpiAMaecl/buQlf67oV+IAcQLD+hQGBwcHOFkDNd0N60Pd6/mgUGQhBBeIfhuk/e7RhKghqECUm4mCf+J0HrvQb5MgpcNNSohAAlFoFMTNx/JZAQDA9gfA5nvA5ZfAnH9V58sYMPYckJQu/1emZihz/pW/fvM9YMcDw/pYmMh7VZTQ2WcWQJCB6NG/dJsPohfBBaLVAwEnL53HLxYBfQ8D19N1fola0jdvf373FgmGMNYtEkhRBBSIui0Cu38eXCC//U6vpUDXA9rbLLwmf2hy4SVQa6tx+gh3B0ZV1d5WFxSKzBznGQJx7AThBSJC9CDIQJT9XK9QBMgDkaG3Jnj3wnfv3iKBCJ3AAlHyYUiP/gzRJ+v4rIzZot1nZk7cehIFImLSuLCmwgxEhOhMgIFo4yit17GzVBSKzBx7dY8CETFp4sihFIiISRNmINL8/rBktPvMzEl3TKdAREyaLHEPBSJiskSNBkNUuQUFIhNBW4rMXf4bzfMoEBETIDsaD3MJRF62wMFW8oefvfo2P9QBrnYE2vmrn9+6rPY+ytob3gcxHnMKRPENDKurdv7y+T/UUT9fCLVLochSCSEQiXTfUCn005kB0xijuTGlQAQAHQKARt7yx6BQ1fmVXYDhlYEwF2BmhPplTA1/+3MlZ9X5g0IN74MYj/TwUrMIRAAQXsawupoVIZ8/vLK8/fuEULu0+8wSCSIQWUPcbJTOQ373dObaZYBF9eTTvzwJnHmh3NZODPzRRP5N448UYN4V5fnvntKcmgN8fEh+6ue79O1j2306pbmkCSIQ2bnqNeaLL4CC/8LzsSeq8+9lA3eygAqOwJ5H6pexL/Xtz/ezofIpfvSJ4X0Q42FJ+7XON5VABBheV7sfyQPNnSx5+/cJoXYpFFkaoQSirvPB+et3NdXC05kvvAS2PZRPe6jhb1vlv4AAByBRzTVh3j2ludbfQI6ad4G+fYQb6WqqRDeCCEQOHrBqG6fXuM+8AII3yX9WV1fZBUCNLZprFwC+PvdOeynAvVe/+x8b3gcpGaYUiACgwz7gShr/uvrqNBCfJA832WpOfBNC7VIosiRCCkQhkZDunQOrVt/yWhVNQaVQdoFubxp1f1SM3QcxLsEEon4rAWsNBz5oYWhdFd4ioTj7IMVPCIGI8wzRa8xP32ivLV3qqqj5pV27dEyRpRBaINrwZRF3jyZElaACkcQJBdsm818ZYrEEEYj8qkHcehLfVTBbFIosgRAD0c1DPFeGWCrBBaLVA4D0VM1tCVFDMIGozwqwV/f4robZolBk7lx8KRARkyfIQKTt/UGIGoIKRM9uyq9jR5RQKDJzVm2mmE0gauGneV73CsDXHwCOGo4Pqu4GTK4h/1cdRyv567tX4N8HKR5cQC2zDkRCqN1QNaf2E+MSXCBa86n269jpQAi1W9iHsWqYPt7NXX6OWQQiAPguAjj1DDj03qmaTXyA36PkP5dzAIafUp7PAdjTEihjC3xeCfBerbrsmRHA0Eryn5+85tcHKR7i5mPBkg+ZZSDSt3Z91qn+eTRG7S6pZ4SVIRoJMhBpe3/oQCi1W9hHWi6MwuS2FMXFxYHjOKVHpUqVSntYglXwT5xZBCJtmPYTcUymD6Ieu3/eLAMRQLVrCUThXcwuEAHmW7smuaWoatWq2Lt3r+K5lZVJrkbJeJ2meZ6JBaJvzql+kwDk03odAgIdgcXXVeczAC12Ax0DgM331H/MjD8HPMgGUrL490GKh3TffLMMRIBwavfzk2+/kRPjEtfuZXaBCBBO7Rb2cT3dODVskmnCysoKPj4+OrXNzc1Fbu7b7WoZGRkAAKlUCqlUqtJeLBYbZ5DFTN3Y36d1XQQUiHRdF21XMF1/R/vrL7+SPwD113nJKgBmX1HzQj36ANSviy7rp43F17BMzVXe/iOUQGTI+1Gf2lXHGLV7U15SVL960PV3Lj3zu+ADEd/6FULtFvZReAFdQ2vYJEPRzZs34efnB1tbW9SvXx8zZ85EQECA2rYzZ87ElClTVKYnJSXB0dFRaZqtrS1CQvS7mFVpSUlJwZs3mg+S07ougghEHESNBhu+LgKjbl2ysrIMWibVsHqCCETWtkZZF6Gg+tWdrr9z2YVNWpdT2oFIn3UxBYbWsMmForp16yIhIQFhYWFITU3FlClT0LhxY1y5cgVOTk4q7cePH49Ro97eYysjIwP+/v4ICwuDs7PpnnIRGBjI74VCCUStJ0FUuQUAA9ZFgNStS+E3Y76ohlUJIhDZ2EMcOwGA+dQw1a/ujPE7F0IgAsynfgHDa9jkQlFsbKzi5+rVq6Nu3booX7481q9fj0GDBqm0l0gkkEgkKtPFYrHJbKZVh9fYhRSIIrpDengprKKGmfTv4X3q1sXQ9aMaViaYQNT7Z3Bu8i3Upvx7eBfVr+4MHbsgApGLLwDzqV/A8Bo2ubPP3ufq6oqKFSsiOTm5tIcibEILRFsnFnn3aG3K2ssfmjhaAZVdtC+jsgvgoOVrgTH6IMYlqEDkGQrp9ql6rwPVLhFEIHKvIL+OnR68bM2/dk0+FGVlZeHWrVvw9fUt7aEIlxAD0cU/ea4M0NQHuNVF/miq5nh7RyvgYgfg347AD3XUL+OHOvL5lzqof4Maow9iXIILRL8NAnum35ex2mWodi2dYAJRvwQgX78z0bY0M//aNblQNHr0aBw6dAh37tzB8ePH0alTJ4jFYvTs2bO0hyZMdq5mFYgAoJE3YCWSPxp6q873dwAq/Hf8pqarYLf8b3oFRyDAoXj6IMYjyECk7f2hQc0yVLuWTFCBKDdTfh07PVhC7ZrcMUUPHjxAz5498eLFC3h6eqJRo0Y4efIkPD09S3togmTVNg4Q25hNIAKAFTeBpr5vf35fYjrwY6L8TTP+nPpljDsnv5rqnkfy9sXRBzEOzjME4tgJJh+IAGDLPaCKq/xnql3LIrhAtHog4OSl1zpceAFkF5h37ZpcKPrjjz9KewimxdoeBQl9zCYQAcDDHKDJTu1tvjqtff7W+/KHsfoovEYGMT5x60lgT5NMPhABwNM3wqtdUvwEGYiyn+sdigYfBy681DzfHGrX5EIR0U/BtslmFYiI5WGv7plFICKWiQtrCnHkUOEFIqKWyR1TRPSUnqp5HgUiYgKkO6ZTICImiwKRaaFQZKkoEBFTka/5SrsUiIjQyRL3UCAyIRSKLJFAApEovAu/8RMCCCMQiegIBKKd7Gg8KBCZDgpFlkYogajxZxDX7qXX0Od8CNipuTCpnRjYGA2cb6f5gOcRVYBrHeX/qlPLXf76jdH8+yAlSBCByBriZqM0z9eBUGq3ZxCv4RMDmXIgEkrtFvZhrBqmUGRJhBSIokdAeuZ3vYYf7QvEllOd3roc0DEAqO4OjK2mpj8OmBMBVHSR/yviVNuMqSZ/fccAfn1wapZJiolQAlHX+eD8a/FcCTkh1K6IA0ZUNmg1CA+CCER2rrzHL5TaLezDWDVMochSCC0QHVhY5N2j35edD1xUczrohZdA5n+fJwfUHFcuY8DRp/Kfjz6VP39f4esyefbBNG8dJ8YkpEAUEgnp3jk8V0ROCLUrY+pfR4qPIAKRg4f8OnY8CaV2C/swVg3TDnFLIMRAdGQZ4KNhm6oG7fcDtzNVp9/OBII3AW42wC018wGg1R4g1Bm4qeFmyfE3gH2pwKs84GUuvz5IMRNaINrwJVjmM54rIyeU2v3iFHCiDb91IPoRTCDqtxKw1nKTsSIIpXYL+3CwMk4N05Yic2dtK8xAxENGnuZ5L3O1h5V8GXAtTf6vJrcy1b8xde2DFCMhBiKt7w/dCaF2C7QsmxiPoAKRxEl+HTsDCKF2C/swVg3TliIzJ46dAM61nMkHImLBXHxhFTvRLAMRsRyCC0SrBwA2/LcUmSvaUmTmOLcACkTEpFm1mUKBiJg0QQYibe8PC0ZbisycdPtUCkTEtOXnUCAiJosLqAVx8zEUiEwEbSkyc+xZsuaZJhqIxBwwNEz+EGs4Fb6pDzCpBlBWw9bhsvby+U19iq8PYhwF/8SZTSASUe1aHHHzsWYTiLqWN//apS1FlspEAxEADK4I/Fjv7fOlScrzy9oD21sAViKgqa/6uy6viQQaecsPzgveJL87syF90F3Hi9HrNM3zTCgQAUDnAODr6m+fC6F2i7orOTEMu3/eLAIRYBm1S1uKLJFAAhEX1pTH4An5j4kFImKZpPvmm0UgshS0pcjSCCUQ1ewMceRQHisgv7aFup8LPcwBWu8BGnoDK26qX0avw8CgUODYE9VvK3z68LbVbx2IgQQRiDiIGg3Wa9h/3gMe/FdvQqldUsxkBRpnmVogmn1ZXr/mXLsUiiyJkAJRu2mQJe6BuEqM3qshZaqbVd+3/7H8ocmjHGDaJeP1QaGoBAklELWeBFHlFnoNXSbA2iWlQxCByFq/D66Nd+VXmdbEHGqXdp9ZCqEFonPr/7t7NCF6EFIgiugO6eGlPFeEWDJBBCIbe4hjJ/BcA/NFocgSCDEQbZ/KY0WIRRNaINo6ESxpP8+VIZZKMIGo98/g3AJ4roX5olBk7kRWAg1EdAdVogchBqIi3h+EvE9QgcgzFFL6cqqCQpGZEzcbZTaByMVG87wyEiDYSfN8axFQxVX+rybBTvLl8O2DFBM7V7MOREKoXSv6S1DsBBeIfhuk/Tp2OhBC7Rb2YawapreCmeP8a5lFIAKALU2BIDVvjiAnILkLkNRZfp0LdXa2AC53kP+rzuCK8tcnd+HfBykeVm3jzDYQCaV2f6rLb/xEN4IMRNreHzoQSu0W9mGsGqZQZOake+eYRSACAAdroKa76vRwd8DJWv5ztK+aMXNAIy/5z4285M/fV/g6J559cBquvkqMwNreLAMRIIzaFXHqX0eMg/MMMbtABAindgv7MFYNUygyc+zeeS1zTScQAcCBVGDHA9Xp2x8Am+8Bl18Cc9S812UMGHsOSEqX/ytTM5Q5/8pfv/kevz4YHSJVbAq2TTbLQAQIo3ZlDFiYaPi6EPXErSeZXSAChFO7hX0Yq4bpOkUWy7QCEQCMPQu8lqpOfy0Fuh7Q/tqF1+QPTS68BGpt1Txflz5IMUlP1TzPhAMRIJzaXXsbGFVVexvCD3t1z+wCESCc2i3sI9zdODVMW4oskjACERdQi8/gCZEz8UBELIN0x3SzC0TmjEKRxRFIIAqNgrj5WD4rQIhgApEovAu/8RPLkf9G8zwKRIJDociiCCgQdVsEdl/b8U6EaCCUQNT4M4hr9+K3DoQIIRCJ6Aia91EoshgCC0TJh+V3jyZEH0IKRNEjID3zO7/1IJZNEIHIGuJmo3iugPmiUGQRBBiINo7SevdobcraAwdbyR9+9urb/FAHuNoRaOevfn47f/n8H+oUXx/EyIQWiA4shOzCJr1WwcuWatfiCSUQdZ0Pzl+/4zrjG5h/7VIosgDCDET5fFYFADAoFGjkLX8MClWdX9kFGF4ZCHMBZkaoX8asCPn84ZXl7YujD2JEQgxERbw/1OkQQLVr0YQUiEIiId07R6/hh5cx/9o12VC0ePFiVKhQAba2tqhbty5Onz5d2kMSJFGjwWYViADg6BOgQCZ/HHuiOv9eNnAnS/7znkfql7H7v+l3suTti6MPYiTWtmYRiADg4guqXYsltEC04csirmOnyhJq1ySPslq3bh1GjRqFZcuWoW7duliwYAFiYmKQlJQELy+v0h6eoIgqtzCrQAQA+x8Dwf/ttXio5kzX7AKgxhYgwAFITFe/jK9OA/FJ8jdZtpq9ePr2EU5XBC424tgJ4FzLmXwgAoAzL4RXu6QECDEQ3TwE+FTRazU67AOupJl37ZrklqL58+fj008/xcCBA1GlShUsW7YM9vb2+N///lfaQxMc6eGlZhWICj3MUf+mKZRdUPSbJjFd/RvTmH0Qw3FuAWYRiApR7VoYF19hBiIenr4x/9o1uS1FeXl5OHfuHMaPH6+YJhKJ0Lx5c5w4cUKlfW5uLnJzcxXP09Pl/5uvXr2CVKp6eWSxWAxXV1el1wiJq6srMjIy1I79fWKxGAX3k8Bc1Oyc/Y+oenuII7pDeuAXyC7vA7S05UIjIW74CWRnNkN24nfAJURz23I1II4eCXbtKKSHlgBOFVTb2JeFlR7rEmQFSG2LbFoqgqyAjAyoXZeMjAwAAON5LxBLr2Hp4WWQZb/RXJsiK4ijvgDnVQPSLdPAnj7SWsei+gMgCm0K6Y75YCn/am9bxPvDXGqY6ld3+tYvi/oaePUCBbtmAlZugIub+sZ2LrCKGQ/kW6Hgn4mA1FpzbVrbQtxiDDhbX0g3TQTj+f4wl/oFjFjDzMQ8fPiQAWDHjx9Xmj5mzBhWp04dlfaTJ09mkG/OoAc9SvVx//59XjVPNUwPITyofulh6g9daphjzLRuZfno0SOULVsWx48fR/369RXTx44di0OHDuHUqVNK7d//liKTyfDy5UuUKVMGHN3anJQAxhgyMzPh5+cHkUj/PdZUw6Q0Uf0SU6dPDZvc7jMPDw+IxWI8eaJ8aPqTJ0/g4+Oj0l4ikUAikShNc3V1Lc4hEqLCxcWF92uphklpo/olpk7XGja5A61tbGwQERGBffv2KabJZDLs27dPacsRIYQQQog+TG5LEQCMGjUK/fv3x4cffog6depgwYIFyM7OxsCBA0t7aIQQQggxUSYZij766CM8e/YMkyZNwuPHj1GzZk3s3LkT3t7epT00QgghhJgokzvQmhBCCCGkOJjcMUWEEEIIIcWBQhEhhBBCCCgUEUIIIYQAoFBECCGEEAKAQhEhhBBCCAAKRYQQQgghACgUEUIIIYQAoFBECCGEEAKAQhEhhBBCCAAKRYQQQgghACgUEULMyJ07d8BxHC5evFjaQyFmqEmTJhg5cmRpD4MUIwpFRG8ymUzQ/Q0YMAAcx2HWrFlK0zdv3gyO43RejqYPwISEBLi6uuo1JqFhJfw7ZDKpzm05jtP6iIuLK76B6kBb8DL1P5rSki0LvftbtmwZnJycUFBQoJiWlZUFa2trNGnSRKntwYMHwXEcbt26ZYSRqmfOnxGWyqq0B0BMj0gkwvLly5Gamlrsffn6+mLIkCF6v87W1hazZ8/GkCFD4ObmVgwjM22cSISCbVPBHl7S3MjOFVZt4wBrexRsmwyka/l9W9tCHDsBnFsApNungj1LftuXRxCsOs/VeWzv1tW6deswadIkJCUlKaY5OjrqvCyiH7EI6HsYuJ6uPL2SCzCpBvAgB5h4Ach9L+NKxMC0cKCcPTDlEpD03usBoGcQ0CUA2HQPWHtbvsxfI/UbX3R0NLKysnD27FnUq1cPAHDkyBH4+Pjg1KlTePPmDWxtbQEABw4cQEBAAIKDg/XqgzEGqVQKKyv682iJaEsR4SU1NRV3794t9gff4NW8eXP4+Phg5syZGtts2rQJVatWhUQiQYUKFTBv3jy+/x1YunQpgoODYWNjg7CwMPz6669K8zmOw9KlSxEbGws7OzsEBQVh48aNvPszBvbwEvD4mvpH5lNYtRoPiG1QkNAHSNqnue3LOxA3/z9wruUg/XUg2L9/K81nz2/rNS4fHx/Fw8XFBRzHKZ57eXlh/vz5KFeuHCQSCWrWrImdO3dqXJZUKsXHH3+MSpUq4d69ewCALVu2oFatWrC1tUVQUBCmTJmitOWB4zj88ssv6NSpE+zt7REaGoq///6b1//xq1ev0K9fP7i5ucHe3h6xsbG4efOmYn7hFoXNmzcjNDQUtra2iImJwf3793n1ZwxJGcCFl8qP9gFAqAsQ7Qv42avOL2svnxfqAnQIUJ1/6RUwojJQ3kn+76VXqsFLF2FhYfD19cXBgwcV0w4ePIgOHTogMDAQJ0+eVJoeHR2N3NxcfPnll/Dy8oKtrS0aNWqEM2fOKLXjOA47duxAREQEJBIJjh49iuzsbPTr1w+Ojo7w9fU16PMBMM3PCEtEoYiYJbFYjO+++w4//vgjHjx4oDL/3Llz6N69O3r06IF///0XcXFxmDhxIhISEvTu66+//sKIESPwf//3f7hy5QqGDBmCgQMH4sCBA0rtJk6ciC5duuDSpUvo3bs3evTogcTERL6rWHwcPGDVbyUgcULB6gHAyzua29rYQ9z7Z3CeoZD+Ngjs0b/FOrSFCxdi3rx5+P7773H58mXExMSgffv2SkGjUG5uLrp164aLFy/iyJEjCAgIwJEjR9CvXz+MGDEC165dw/Lly5GQkIAZM2YovXbKlCno3r07Ll++jNatW6N37954+fKl3uMdMGAAzp49i7///hsnTpwAYwytW7dGfn6+ok1OTg5mzJiB1atX49ixY0hLS0OPHj30/88xEsZUpx3477tJZj5wUc1/w4WX8nnvtn2XjAFHn8p/PvpU/pyv6OhopffWgQMH0KRJE0RFRSmmv379GqdOnUJ0dDTGjh2LTZs2YdWqVTh//jxCQkIQExOj8vscN24cZs2ahcTERFSvXh1jxozBoUOHsGXLFuzevRsHDx7E+fPneY3Z7D4jzBjHmLq3ACHaxcXF4e7du8XeT/ny5fU+hmTAgAFIS0vD5s2bUb9+fVSpUgUrVqzA5s2b0alTJzDG0Lt3bzx79gy7d+9WvG7s2LHYtm0brl69CkB+vMDx48dhY2OjtPyCggLY2toiLS0NANCwYUNUrVoV8fHxijbdu3dHdnY2tm3bBkD+LfCzzz7D0qVLFW3q1auHWrVqYcmSJXqtn7Hkx3eRb815V3EEIp8qsB68idcYExISMHLkSMX/ddmyZTFs2DB88803ijZ16tRB7dq1sXjxYty5cweBgYE4cuQI4uLikJubi3/++QcuLi4A5FsQmzVrhvHjxyte/9tvv2Hs2LF49OgRAPnvasKECZg2bRoAIDs7G46OjtixYwdatWql6MPOzg4ikfL3ytevX2P48OFYsGABbt68iYoVK+LYsWNo0KABAODFixfw9/fHqlWr0K1bNyQkJGDgwIE4efIk6tatCwC4fv06KleujFOnTqFOnTq8/t8MUXurPOS8L9gJeJUHvMxV/zp3CeBmA9zKVD/fWgSEOgM3M4B8GRDuDpxpp//4fvnlF0VNvH79Gu7u7nj06BH27t2LZcuW4dChQ9i/fz+aNWuGO3fuIDQ0FAkJCejVqxcAID8/HxUqVMDIkSMxZswYxRalzZs3o0OHDgDkxymVKVMGv/32G7p16wYAePnyJcqVK4fBgwdjwYIFAMz/M8IS0ZYiYtZmz56NVatWqXzbSkxMRMOGDZWmNWzYEDdv3oRU+vaAid69e+PixYtKj6lTp+q0rPf7rF+/vspzQX0LLK4tRCLjHJuRkZGBR48e6fR/3bNnT2RnZ2P37t2KQAQAly5dwtSpU+Ho6Kh4fPrpp0hNTUVOTo6iXfXq1RU/Ozg4wNnZGU+fPlXqY926dSq18eGHHyrmJyYmwsrKShF2AKBMmTIICwtTGq+VlRVq166teF6pUiW4uroKqzYgDzuaAhEgn6cpEAHyIHQtTf6vIZo0aYLs7GycOXMGR44cQcWKFeHp6YmoqCjFcUUHDx5EUFAQ0tPTkZ+fr1Qz1tbWqFOnjsr/77u/u1u3biEvL0/pd+fu7o6wsDCV8VjUZ4QFoCPJiFmLjIxETEwMxo8fjwEDBuj9ehcXF4SEhChN8/LyMtLoBKTYApE1xM1GGXu0RWrdujV+++03nDhxAk2bNlVMz8rKwpQpU9C5c2eV1xQeoAvI/3C+i+M4lbMg/f39VWrDzs7OGMMnWoSEhKBcuXI4cOAAXr16haioKACAn58f/P39cfz4cRw4cEDp964LBwcHXuOxmM8IC0FbiojZmzVrFrZu3YoTJ04oplWuXBnHjh1Tanfs2DFUrFgRYrFYr+VrWlaVKlWUpr17EGjh88qVK+vVV7EozkDUdT44/1pGGaazszP8/Px0+r8eOnQoZs2ahfbt2+PQoUOK6bVq1UJSUhJCQkJUHu/vCjNU5cqVUVBQgFOnTimmvXjxAklJSUrjLSgowNmzZxXPk5KSkJaWJozaEKjo6GgcPHgQBw8eVDoVPzIyEjt27MDp06cRHR2tOLD53ZrJz8/HmTNnVGrmXcHBwbC2tlb63b169Qo3btzgNV6T/4ywILSliPDi6+trMv1Uq1YNvXv3xqJFixTT/u///g+1a9fGtGnT8NFHH+HEiRP46aefeO27HzNmDLp3747w8HA0b94cW7duxZ9//om9e/cqtduwYQM+/PBDNGrUCGvWrMHp06exYsUKg9ePL84jCOz90+5t7AEfDX8s3j/tXibV3FZkBXGzUeD8a0F2+leIG3xslDGPGTMGkydPRnBwMGrWrImVK1fi4sWLWLNmjUrb4cOHQyqVom3bttixYwcaNWqESZMmoW3btggICEDXrl0hEolw6dIlXLlyBdOnTzfKGAuFhoaiQ4cO+PTTT7F8+XI4OTlh3LhxKFu2rOLYFUC+VWr48OFYtGgRrKys8MUXX6BevXqlcjwRID9VXuj9REdHY9iwYcjPz1dsKQKAqKgofPHFF8jLy0N0dDQcHBwwdOhQjBkzBu7u7ggICMCcOXOQk5ODQYMGaVy+o6MjBg0ahDFjxqBMmTLw8vLCt99+yzs4m+pnhEVihOhJKpUKur/+/fuzDh06KE1LSUlhNjY27N2S37hxI6tSpQqztrZmAQEBbO7cuUqviYqKYiNGjFBZ/sqVK5mLi4vStCVLlrCgoCBmbW3NKlasyFavXq00HwBbvHgxa9GiBZNIJKxChQps3bp1eq2XMcmkBSbR3/v/11KplMXFxbGyZcsya2trVqNGDbZjxw7F/JSUFAaAXbhwQTFt3rx5zMnJiR07dowxxtjOnTtZgwYNmJ2dHXN2dmZ16tRh8fHxivYA2F9//aU0DhcXF7Zy5UqNfRR6v2ZevnzJ+vbty1xcXJidnR2LiYlhN27cUFm/TZs2saCgICaRSFjz5s3Z3bt39f/PMoKCkn1rswIZv9cV/g4qVaqkNP3OnTsMAAsLC1NMe/36NRs+fDjz8PBgEomENWzYkJ0+fVox/8CBAwwAe/XqldKyMjMzWZ8+fZi9vT3z9vZmc+bMUfn9mvNnhKWis88IKQEcx+Gvv/5Cx44dS3soREDeP7uOWC76jBAGOqaIEEIIIQQUigghhBBCANDFGwkhhBBCANCWIkIIIYQQABSKCCGEEEIAUCgihBBCCAFAoYgQQgghBACFIkIIIYQQABSKCCGEEEIAUCgihBBCCAFAoYgQQgghBACFIkIIIYQQABSKCCGEEEIAUCgihBBCCAFAoYgQQgghBACFIkIIIYQQABSKCCGEEEIAAP8P7w/uDoRpkpEAAAAASUVORK5CYII=",
|
164 |
+
"text/plain": [
|
165 |
+
"<Figure size 600x400 with 6 Axes>"
|
166 |
+
]
|
167 |
+
},
|
168 |
+
"metadata": {},
|
169 |
+
"output_type": "display_data"
|
170 |
+
}
|
171 |
+
],
|
172 |
+
"source": [
|
173 |
+
"CHECKPOINTS = [300, 600, 900, 1200, 1500, 3000]\n",
|
174 |
+
"SEEDS = [0, 14, 41, 53, 96]\n",
|
175 |
+
"\n",
|
176 |
+
"plot_surprisal_differences_checkpoints(seeds=SEEDS, checkpoints=CHECKPOINTS)\n",
|
177 |
+
"plt.savefig(f\"figures/hop_surprisals.pdf\", format=\"pdf\", bbox_inches=\"tight\")"
|
178 |
+
]
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"cell_type": "code",
|
182 |
+
"execution_count": 6,
|
183 |
+
"metadata": {},
|
184 |
+
"outputs": [
|
185 |
+
{
|
186 |
+
"data": {
|
187 |
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAGhCAYAAABvQ8DIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB+I0lEQVR4nO3dd3wT9f8H8FeS7t0CXdACHZQhoyB7b8qQjYACIgoiIspPEJRREARBEFGm8mUo8mUpfBFB9pKNILIpe5RNNxSafH5/xEZCRpNrSi/J6/l45NHm7nP3+Vz7TvvK3eVOIYQQICIiInJyysIeABEREZEcMBQRERERgaGIiIiICABDEREREREAhiIiIiIiAAxFRERERAAYioiIiIgAMBQRERERAWAoIiIiIgLAUEREREQEgKFIVk6ePImuXbsiKioKXl5eKFq0KBo0aIB169YZbX/69Gm0atUKPj4+CAoKQq9evXD37l2DdhqNBlOmTEHp0qXh4eGBSpUqYdmyZRaPa8+ePUhISEDx4sXh4eGByMhItGvXDj/99JOuTVZWFhITE7Fjxw6rt5scz59//olXXnkFQUFB8PLywksvvYSZM2catNu7dy/q1asHLy8vhIaG4v3330dGRoZBu+zsbHz88ccIDw+Hp6cnatasic2bN1s8nnXr1qFhw4YIDg6Gl5cXoqKi0K1bN2zcuFHX5ubNm0hMTMSxY8ckbTM5hiNHjqBVq1bw8/ODr68vWrRoYbImWL8OSJBsrF+/XrRs2VIkJiaK+fPnixkzZoj69esLAGLevHl6ba9duyaKFi0qoqOjxddffy0mTpwoAgMDReXKlUV2drZe2xEjRggA4u233xbz588Xbdq0EQDEsmXL8hzTihUrhEKhEPHx8eKLL74Q8+fPFyNHjhR169YVjRo10rW7e/euACDGjh1rk58F2a/ff/9duLm5iZo1a4rp06eL+fPni48//lgMGzZMr93Ro0eFh4eHiI+PF3PmzBGffvqpcHd3F61atTJYZ/fu3YWLi4v46KOPxLx580Tt2rWFi4uL2L17d57jmTp1qgAgGjZsKKZPny7mzp0rPvroI1GlShXRp08fXbtDhw4JAGLhwoX5/RGQnTpy5Ijw8PAQsbGx4ssvvxRTpkwRpUqVEn5+fuLMmTN6bVm/jomhSOZycnJE5cqVRVxcnN70gQMHCk9PT3HlyhXdtM2bNxsEqOvXrwtXV1cxaNAg3TSNRiPq168vSpQoIXJycsz2X758eVGhQgWDoCWEELdv39Z9z1BEQgiRmpoqQkJCRMeOHYVarTbbNiEhQYSFhYnU1FTdtO+++04AEL///rtu2oEDBwQAMXXqVN20R48eiejoaFG7dm2zfTx9+lT4+fmJ5s2bG53/bA3znwq1bt1aBAYGinv37umm3bx5U/j4+IhOnTrptWX9OiaGIjvQtm1bERISojctODhYdO3a1aBtmTJlRNOmTXXPZ82aJQCIkydP6rX76aefBIA836m4u7uLN954w2ybS5cuCQAGj2cD0unTp0Xnzp1FYGCgcHd3F9WqVRNr167VW8/ChQsFALFz507Rv39/ERQUJHx9fUWvXr3EgwcP9NoeOnRItGjRQhQpUkR4eHiIUqVKib59+5odJxW8OXPmCADi1KlTQgghMjIyjIaj1NRU4eLiYrD3KDs7W/j4+Ih+/frppg0bNkyoVCq9fz5CCPH5558LAOLq1asmx5OcnCwAiMTERLPj3r59u9EafvYfzP79+0XLli2Fn5+f8PT0FA0aNBB79uzRW8/YsWMFAHH69GnRtWtX4evrK4KCgsT7778vHj16pNd206ZNom7dusLf3194e3uLMmXKiJEjR5odJxUsX19fo39X27RpI9zc3ER6eroQgvUrhOPWL88pkqHMzEzcu3cPFy5cwFdffYUNGzagadOmuvk3btzAnTt38PLLLxssW6NGDRw9elT3/OjRo/D29ka5cuUM2uXON6dkyZLYunUrrl+/brJNsWLFMGfOHABAx44d8cMPP+CHH35Ap06dAGjPlapVqxZOnz6NESNGYNq0afD29kaHDh3wyy+/GKzvvffew+nTp5GYmIjevXtj6dKl6NChA4QQAIA7d+6gRYsWuHz5MkaMGIFvvvkGr732Gvbv3292W6jgbdmyBX5+frhx4wbi4uLg4+MDPz8/DBw4EI8fP9a1+/vvv5GTk2NQw25ubqhSpYpBDZcpUwZ+fn56bXNr2Nw5FMHBwfD09MS6devw4MEDk+3KlSuH8ePHAwD69++vq+EGDRoAALZt24YGDRogLS0NY8eOxeeff46UlBQ0adIEBw8eNFhft27d8PjxY0yaNAmtW7fGzJkz0b9/f938kydPom3btsjOzsb48eMxbdo0vPLKK/jjjz9MjpEKXnZ2Njw9PQ2me3l54cmTJzhx4gQA1q9D129hpzIyNGDAAF3SVyqVokuXLnp7SnJ3ky5ZssRg2WHDhgkA4vHjx0II7TucqKgog3aZmZkCgBgxYoTZsSxYsEAAEG5ubqJx48Zi9OjRYvfu3Qbv/s0dPmvatKmoWLGibkxCaA/h1alTR8TGxuqm5e4pqlatmnjy5Ilu+pQpUwQA3Z6lX375RQAQhw4dMjt2evEqVaokvLy8hJeXlxg8eLBYvXq1GDx4sAAgunfvrmu3cuVKAUDs2rXLYB1du3YVoaGhuucVKlQQTZo0MWh38uRJAUDMnTvX7JjGjBkjAAhvb2+RkJAgJk6cKI4cOWLQztThB41GI2JjY0XLli2FRqPRTc/KyhKlS5fWO7SR+077lVde0VvHu+++KwCIv/76SwghxFdffSUAiLt375odO71YFStWFGXKlNE7rSA7O1tERkYKAGLVqlVCCNavI9cv9xTJ0AcffIDNmzdj8eLFSEhIgFqtxpMnT3TzHz16BABwd3c3WNbDw0OvzaNHjyxqZ8qbb76JjRs3olGjRtizZw8+++wz1K9fH7Gxsdi7d2+e2/LgwQNs27YN3bp1Q3p6Ou7du4d79+7h/v37aNmyJc6fP48bN27oLdO/f3+4urrqng8cOBAuLi747bffAAABAQEAgF9//RVPnz7Ncwz04mRkZCArKwu9e/fGzJkz0alTJ8ycORMDBgzAf//7X5w/fx5A3jX8bF3mt4bHjRuHn376CfHx8fj999/x6aefolq1aqhatSpOnz6d5zYdO3YM58+fR8+ePXH//n1dDWdmZqJp06bYtWsXNBqN3jKDBg3Sez548GAAMKjhtWvXGixLhefdd9/FuXPn0K9fP5w6dQonTpxA7969kZycDED/7yrA+nXE+mUokqGyZcuiWbNm6N27N3799VdkZGSgXbt2usNHubt3s7OzDZbNPUSR28bT09Oidua0bNkSv//+O1JSUrBr1y4MGjQIV65cQdu2bXHnzh2zyyYlJUEIgdGjR6NYsWJ6j7FjxwKAwTpiY2P1nvv4+CAsLAyXL18GADRs2BCdO3fGuHHjULRoUbRv3x4LFy40up30YuXWU48ePfSm9+zZEwCwb98+vXamavPZurRFDffo0QO7d+/Gw4cPsWnTJvTs2RNHjx5Fu3bt9A7rGZMb5Pr06WNQw99//z2ys7ORmpqqt8zzNRwdHQ2lUqmr4VdffRV169bFW2+9hZCQEHTv3h0rVqxwuH8w9uadd97BJ598gp9++gkVKlRAxYoVceHCBQwfPhyA9m8RwPp15Pp1KewBUN66dOmCAQMG4Ny5c4iLi0NYWBgA6N69PCs5ORlBQUG6dyZhYWHYvn07hBBQKBR67QAgPDzc4nF4eXmhfv36qF+/PooWLYpx48Zhw4YN6NOnj8llcl8kH330EVq2bGm0TUxMjMVjAACFQoFVq1Zh//79WLduHX7//Xe8+eabmDZtGvbv36/7w0UvXnh4OE6ePImQkBC96cHBwQCAhw8fAkCeNfxsXYaFhRnsTXx2WWtq2M/PD82bN0fz5s3h6uqKxYsX48CBA2jYsKHJZXJreOrUqahSpYrRNnnV3LOvPUD7j3DXrl3Yvn071q9fj40bN2L58uVo0qQJNm3aBJVKZfE2kW1NnDgRH330EU6ePAl/f39UrFgRn3zyCQCgTJkyAFi/jly/3FNkB3J3r+am+eLFi6NYsWI4fPiwQduDBw/qFX6VKlWQlZVlsJv1wIEDuvlS5J5gmPvCfv5FkysqKgoA4OrqimbNmhl9+Pr66i2T+84mV0ZGBpKTk1GqVCm96bVq1cLEiRNx+PBhLF26FCdPnsR///tfSdtDtlGtWjUAMPgncPPmTQDak/IB4KWXXoKLi4tBDT958gTHjh0zqOFz584hLS1Nr+2LquHo6GgA2n9Ipmr42cO9gGENJyUlQaPR6NWwUqlE06ZNMX36dJw6dQoTJ07Etm3bsH37dknbQ7YTGBiIevXqoWLFigC0HyAoUaIEypYtC4D1Czhu/TIUyYixQ1FPnz7FkiVL4OnpifLly+umd+7cGb/++iuuXbumm7Z161acO3cOXbt21U1r3749XF1dMXv2bN00IQTmzp2L4sWLo06dOmbHtHXrVqPTc48tx8XFAdDuRQKAlJQUvXbBwcFo1KgR5s2bZ/RdlbErcM+fP1/vXKE5c+YgJycHCQkJALR7G3IPJebK/cPCQ2iFq1u3bgCABQsW6E3//vvv4eLigkaNGgEA/P390axZM/z4449IT0/Xtfvhhx+QkZGhV8NdunSBWq3G/PnzddOys7OxcOFC1KxZExERESbHk5WVpTtk97wNGzYA+LeGvb29ARjWcLVq1RAdHY0vv/zS6NWKjdXwrFmz9J5/8803AKCrYWOfJGINy9Py5ctx6NAhfPDBB1Aqtf8yWb+OW788fCYjAwYMQFpaGho0aIDixYvj1q1bWLp0Kc6cOYNp06bp7eL85JNPsHLlSjRu3BhDhgxBRkYGpk6diooVK6Jv3766diVKlMAHH3yAqVOn4unTp6hevTrWrFmD3bt3Y+nSpXnu5mzfvj1Kly6Ndu3aITo6GpmZmdiyZQvWrVuH6tWro127dgCgC23Lly9HmTJlEBQUhJdeegkvvfQSZs2apXvX9fbbbyMqKgq3b9/Gvn37cP36dfz11196fT558gRNmzZFt27dcPbsWcyePRv16tXDK6+8AgBYvHgxZs+ejY4dOyI6Ohrp6en47rvv4Ofnh9atW9vq10ESxMfH480338R//vMf5OTkoGHDhtixYwdWrlyJkSNH6h0qmDhxIurUqYOGDRuif//+uH79OqZNm4YWLVqgVatWunY1a9ZE165dMXLkSNy5cwcxMTFYvHgxLl++bBC+npeVlYU6deqgVq1aaNWqFSIiIpCSkqJ7DXTo0AHx8fEAtO+oAwICMHfuXPj6+sLb2xs1a9ZE6dKl8f333yMhIQEVKlRA3759Ubx4cdy4cQPbt2+Hn5+fwa14Ll26hFdeeQWtWrXCvn378OOPP6Jnz56oXLkyAGD8+PHYtWsX2rRpg5IlS+LOnTuYPXs2SpQogXr16tnq10FW2rVrF8aPH48WLVqgSJEi2L9/PxYuXIhWrVphyJAhem1Zvw5av4X62TfSs2zZMtGsWTMREhIiXFxcRGBgoGjWrJnBRQ5znThxQrRo0UJ4eXmJgIAA8dprr4lbt24ZtFOr1eLzzz8XJUuWFG5ubqJChQrixx9/tHhM3bt3F9HR0cLT01N4eHiI8uXLi08//VSkpaXptd27d6+oVq2acHNzM/h4/oULF0Tv3r1FaGiocHV1FcWLFxdt27bVfcRVCMOLNwYGBgofHx/x2muvifv37+va/fnnn6JHjx4iMjJSuLu7i+DgYNG2bVtx+PBhi7aJCtaTJ09EYmKiKFmypHB1dRUxMTHiq6++Mtp29+7dok6dOsLDw0MUK1ZMDBo0yKCuhNBeAfijjz4SoaGhwt3dXVSvXl1s3Lgxz7E8ffpUfPfdd6JDhw6iZMmSwt3dXXh5eYn4+HgxdepUgyu1r127VpQvX164uLgYfLz56NGjolOnTqJIkSLC3d1dlCxZUnTr1k1s3bpV1yb3I82nTp0SXbp0Eb6+viIwMFC89957ehe/27p1q2jfvr0IDw8Xbm5uIjw8XPTo0UOcO3cuz22igpOUlCRatGghihYtKtzd3UXZsmXFpEmTjF7RXwjWryPWr0KI545DEBWSRYsWoW/fvjh06JDRC1MSyV1iYiLGjRuHu3fvomjRooU9HCKrsH55ThERERERAIYiIiIiIgAMRUREREQAAJ5TRERERATuKSIiIiICwFBEREREBMAJL96o0Whw8+ZN+Pr6mrwsOpEtCSGQnp6O8PBw3RVx84M1TC8S65fsnTU17HSh6ObNm2Yvq05UUK5du4YSJUrkez2sYSoMrF+yd5bUsNOFotybj167dg1+fn6FPBpyBmlpaYiIiDC48a1UrGF6kVi/ZO+sqWGnC0W5u2v9/Pz4gqQXylaHCljDVBhYv2TvLKlhnmhNREREBIYiIiIiIgAMRUREREQAGIqIiIiIADAUEREREQFgKCIiIiICwFBEREREBIChiIiIiAgAQxERERERAIYiIiIiIgAyDEW7du1Cu3btEB4eDoVCgTVr1ujNf+ONN6BQKPQerVq1KpzBEhERkcOQXSjKzMxE5cqVMWvWLJNtWrVqheTkZN1j2bJlL3CERERE5Ihkd0PYhIQEJCQkmG3j7u6O0NDQFzQiIiIicgayC0WW2LFjB4KDgxEYGIgmTZpgwoQJKFKkiNG22dnZyM7O1j1PS0sDAKjVaqjV6hcyXnJu+a0z1jAVphddvwqFAkql7A5i6NFoNBBCFPYwyELW1LDdhaJWrVqhU6dOKF26NC5cuIBPPvkECQkJ2LdvH1QqlUH7SZMmYdy4cQbTz549Cx8fnxcxZHJyGRkZ+VqeNUyF6UXWr4eHB2JiYjBv3jwkJyfnq9+CEhYWhgEDBiApKQmPHz8u7OGQBaypYYWQcdxVKBT45Zdf0KFDB5NtLl68iOjoaGzZsgVNmzY1mG/sXUpERAQePHgAPz+/ghg2kZ60tDQEBQUhNTVVUs2xhqkwvej6ValUSExMxJUrV/I17oJSsmRJJCYmci+tHbGmhu1uT9HzoqKiULRoUSQlJRkNRe7u7nB3dzeYrlKpjO5ZIrK1/NYZa5gKE+vXOHseu7Ox5ncl7wO3Frh+/Tru37+PsLCwwh4KERER2THZ7SnKyMhAUlKS7vmlS5dw7NgxBAUFISgoCOPGjUPnzp0RGhqKCxcuYPjw4YiJiUHLli0LcdRERERk72QXig4fPozGjRvrng8dOhQA0KdPH8yZMwfHjx/H4sWLkZKSgvDwcLRo0QKfffaZ0d2zRERERJaSXShq1KiR2Y86/v777y9wNEREROQs7P6cIiIiIiJbYCgiIiIiAkMREREREQCGIiIiIiIADEVEREREABiKiIiIiAAwFBEREREBYCgiIiIiAsBQRERERASAoYiIiIgIAEMREREREQCGIiIiIiIADEVEREREABiKiIiIiAAwFBEREREBYCgiIiIiAsBQRERERASAoYiIiIgIAEMRkcPRaDSFPYQ82cMYicj5uBT2AIjItpRKJebNm4fk5OTCHopRYWFhGDBgQGEPg4jIAEMRkQNKTk7GlStXCnsYRER2hYfPiIiIiMBQRERERASAoYiIiIgIAEMREREREQCGIiIiIiIADEVEREREABiKiIiIiAAwFBEREREBYCgiIiIiAsBQRERERASAoYiIiIgIgAxD0a5du9CuXTuEh4dDoVBgzZo1evOFEBgzZgzCwsLg6emJZs2a4fz584UzWCIiInIYsgtFmZmZqFy5MmbNmmV0/pQpUzBz5kzMnTsXBw4cgLe3N1q2bInHjx+/4JESERGRI3Ep7AE8LyEhAQkJCUbnCSEwY8YMjBo1Cu3btwcALFmyBCEhIVizZg26d+/+IodKREREDkR2ocicS5cu4datW2jWrJlumr+/P2rWrIl9+/YZDUXZ2dnIzs7WPU9LSwMAqNVqqNXqgh80Ob381pm1NaxSqfLV34vC1599YP0ax/q1H9b8ruwqFN26dQsAEBISojc9JCREN+95kyZNwrhx4wymnz17Fj4+PrYfJNFzMjIy8rW8NTXs4eGBmJiYfPX3oly6dImHve0A69c41q/9sKaG7SoUSTFy5EgMHTpU9zwtLQ0RERGIi4uDn59fIY6MnEXuO2OpHLWGS5cuXdhDIAuwfo1j/doPa2rYrkJRaGgoAOD27dsICwvTTb99+zaqVKlidBl3d3e4u7sbTFepVHazm5bsW37rzFFr2J7H7kxYv8bZ89idjTW/K9l9+syc0qVLIzQ0FFu3btVNS0tLw4EDB1C7du1CHBkRERHZO9ntKcrIyEBSUpLu+aVLl3Ds2DEEBQUhMjISH3zwASZMmIDY2FiULl0ao0ePRnh4ODp06FB4gyYiIiK7J7tQdPjwYTRu3Fj3PPdYdJ8+fbBo0SIMHz4cmZmZ6N+/P1JSUlCvXj1s3LgRHh4ehTVkIiIicgCyC0WNGjWCEMLkfIVCgfHjx2P8+PEvcFRERETk6OzqnCIiIiKigsJQRERERASGIiIiIiIADEVEREREABiKiIiIiAAwFBEREREBYCgiIiIiAsBQRERERASAoYiIiIgIAEMREREREQCGIiIiIiIADEVEREREABiKiIiIKA9qTWGPIG+2GKNL/lfhWDQaDZRKeWdFexgjEZGzExo1FEpVYQ/DLEvHqFICvXYBZ1JfwKAkKOsP/NAg/+thKHqOUqnEvHnzkJycXNhDMSosLAwDBgwo7GEQEVEeFEoVcn4eDkXZplCWaw71rjkQZ7eZXUYZ3xmq6j2hPvQTNEdXm19/XBOoGgyE5vRmaPbMN982sipUzYZDXPsT6q3TAU0OFEWj4NJpqsXbcyYVOPrA4uZ2SXIoSktLw+zZs7F9+3bcuXMH8+bNQ40aNfDgwQMsWrQIr7zyCmJiYmw51hcmOTkZV65cKexhEBGRndMFonWjIY79bLatsv472kC0/Wtods81v94qnbSB6MgKaH4bD0CYbhvbEKpmwyCSdkK9aiigeQqYXcJ5SToGc/36dcTHx2PMmDG4fv06jh8/joyMDABAUFAQ5s2bh2+++camAyUiIrI3VgWixkMsD0TtPrM8EHWdCZG0Sy8QSTG/DrCjFRDuZXz+VzWAkx2AdhHG57eL0M7/qobx+cW9tOvPTx/5JSkUDRs2DOnp6Th27Bh27twJIfR/IR06dMCWLVtsMkAiIiJ7pd41xyECEQDEFwHqhQD9Yg3nlfMHBpcD4vyBSdWMLz+5mnb+4HLa9s/rF6tdf376yC9JoWjTpk14//33Ub58eSgUCoP5UVFRuHbtWr4HR0REZM/yPIfITgIRAORotI8/bhvOu5oJXNYeMMLmm8aX3/TP9MsZ2vbP23M7/33kl6Rzih49eoRixYqZnJ+eni55QERERM7AngIRALTfCpxIAW5kGc7LzAEqrwUivYHTJj6h9uFBYP5ZbbjJzDGcv+0WEP3PueVS+8gvSXuKypcvj127dpmcv2bNGsTHx0seFBERkSOTQyBSFLPuw1B3HhsPK7kyc/IOK6dTjQeiXDey8t9HfkgKRR988AH++9//4osvvkBqqnZ0Go0GSUlJ6NWrF/bt24cPP/zQpgMlIiJyBLIIROEVoWo9RuomOCxJh89ef/11XLlyBaNGjcKnn34KAGjVqhWEEFAqlfj888/RoUMHW46TiIjI7skmEL2+AOLhVShCy0ndFIck+TpFn376KXr16oXVq1cjKSkJGo0G0dHR6NSpE6Kiomw5RiIiIrsnq0B09zzUW6ZB2Xep1M1xSPm6onVkZCQPkxEREeVBdoFo6dtAUCmJW6PVrRRQ2geYdQbIMHKeUKVAoGMk8MtV4PhDw/k+LsCgssClDGDF5fz1YavzjCSFoj///BP79+/Hu+++a3T+7NmzUadOHVSpUiU/YyMiIrJ7sgxET8yczWyBRqHATw2135fwBgYfeK4/AJtbAEU8gHfLAqHLDbdkUjVgYFnt97cfATuf+xi+NX2kZOdrc3QknWj96aefmr0447Zt2zBq1CjJgyIiInIEyvjODheIAEC8gHuEvIg+nidpT9GRI0cwcuRIk/Pr16+PSZMmSR4UERGRI7DqXmZ2EogA7V6dnjv/PbT1PAGg+SagQySw5qrxrRl5BLieqT189vxeImv7OJP6716l/JAUitLT0+HiYnpRpVKp+6g+ERGRs1If+snhAlEuU+cB5Tr+0Pi5RLkycoAvTtimj/gg8+0sJenwWWxsLDZt2mRy/saNG/kJNCIicnqao6vNzrfXQOSoJIWifv36Yf369Rg6dChSUlJ001NSUvDhhx9i48aN6Nevn63GSERE5HAYiORH0uGz999/H8eOHcOMGTMwc+ZMhIeHAwBu3rwJjUaDXr168aP6REREJsgiEPmH5WMLHJOkPUUKhQILFy7E1q1b8c477+Cll17CSy+9hIEDB2Lbtm1YvHgxFAqFrccKAEhMTIRCodB7lC1btkD6IiIisjVZBKKgUnBpM86qcQd7AMW9TM/3cQHK+ZtfRzl/wNvM7pjiXvnvIz/ydfHGxo0bo3HjxrYai8UqVKigd0kAcyd9ExERyYVsAlHvRcDTLABFLB772qbar603a+9o/ywfF+BYe6CUD/DNaeDDg4bLf1UDGFwOuJyhvdv98zeGbRIK/NY8f33kl6Q9RYXNxcUFoaGhukfRokULe0hERERmySoQZacj59dEq8bvotQ+6oYYzovw1oYVAGgebnz5Fv9ML+UDRHobzq8Xkv8+8kvSLhYhBObPn48FCxbg4sWLePjQ8DN3CoUCOTlGrsltA+fPn0d4eDg8PDxQu3ZtTJo0CZGRkUbbZmdnIzv730tdpqWlAQDUajXUarVBe5VKVSBjtjVjYyd5yu/vijVMhYn1a5wlP5dnt0V2gWhJX8A32KptOXpfu3dnwXnD+adTtXtvmodrrz9kzIgj2qtYb75p/LYcC84DTcL+/V5KH8a2xZoalhSKhg8fjunTp6NKlSp4/fXXERgYKGU1ktSsWROLFi1CXFwckpOTMW7cONSvXx8nTpyAr6+vQftJkyZh3DjD46Znz56Fj4+P3jQPDw/ExMQU2Nht6dKlS3j8+HFhD4MskJGRka/lWcNUmFi/xuVVv89uiywDUeY9XSiydFv67wWOPjDdRV6Hs9Zd0z5MuZEFNNpofh159WFsW6ypYUmhaPHixejcuTNWrFghZfF8SUhI0H1fqVIl1KxZEyVLlsSKFSuMXgZg5MiRGDp0qO55WloaIiIiEBcXBz8/vxcy5oJQunTpwh4CWSj3nbFUrGEqTKxf4yytX0VcE6gaDJRfIJKwLfbA2LZYU8OSQtGjR4/QrFkzKYvaXEBAAMqUKYOkpCSj893d3eHu7m4wXaVS2c1uWmPseezOJr+/K9YwFSbWr3GWjl3ugciabbEHxrbFmu2TdKJ106ZNcejQISmL2lxGRgYuXLiAsDBeb4GIiORFc3qzrAMR6ZMUimbPno39+/fj888/x/379209JrM++ugj7Ny5E5cvX8bevXvRsWNHqFQq9OjR44WOg4iIKC+aPfPBQGQ/JIWiuLg4XLx4EaNHj0ZwcDC8vb3h5+en9/D3L5irK12/fh09evRAXFwcunXrhiJFimD//v0oVqxYgfRHRIVHaOT/CTWh0RT2EMhO2XMg8lQBqxoDf7YzfTPWIeWBUx20X42pGqRdflVj7fry00cPG91uVdI5RZ07dy6wK1bn5b///W+h9EtEL55CqULOz8Mg7l38d6J/mPZKvE+ztNdZeZRiegWeAXBpmwi4eiFn/VggNdl0W1cPqBJGQREYCfVv4yHuGj9PEQCgdIGq6VAoIqtBoeLFY8l6sghEngGSx9+6BNDhnyvhDK8I9NipP1+pAKZUA1RK7ddvTgOa53aYDasIVArSPhJKAD9fkd7HEMMPn0si6dW8aNEi2/RORJQHce8icOuU9klQKbgkjAYePcz7D753Ubh0/AJQuSFn0evAg8um27p5QfXad1AElID6h74QN/823VbpClWX6VBExEO9+Qu4tPpU0naR85JFIPIuqn3DINHRB0D6U8DXFdhu5L2GRgB77gANQ7Vfnw9EgHa5rqW06zlm5KP+1vRx7AFQzQbXceZbHCKyD9b+we+9EHD3Rc6SNywLRMViof6xn2WBKKYB1Cvfh0i/K3FjyFnJJhD1Xgi4mrnJWB4upgPRq4FAN+BCuvE2rTYDsX7AeROfiJ9/DtiaDDx8AjzINpxvTR/eLsC+NtK25VmSb/Nx9epVvPPOO4iLi0NgYCB27doFALh37x7ef/99HD16NP+jIyIC5BmIzu803dYItcxPPZL7+ByBrAKRu6/2kHI+PMg2HVYA4KkGOJWi/WrKhXTjgcjaPnJsVL+S9hSdOnUK9evXh0ajQc2aNZGUlKS7pUfRokWxZ88eZGZmYsGCBbYZJRE5L/8w7SEzOw5EgPa8h167gDNGbm9Q2Mr6Az80KOxRODbZBaIlbwBu0vcUOSrJt/kICAjA/v37oVAoEBwcrDe/TZs2WL58uU0GSETOzaXNOMvPIZJpIMp1JtX8bRLIMckyED24DISa+FiYE5N0+GzXrl0YOHAgihUrZvRTaJGRkbhx40a+B0dEhKdZDhGIyDkpIqvKMxCRUZJCkUajgZeX6d1ud+/eNXpZdyIia+X8mugwgUipAAbGaR8qE1c1aRIKjKkMFDfxJ7a4l3Z+k1Dj81U26INsR9VsuMMEoi4lHb92JR0+q1q1KtavX493333XYF5OTg7++9//olatWvkeHBGR2esQ2VEgAoBOkcDHlf59Pues/vziXsBvzQEXJdAkzPgdw5c2AOqFaE8sjV6tvbP4s/qXAb555s+vlD7IdsS1Px0iEAHOUbuS9hSNHDkSGzduxMCBA3HixAkAwO3bt7Flyxa0aNECp0+fxogRI2w6UCIiPXYWiMg5qbdOd4hA5Cwk7SlKSEjAokWLMGTIEMyfPx8A8Prrr0MIAT8/PyxZsgQNGvCjDERUQGQRiBRQ1utv1bB/vgpc/+d/3vxzhvNvZAGtNwN1Q4AF542vo+cuoF8s8Mdtw3faz69Xah9kQ5ock7PsLRB9cVxbv45cu5Iv3tirVy906tQJmzdvxvnz56HRaBAdHY2WLVvC19dG19smInqeXAJR6zFQlmtu1dA1wvCQwPO23dI+TLmZBXz2l+n5ahv0QQVPFoHI1cOqMa+6Yv7Tk45Qu1aHoqysLERERGDEiBEYNmwYOnToUADDIiIyQk6BqFo3qHfNgUvDQRI3hpyVLAKRmxdUCaMkboHjsvqcIi8vL7i4uMDb27sgxkNEZJzcAtG60RBnt0ncGHJWsglEr30HRWCkxK1wXJJOtO7cuTNWrVoFIYzc4Y1kQ2jUhT2EPNnDGEkG5BiIjv0scWPIWckqEBWLhfq38RK3xHFJOqeoe/fuePfdd9G4cWO8/fbbKFWqFDw9PQ3aVa1aNd8DJOkUShU0N09AERwH9ZYpEFf/NNteWa8/lOWaQ71rTp7vgJXxnaGq3hPqQz9Bc3S1+XHENYGqwUBoTm+GZs/8f6cXjYJLp6mWbxA5J88A7d3uHTQQFXEHAszc8NJV+e9NNU3dQyraF0h5Atw3cQ+pvPpwkXwXTLKU7ALRj/3y/aZUDrWb24etalhSKGrUqJHu+927dxvMF0JAoVBAreZegMKmCI6DeuVgi08ateQPvrL+O9pAtP1raHbPNd9/lU7aQHRkBTS/jQfw795F7mckS7i0TQRUbg4ZiKJ8gSPtAF9X4N19xj9xs7E50DAU2HkLaPq74fz+ZYDZtYH0p0C1ddo7i1vbx7c1bbM9ZJwsA9HNv/N1mw+51G5uH0fM/JisISkULVy40Da9U4FTb5li0z/4yvrvQNV4iOWBqN1nRgMRkcVcvZCz6HWHC0QAEB+k/YMPAI3DDP/oKxVAvX9uLVkvWPtc89zLqHGY9quvK1AlyPAfiyV9VAnK/7aQcYpiMVAljJJfIMonudRubh+2qmFJoahPnz626Z0KnPlDZgxEJH8568c6ZCACgN+uA2uuAlE+wBQjw9YIYPgR7Tvq+ecM/6kA2uXi/ICLGcCG69L6+Po0MLRC/reHDKlaj4G4c9ahAhEgn9rN7WP9ddvUsOTrFOVKTk7GnTt3EBMTw0+k2RUGIrITqcmm59lxIAKAR2qgy3bzbb4+pX2YcvQBUHVd/vpYdpGhqKCIh1cdLhAB8qnd3D7ig2xTw5JPTVq7di3Kli2LEiVKoGrVqjhw4AAA4N69e4iPj8cvv/yS/9FRAZFHIFJEWn4ivtrESXpyYg9jdCh2HojIOag3THC4QOTIJO0pWrduHTp16oTatWujZ8+eSExM1M0rWrQoihcvjkWLFqFjx462GifZjEwCUWxDqJoNt3jUKiXQaxdwJtXiRV6osv7AD7yzzYsjk0CkjO8sbfzkPJ4+Nj2PgUh2JIWi8ePHo0GDBti+fTvu37+vF4oAoHbt2pg3b54txkc2JaNA1HUmxLU/oSht+cdezqSav8Q8OQm5BKJ/PoVJJIkcApEy32fQOBxJh89OnDiBbt26mZwfEhKCO3fuSB4UFQSZBaKkXdq7RxNZQ06BqPEQqA/9JG07yLnJIhC5QtV0qMQNcFySQpGXlxcyMzNNzr948SKKFCkieVBkazIMRKuGmr17tDnFvYAdrbSPcC/jbb6qAZzsALSLMD6/XYR2/lc1Cq4PsjG5BaLtX+d54dLnBXuwdp2eXAJRl+lQRFh3geX5dRy/diWFosaNG2Px4sXIyTH8p3br1i189913aNGiRb4HR7Yhz0D0VMqmAAD6xQL1QrSPfrGG88v5A4PLAXH+wKRqxtcxuZp2/uBy2vYF0QfZkBwDUR6vD2PaR7J2nZqcAlFMA6i3TLFq+PFFHL92JYWiiRMn4vr166hevTrmzZsHhUKB33//HaNGjULFihUhhMDYsWNtPVaSQFmvv0MFIgDYcxvI0Wgff9w2nH81E7icof1+803j69j0z/TLGdr2BdEH2Yirh0MEIgA4dp+167TkFohWvp/nrZ+e5wy1K+ksq7i4OOzZswdDhgzB6NGjIYTA1Knae1g1atQIs2bNQqlSpWw5TpLIqlt32EEgAoBtt4Dof45a3DDySdfMHKDyWiDSGzht4tNqHx4E5p/VvsgyjRzFs7aPeF4RuMCoEkZBEVDC7gMRABy6L7/apRdAjoHo/E6rb/PRfitwIsWxa9eiUHT8+HGULFkS/v7/7u+qUKECtmzZgocPHyIpKQkajQZRUVEoVqxYwYyUJFHvmuNQgSiXsRfMszJz8n7R5DXfFn1Q/ikCI6H+oa/dB6JcrF0n4x8Gl4TR8gtEEtx5bL62HKF2LTp8Fh8fj/Xr1+ueN2nSBFu3bgUABAYGonr16qhZsyYDkQzlebd7OwxE5FzUv413mEBEzselzTiHCETOwqJQ5Onpiaysf+Pbjh07cPu2kQN+ZFcYiMgeiLtJpmcyEJHcPc1iILIjFh0+q1y5MqZPnw6VSqU7hHbo0CF4eHiYXa5Tp075HyEVCDkEIkWxGKnDJ2IgIruQ82siA5EdsSgUzZgxA127dkW/fv0AAAqFAl9//TW+/vprk8soFAqo1WrbjJJsShaBKLwiVK3HWDXu5uGmr2jdrRRQ2geYdQbIMHICX6VAoGMk8MtV4PhDw/k+LsCgssClDGDFZWl90Askk0CkiGsiYfD65FC7sX752AAy71GK6Xl2HojkULu5fdjqPCOLQlH16tWRlJSECxcu4Pbt22jUqBE++eQTNG/e3DajoBdGNoHo9QUQD69CEVrO4rF/Xg04cBfY+dyR20ahwE8Ntd+X8AYGH3iuPwCbWwBFPIB3ywKhyw23ZFI1YGBZ7fe3H0nrg14QuQSiKp2gajBQwgb8Sy61O7tWvjaDpLDzQCSX2s3tIyXbBhsFC0PR//73P7z88suIi4tDXFwc+vTpg3bt2qFmTcvvW2Vrs2bNwtSpU3Hr1i1UrlwZ33zzDWrUMHGZTAIgs0B09zzUW6ZB2Xep1M3REaaHZjMvog+ygJwCUbvPoDm9GaryLSVsiBZr10nJIhApoKzXX+IGOG7tWhSKOnbsiB9++AE9e2pvfrhz50507NixQAdmzvLlyzF06FDMnTsXNWvWxIwZM9CyZUucPXsWwcHBhTYuOZNdIFr6NhBUyqpt+OSI4TsJQDut585/d7E+TwBovgnoEAmsuWp8a0YeAa5nanfjSu2DCpjcAtGRFdD8uTJfoUgutfvu/n/fkVMBk0sgaj0GynLSj/bIpXZz+ziTapsatigU+fr6IiUlRff88uXLyMjIyH/vEk2fPh1vv/02+vbtCwCYO3cu1q9fj//85z8YMWKEXtvs7GxkZ/+7Xy01VXvg8eHDh0bPeVKpVAgICNBbRk4CAgKQlpZm0flaKpUKOV7FoaifAFW1blBv/x6a41sBfyPXT/+HIrYBVHXfgubQGmj2/QT4mz4ZWlGiMlSNP4A4tQfqnbMB31Km2xaNgqrFxxDXzkC9eSrgWRwKr+JwsWJbLtwBKpk4t//MLeAMgCgXGK/qR8Cas9pvTa1jQ5L5+eb6iHIB0tJgdFvS0tIAAELi2x7WcHGIQAFVw/egCK4M9drPIO7cNFvHytpvQBnbBOoN0yEu/W2+baVXJL8+FEVKWVXDUS6A+rn6KuzaBQB1FuvXUpLq1/+fN4ue/nBpORJ46oKcX0cDalfT9ebqAVXzYVB4hEG9ejRE5mPTbZUukl4fml1LoIrvJLl+5VC7uX3E+tmmhhXCglYtWrTAyZMn8dZbb8Hf3x8fffQRevbsiapVTd9MTqFQ4MMPP8xzANZ68uQJvLy8sGrVKnTo0EE3vU+fPkhJScHatWv12icmJmLcuHE2HweRta5du4YSJUpYvRxrmOSA9Uv2zpIatigUJSUloXfv3ti/f792IYUiz8RVUJ8+u3nzJooXL469e/eidu3auunDhw/Hzp07ceCA/plYz79L0Wg0ePDgAYoUKQKFgqfHUsETQiA9PR3h4eFQKq2/3SBrmAoT65fsnTU1bNHhs5iYGOzduxePHz/GnTt3UKpUKcyYMQPt27e3yYALkru7O9zd3fWmBQQEFM5gyGk9e4sca7GGqbCxfsneWVrDVt0Q1sPDA5GRkRg7diyaNGmCkiVLShpcfhQtWhQqlcrgitq3b99GaGjoCx8PEREROQbr94UCGDt2LF566SVbj8Uibm5uqFatmu7ea4B2d+zWrVv1DqcRERERWcOiPUVvvvkmFAoF5s+fD5VKhTfffDPPZRQKBRYsWJDvARozdOhQ9OnTBy+//DJq1KiBGTNmIDMzU/dpNCIiIiJrWRSKtm3bBqVSCY1GA5VKhW3btuV5glxBnkD36quv4u7duxgzZgxu3bqFKlWqYOPGjQgJCSmwPomIiMixWfTpMyIiIiJHJ+mcIiIiIiJHY9Wnz3Klp6djz549uHDhAtLT0+Hr64uYmBjUq1cPPj4+th4jERERUYGzKhSp1WqMGjUK3377LbKysvQu4KhQKODl5YUhQ4Zg/Pjxki7yRURERFRYrDqnqHv37lixYgXKly+PHj164KWXXoKPjw8yMjLw999/46effsLZs2fRo0cP/PjjjwU5biIiIiKbsjgUbdmyBS1atMCgQYPw9ddfG90TpNFoMHjwYMydOxebN29GkyZNbD5gIiIiooJgcSjq3bs39u3bh3Pnzpn9uL1Go0FcXBzq1KmDxYsX22ygRERERAXJ4hN/Dh48iE6dOuV5/SGlUolOnToZ3JiViIiISM4sDkXJycmIiYmxqG1MTAySk5MlD4qIiIjoRbM4FGVkZMDb29uitl5eXsjIyJA8KCIiIqIXzeJQJIQo0Ft3EBERERUmi0+0ViqViIiIgL+/f55tU1NTcf36dajV6nwPkIiIiOhFsPjijQ0aNLB4T1GRIkUQFRUleVBERERELxpvCEtEREQE3hCWiIiICABDEREREREAhiIiIiIiAAxFRERERAAYigpNRkYGxo4di1atWiEoKAgKhQKLFi0yaKfRaLBo0SK88soriIiIgLe3N1566SVMmDABjx8/NrruBQsWoFy5cvDw8EBsbCy++eYbo+1u3LiBbt26ISAgAH5+fmjfvj0uXrxo0fifPHmCr7/+GvHx8fDz80NAQAAqVKiA/v3748yZM7p2e/fuRWJiIlJSUixaL9kHS+sXAN544w0oFAqDR9myZQ3aajQaTJkyBaVLl4aHhwcqVaqEZcuWGV3v6dOn0apVK/j4+CAoKAi9evXC3bt3rRr/Sy+9BG9vbxQpUgRVqlTBkCFDcPPmTV273377DYmJiRatk+zLyZMn0bVrV0RFRcHLywtFixZFgwYNsG7dOqPtLa031rCdE1QoLl26JACIyMhI0ahRIwFALFy40KBdenq6ACBq1aolJkyYIObPny/69u0rlEqlaNSokdBoNHrt586dKwCIzp07i/nz54tevXoJAGLy5MkG642NjRXBwcHiiy++ENOnTxcRERGiRIkS4t69e3mOv23btkKlUonXX39dzJo1S8yYMUO88847okSJEnrbMXXqVAFAXLp0ScqPiWTK0voVQog+ffoId3d38cMPP+g9/ve//xm0HTFihAAg3n77bTF//nzRpk0bAUAsW7ZMr921a9dE0aJFRXR0tPj666/FxIkTRWBgoKhcubLIzs42O/YnT56I+Ph44enpKd555x0xd+5c8eWXX4q+ffuKokWLiu3bt+vaDho0SPDPpGNav369aNmypUhMTBTz588XM2bMEPXr1xcAxLx58/TaWlNvrGH7xp9UIXn8+LFITk4WQghx6NAhk/9UsrOzxR9//GEwfdy4cQKA2Lx5s25aVlaWKFKkiGjTpo1e29dee014e3uLBw8e6KZ98cUXAoA4ePCgbtrp06eFSqUSI0eONDv2gwcPCgBi4sSJBvNycnL0QhVDkWOytH6F0IYib2/vPNd5/fp14erqKgYNGqSbptFoRP369UWJEiVETk6ObvrAgQOFp6enuHLlim7a5s2bjf5De96KFSsEALF06VKDeY8ePRKpqam65/yH4lxycnJE5cqVRVxcnN50S+uNNWz/LPpJlSpVSpQuXdqqR1RUVEGP3WHk9U/FmOPHjwsAYubMmbpp69evFwDE+vXr9dru3btXABA//PCDblr16tVF9erVDdbbokULER0dbbbvZcuWCQBix44dZtuNHTtWADB4PBuQfvjhB1G1alXh4eEhAgMDxauvviquXr2qt56GDRuKChUqiMOHD4vatWsLDw8PUapUKTFnzhyDPmfOnCnKly8vPD09RUBAgKhWrZrRPxxkO5aGopycHL0/1s+bNWuWACBOnjypN/2nn34SAMTu3bt104KDg0XXrl0N1lGmTBnRtGlTs+OdNGmSACAuX75stl2fPn2M1m8utVotvvrqK1G+fHnh7u4ugoODRf/+/fXefAghRMmSJUWbNm3E77//LipXrizc3d1FuXLlxOrVq/XaPXnyRCQmJoqYmBjh7u4ugoKCRN26dcWmTZvMjpNsq23btiIkJERvmqX1xhq2/xq26IrWDRs25H3PZObWrVsAgKJFi+qmHT16FADw8ssv67WtVq0alEoljh49itdffx0ajQbHjx/Hm2++abDeGjVqYNOmTUhPT4evr6/RvkuWLAkAWLp0KerWrQsXF+Nl1KlTJ5w7dw7Lli3DV199pRtrsWLFAAATJ07E6NGj0a1bN7z11lu4e/cuvvnmGzRo0ABHjx5FQECAbl0PHz5E69at0a1bN/To0QMrVqzAwIED4ebmptuO7777Du+//z66dOmCIUOG4PHjxzh+/DgOHDiAnj175vkzpYKTlZUFPz8/ZGVlITAwED169MAXX3wBHx8fXZujR4/C29sb5cqV01u2Ro0auvn16tXDjRs3cOfOHYM6z23722+/mR1Lbv0uWbIEo0aNMvm3bcCAAbh58yY2b96MH374wej8RYsWoW/fvnj//fdx6dIlfPvttzh69Cj++OMPuLq66tqeP38er776Kt555x306dMHCxcuRNeuXbFx40Y0b94cAJCYmIhJkybhrbfeQo0aNZCWlobDhw/jzz//1LUh28vMzMSjR4+QmpqK//3vf9iwYQNeffVV3Xxr6o017AA1XNipjKTtKWrWrJnw8/MTDx8+1E0bNGiQUKlURtsXK1ZMdO/eXQghxN27dwUAMX78eIN2ue90zpw5Y7JvjUYjGjZsKACIkJAQ0aNHDzFr1iy93cC5TB0+u3z5slCpVAaH4P7++2/h4uKiNz23r2nTpummZWdniypVqojg4GDx5MkTIYQQ7du3FxUqVDA5bioYedXviBEjxMcffyyWL18uli1bpnv3WrduXfH06VNduzZt2hjdw5yZmSkAiBEjRuj1t2TJEoO2w4YNEwDE48ePTY43KytLxMXFCQCiZMmS4o033hALFiwQt2/fNmhr6tDD7t27jR6+2Lhxo8H0kiVLCgB676pTU1NFWFiYiI+P102rXLmywaFvKngDBgzQ7UFRKpWiS5cuentKrKk31rD91zA/fWaHPv/8c2zZsgWTJ0/W25vy6NEjuLm5GV3Gw8MDjx490rUDAHd3d6Ptnm1jjEKhwO+//44JEyYgMDAQy5Ytw6BBg1CyZEm8+uqrFn3S7Oeff4ZGo0G3bt1w79493SM0NBSxsbHYvn27XnsXFxcMGDBA99zNzQ0DBgzAnTt3cOTIEQBAQEAArl+/jkOHDuXZP704kyZNwuTJk9GtWzd0794dixYtwsSJE/HHH39g1apVunaPHj2yqCbzW7+enp44cOAAhg0bBgBYtGgR+vXrh7CwMAwePBjZ2dl5btPKlSvh7++P5s2b69VvtWrV4OPjY1C/4eHh6Nixo+65n58fevfujaNHj+r2+gYEBODkyZM4f/58nv2T7XzwwQfYvHkzFi9ejISEBKjVajx58kQ335p6Yw3bfw3nKxQ9ffoUf//9N/bs2YNdu3YZPMj2li9fjlGjRqFfv34YOHCg3jxPT0+9F/OzHj9+DE9PT107AEZfOLkf889tY4q7uzs+/fRTnD59Gjdv3sSyZctQq1YtrFixAu+9916e23H+/HkIIRAbG4tixYrpPU6fPo07d+7otQ8PD4e3t7fetDJlygAALl++DAD4+OOP4ePjgxo1aiA2NhaDBg3CH3/8kedY6MX78MMPoVQqsWXLFt00T09Pi2rSFvXr7++PKVOm4PLly7h8+TIWLFiAuLg4fPvtt/jss8/yHP/58+eRmpqK4OBgg/rNyMgwqN+YmBiDQxzP1+/48eORkpKCMmXKoGLFihg2bBiOHz+e51gof8qWLYtmzZqhd+/e+PXXX5GRkYF27dpB/HNbUGvqjTVs/zVs0TlFz9NoNBg5ciRmz56NrKwsk+3UarXkgZGhzZs3o3fv3mjTpg3mzp1rMD8sLAxqtRp37txBcHCwbvqTJ09w//59hIeHAwCCgoLg7u6O5ORkg3XkTstta4mwsDB0794dnTt3RoUKFbBixQosWrTI5LlGgLaGFAoFNmzYAJVKZTD/2XNNLFWuXDmcPXsWv/76KzZu3IjVq1dj9uzZGDNmDMaNG2f1+qjgeHp6okiRInjw4IFuWlhYGLZv3w4hhN4f3+drMiwsTG/6s5KTk3X1bamSJUvizTffRMeOHREVFYWlS5diwoQJZpfRaDQIDg7G0qVLjc7PPW/OGg0aNMCFCxewdu1abNq0Cd9//z2++uorzJ07F2+99ZbV6yNpunTpggEDBuDcuXOIi4uzqt5Yw/Zfw5JC0eeff46pU6diwIABqFevHnr16oUvvvgCAQEBmD17NhQKBaZMmWLrsTq1AwcOoGPHjnj55ZexYsUKo4GjSpUqAIDDhw+jdevWuumHDx+GRqPRzVcqlahYsSIOHz5stJ+oqCiTJ1mb4+rqikqVKuH8+fO6Q2GmTgCMjo6GEAKlS5fWvdsw5+bNm8jMzNTbW3Tu3DkAQKlSpXTTvL298eqrr+LVV1/FkydP0KlTJ0ycOBEjR47U7Zamwpeeno579+7p/eGtUqUKvv/+e5w+fRrly5fXTT9w4IBuPgAUL14cxYoVM1q/Bw8e1LWzVmBgIKKjo3HixAndNHP1u2XLFtStWzfPd/QAkJSUZPCP0lj9BgUFoW/fvujbty8yMjLQoEEDJCYm2s0/FEeQe9gqNTUVgHX1xhp2gBqWciJSdHS0ePXVV4UQQty7d08oFAqxdetWIYT2BNiqVavmea0b+ldeJ6qeOnVKFClSRFSoUMHgo5LPysrKEkFBQaJt27Z6019//XXh5eUl7t+/r5s2efJkAUAcOnRIN+3MmTNCpVKJjz/+2Ox4z507Z/Sk6ocPH4rw8HARGBioux7HnDlzBABx9OhRvbZJSUlCpVKJnj17GlyAUqPR6F3ryNyJ1sWKFdOdaG3sopPDhg0TSqVSpKWlmd0mks5c/T569Mjozz73ZNKff/5ZN+3atWsmr/FSvHhxvWu8vPPOO8LT01Pv8g1btmwRAIxequFZx44dE3fv3jWYfvnyZeHp6SkqVaqkm/bxxx8LAHofaBBCiB07dggARv/OPX36VK+9uZNUq1SpoptmrH67du0qihYtanZ7SBpjJyU/efJEVK1aVXh6eor09HTddEvrjTVs/zUsaU/R9evXMXz4cAD/niiWexzUzc0Nr7/+OqZPn47PP/9calZzCt9++y1SUlJ0l2Rft24drl+/DgAYPHgw/P39kZ6ejpYtW+Lhw4cYNmwY1q9fr7eO6Oho1K5dG4D2kMRnn32GQYMGoWvXrmjZsiV2796NH3/8ERMnTkRQUJBuuXfffRffffcd2rRpg48++giurq6YPn06QkJC8H//939mx/3XX3+hZ8+eSEhIQP369REUFIQbN25g8eLFuHnzJmbMmKE7JFatWjUAwKefforu3bvD1dUV7dq1Q3R0NCZMmICRI0fi8uXL6NChA3x9fXHp0iX88ssv6N+/Pz766CNdn+Hh4fjiiy9w+fJllClTBsuXL8exY8cwf/583cdGW7RogdDQUNStWxchISE4ffo0vv32W7Rp00bSni8yz5L6vXXrFuLj49GjRw/dbT1+//13/Pbbb2jVqhXat2+vW1+JEiXwwQcfYOrUqXj69CmqV6+ONWvWYPfu3Vi6dKneYdZPPvkEK1euROPGjTFkyBBkZGRg6tSpqFixIvr27Wt23Js3b8bYsWPxyiuvoFatWvDx8cHFixfxn//8B9nZ2Xq3RMit3/fffx8tW7aESqVC9+7d0bBhQwwYMACTJk3CsWPH0KJFC7i6uuL8+fNYuXIlvv76a3Tp0kW3njJlyqBfv344dOgQQkJC8J///Ae3b9/GwoULdW3Kly+PRo0aoVq1aggKCsLhw4exatUqi87RI+sNGDAAaWlpaNCgAYoXL45bt25h6dKlOHPmDKZNm6Z3CN/SemMNO0ANS0lS4eHheu/a/f39xTfffKN7Pn36dIuuYOvsctO3sUfuR9hzb6dg6tGnTx+D9c6fP1/ExcUJNzc3ER0dLb766iuDvTFCaN/VdOnSRfj5+QkfHx/Rtm1bcf78+TzHffv2bTF58mTRsGFDERYWJlxcXERgYKBo0qSJWLVqlUH7zz77TBQvXlwolUqDj+evXr1a1KtXT3h7ewtvb29RtmxZMWjQIHH27FldG2MXbyxZsqT49ttv9fqZN2+eaNCggShSpIhwd3cX0dHRYtiwYWYvGEjSWVK/Dx8+FK+//rqIiYkRXl5ewt3dXVSoUEF8/vnnuj18z1Kr1eLzzz8XJUuWFG5ubqJChQrixx9/NNr/iRMnRIsWLYSXl5cICAgQr732mrh161ae47548aIYM2aMqFWrlggODhYuLi6iWLFiok2bNmLbtm16bXNycsTgwYNFsWLFhEKhMPho8/z580W1atWEp6en8PX1FRUrVhTDhw8XN2/e1Ps55V74rlKlSsLd3V2ULVtWrFy5Um9dEyZMEDVq1BABAQHC09NTlC1bVkycONHoz4nyb9myZaJZs2YiJCRE9zesWbNmYu3atUbbW1pvrGH7rmGFEP+cYm+Ftm3bwtfXV3eTu44dO+Lvv//G4sWLodFo0Lt3b4SHh/OTP2QTjRo1wr179/SOkxPZi1KlSuGll17Cr7/+WthDIZLEmWpY0kfy+/fvj+zsbN3HCSdOnIiUlBQ0aNAADRs2RFpaGqZNm2bTgRIREREVJEnnFL3yyit45ZVXdM/Lly+PCxcuYPv27XBxcUGdOnX0zl8hIiIikjtJocgYf39/dOjQwVarIyIiInqhJJ1TdPXqVVy9ehX16tXTTfvrr78wbdo0ZGdno0ePHgxIREREZFckhaIOHTogIyNDd4n+27dvo1y5cnjy5Al8fX1x584drFy5Ep06dbL5gImIiIgKgqQTrQ8ePIjmzZvrni9ZsgSPHj3CX3/9hRs3bqBp06b48ssvbTZIIiIiooIm6ZyiBw8e6N1b69dff0XDhg0RHR0NAOjUqRM++eQT24zQxjQaDW7evAlfX1+Tlz8nsiUhBNLT0xEeHg6lMl/3YAbAGqYXi/VL9s6aGpYUiooVK4YrV64AAFJSUrB//35MnjxZNz8nJwc5OTlSVl3gbt68iYiIiMIeBjmha9euoUSJEvleD2uYCgPrl+ydJTUsKRQ1a9YMM2fOhJ+fH3bs2AGNRqN3YvWpU6dkW/S5t3u4du0a/Pz8Cnk05AzS0tIQERFhs1uNsIbpRWL9kr2zpoYlhaLJkyfj3Llz+Oijj+Dm5oYvv/wSpUuXBgBkZ2djxYoV6Nmzp5RVF7jc3bV+fn58QdILZatDBaxhKgysX7J3ltSwpFAUEhKCP/74A6mpqfD09ISbm5tunkajwdatW2W7p4iIiIjImHxdvNHf399gmqenJypXrpyf1RIRERG9cBaFoiVLlgAAevXqBYVCoXuel969e0sfGREREdELZNHFG5VKJRQKBR49egQ3NzeLPpapUCigVqttMkhbSktLg7+/P1JTU3k8m14IW9cca5heJNYv2Ttras6iPUWXLl0CAN25Q7nPiYiIbEmj0djkekgFyR7GSNJYFIpKliyp+/7p06dITU1FUFCQTa5ZQURElEupVGLevHlITk4u7KEYFRYWhgEDBhT2MKiAWH2itVKpRLVq1TBt2jS8//77BTEmIiJyYsnJyboLBBO9SFbv/1OpVChZsiSys7MLYjxEREREhULSQdHBgwdj/vz5ePDgga3HQ0RERFQoJF2nSK1Ww93dHdHR0ejSpQtKlSoFT09PvTYKhQIffvihTQZJREREVNAkhaKPPvpI9/2CBQuMtmEoIiIiInsi6fDZpUuX8nxcvHhR0oB27dqFdu3aITw8HAqFAmvWrNGb/8Ybb0ChUOg9WrVqJakvIkek0WgKewh5socxEpHzkbSn6NmP6NtaZmYmKleujDfffBOdOnUy2qZVq1ZYuHCh7rm7u3uBjYfI3vAjzURE0uTr3mcPHjzAli1bcPnyZQBAqVKl0LRpUxQpUkTyOhMSEpCQkGC2jbu7O0JDQyX3YY49XJTLHsZIhYsfaSYisp7kUJSYmIgvvvjC4KP5bm5uGD58OMaPH5/vwZmyY8cOBAcHIzAwEE2aNMGECRNMBrHs7Gy9MaalpQHQnixu7DYkKpXKLt5ly/EWKmRcfn9XUmrYHrCG7QPr1zjWr/2w5nclKRR99tlnGD9+PNq0aYP33nsPZcqUAQCcPXsW3377LSZOnAhXV1eMHj1ayurNatWqFTp16oTSpUvjwoUL+OSTT5CQkIB9+/YZfTFNmjQJ48aNM5h+9uxZ+Pj46E3z8PBATEyMXbzLvnTpEh4/flzYwyALZGRk5Gt5KTVsD1jD9oH1axzr135YU8MW3RD2ecWLF8fLL7+MtWvXGp3frl07HDlyBDdv3rR21fqDUyjwyy+/oEOHDibbXLx4EdHR0diyZQuaNm1qMN/Yu5SIiAg8ePDA6I3hVCoVEhMTZRuKSpYsicTERL5LsSNpaWkICgqSfANM1jAVJtavPtav/bGmhiXtKUpNTTX7ia/WrVtjx44dUlZttaioKBQtWhRJSUlGQ5G7u7vRE7FVKpXd7KY1xp7H7mzy+7tiDVNhYv0aZ89jdzbW/K4kna1bt25dHDhwwOT8AwcOoG7dulJWbbXr16/j/v37CAsLeyH9ERERkWOSFIrmzp2Lffv24cMPP0RSUhI0Gg00Gg2SkpLwwQcfYP/+/Zg7d66kAWVkZODYsWM4duwYAO1x22PHjuHq1avIyMjAsGHDsH//fly+fBlbt25F+/btERMTg5YtW0rqj4iIiAiQePisUqVK0Gg0mDlzJmbOnKn7eHjuBdnc3d1RqVIlvWUUCgVSU1PzXPfhw4fRuHFj3fOhQ4cCAPr06YM5c+bg+PHjWLx4MVJSUhAeHo4WLVrgs88+47WKiIiIKF8khaLOnTtDoVDYeiwAgEaNGsHcud+///57gfRLREREzk1SKFq0aJGNh0FERERUuKw+pygrKwvVqlWTfM4QERERkRxZHYq8vLxw6dKlAjt8RkRERFQYJH36rFWrVjy3h4iIiByKpFA0evRonDt3Dr169cKePXtw48YNPHjwwOBBREREZC8knWhdoUIFAMCpU6fw008/mWzHy6ATERGRvZAUisaMGcNzioiIiMihSApFiYmJNh4GERGRYxEaNRRKed8jzR7G+CJJCkVERERknkKpQs7PwwCFEqrWYyAeXoV6wwTg6WPTC/mHwaXNOOBpFnJ+TQQepZhu6xkAl7aJgKsXctaPBVKTTbd19YAqYRQUgZFQ/zYe4m4SFEWj4NJpqsStc0ySQtH48ePzbKNQKDB69GgpqyciInIMCiVUCaMg7pyFeunbwJMs022DSsElYTTw6CFylvQFMu+ZbutdFC4dvwBUbshZ9Drw4LLptm5eUL32HRQBJaD+oS/Ezb8BAKbvHeG8bH74TKFQQAjBUERERE5P1XqM5YGo9yIgO92yQNR7IeDui5wlb1gWiIrFQv1jP10gIuMkfSRfo9EYPHJycnDhwgV8+OGHePnll3Hnzh1bj5WIiMiuiIdXGYjsiKRQZHRFSiVKly6NL7/8ErGxsRg8eLCtVk1ERGSX1BsmMBDZEZuFomc1aNAAv/32W0GsmoiIyH6YO6magUh2CiQUHT58GEplgayaiIjI/skhECn5AfTnSfqJLFmyxOj0lJQU7Nq1Cz///DPeeuutfA2MiIjIIckiELlC1XSoxA1wXJJC0RtvvGFyXtGiRTFixAiMGTNG6piIiIgck1wCUZfpUERUlbgRjktSKLp06ZLBNIVCgcDAQPj6+uZ7UERERA5HToEopgHUW6bApdWnEjfGMUkKRSVLlrT1OIiIiByX3ALRyvch0u9aPHy1AFQyv+WpWgOo8nk6s03Osjpz5gxWrlyJ5ORkxMXFoW/fvvDz87PFqomIiOybHAPR+Z1AaHmLN0GlAIYcAJLSgDsmPlDnqQJCPYFLGabXU9oHuPUIeKQ2Pj/YQ/vV2j7K+gM/NDC/DZawOBR9++23mDlzJvbu3YuiRYvqpq9btw5du3bFkydPdNO++eYb7N+/X68dERGR0/EP0966Q26BSIK9d4CjDyQtqpPf5QuaxTua/ve//yE6Olov6OTk5OCtt96CSqXCwoUL8ffff2Py5Mm4cuUKJk6cWCADJiIishcubcY5RCByFhaHolOnTqFWrVp607Zv3467d+/iww8/RJ8+fVChQgUMHz4c3bp148UbiSjfhMbEPnYZsYcxUiF6msVAZEcsPnx2//59RERE6E3bunUrFAoFOnbsqDe9bt26+Pnnn20zQiJyWgqlCjk/D4O4d9FwptIFqqZDoYioCvWWKRBX/zS7LmW9/lCWaw71rjkQZ7eZbxvfGarqPaE+9BM0R1ebHl/RKLh0mmrRtpBzyvk1kYHIjlgcikJCQnDr1i29abt374aXlxcqV66sN93NzQ1ubm62GSEROTVx7yJw65T+RN11VuKhXjk4jz/4Cihbj9EGonWjIY6Zf8OmrP+ONhBt/xqa3XPNDy6uiWUbQc7rUYrpeXYeiLqV0p44PesMkJFjOL9SINAxEvjlKnD8oeF8HxdgUFntSdMrLuevj9Op+diQZ1gcil5++WUsXrwYgwcPhq+vL06ePImDBw+iffv2cHHRX82ZM2dQokQJ24yQiOhZVv3B/ycQVetmeSBqPMSiQKSo0gmqBgMlbAAR7D4QNQoFfmqo/b6ENzD4gP58BYDNLYAiHsC7ZYHQ5YB4bh2TqgEDy2q/v/0I2Hlbeh8p2TbYKFhxTtHYsWNx5coVxMbGomnTpqhbty4UCgVGjhxp0PaXX35BnTp1bDNCIqJccgpE7T6D5vRmCRtBTk8WgUgBZb3+EjcAEM8nnALwIvp4nsV7iipWrIht27Zh4sSJuHjxImrVqoWPPvoI1apV02u3Y8cOeHl5oWvXrjYfLBE5MbkFoiMroPlzJVTlW0rYGHJacglE/xxSlmrnbaDnzn8PbT1PAGi+CegQCay5ariXCABGHgGuZ2oPnz2/l8jaPs6k/rtXKT+sunhjnTp1sH79erNtGjVqhL//NvOLIyKylhwD0W/jgdByEjaGnJacAlG1blDvmgOXhoMkbozp84ByHX9o/FyiXBk5wBcnbNNHfJD5dpbK5wWxiYgKmNJFnoHI6HtfIhPkFojWjc7zU5jOiKGIiGRN1XQoAxHZNzkGojxeH86KoYiIZE0RUZWBiOyXZwADkR2RXSjatWsX2rVrh/DwcCgUCqxZs0ZvvhACY8aMQVhYGDw9PdGsWTOcP3++cAZLRAVOvWWKQwQitUbyoi+E3Mdnr1zaJjpMIAr2AIp7mZ7v4wKU8ze/jnL+gLeZs5mLe+W/j/yw6kTrFyEzMxOVK1fGm2++iU6dOhnMnzJlCmbOnInFixejdOnSGD16NFq2bIlTp07Bw8OjEEZMRAXJ/JWq7SMQAYBKCUw+Dnz0kvb5+/uBQ/f123ipgGWNgHAv4L+XgGlGTkL9v5eA7qWBm1lA9x2GdxuvXgSYWcu6Pmx1h3EywtULOYtet/tABABrm2q/tt4MbNO/ljN8XIBj7YFSPsA3p4EPDxou/1UNYHA54HIGUHktkPncxRibhAK/Nc9fH/klu1CUkJCAhIQEo/OEEJgxYwZGjRqF9u3bAwCWLFmCkJAQrFmzBt27d3+RQyWiQmU/gShXkDvg8s/++RAv4OhzO7nL+WvDCgBUCTJ+R/HcT9mEewEPnxheybddRP77INvJWT/WIQIR8G9d1Q0xDCwR3tqwAgDNw40v3+Kf6aV8gEhvw9qtF5L/PvJLdqHInEuXLuHWrVto1qyZbpq/vz9q1qyJffv2GQ1F2dnZyM7+91KXaWlpAAC1Wg212vBGjiqVqgBGbnvGxk7ylN/flTPXsOltkUcgUkRWBWD5tqy9CpQP0D5fYOSo/+lU7Tvg5uHaa7gYM+KI9krAm28av7XBgvNAkzBpfRjbDtavcRbXb2qy6QYyCUSWbsvR+9q9O3KsXXPbYk0N21Uoyr33WkhIiN50Y/dlyzVp0iSMGzfOYPrZs2fh4+OjN83DwwMxMTE2Gm3BunTpEh4/flzYwyALZGRk5Gt5Z61h09sik0AU2xCqZsOt2pY7j4FGG80OIc9DAuuuaR+m3MiS3oex7WD9Gie9fv8hk0Bkzbb032t+z2Jh1m6u/NawXYUiKUaOHImhQ4fqnqelpSEiIgJxcXHw8/MrxJHlT+nSpQt7CGSh3HfGUrGGnyWjQNR1JsS1P6EoXdNhXo/GtoP1a1y+fucyCUTK+M4AHOv/SX5r2K5CUWhoKADg9u3bCAsL002/ffs2qlSpYnQZd3d3uLu7G0xXqVR2s5vWGEvGLjRqKJTy3kZ7GGN+5bfOnLmG9cksECXtgnrPd1C+tdyufw/PMrYdrF/jJI9dLoGo/jtQVe8JwH4OWVoivzVsV6GodOnSCA0NxdatW3UhKC0tDQcOHMDAgbxb9fMUShVyfh4GFCkFVYOB0JzeDM2e+eaXiawKVbPhENf+hHrrdECTY7ptsRioWo+BeHgV6g0TgKdmDuf5h8GlzTjgaRZyfk0EHqVAUTQKLp2mStw6ci4yDESrhgLBsVI2hpyVnAJR4yFQH/pJF4xIS3ahKCMjA0lJSbrnly5dwrFjxxAUFITIyEh88MEHmDBhAmJjY3UfyQ8PD0eHDh0Kb9BylhuILD5HYhhE0k7tH3zNU9NtwytClTAK4s5ZqJe+DTzJMj2GoFJwSRgNPHqInCV9gcx7gNmREOmTZSAy8/ogMiC3QLT9a2jO72Ioeo7sLt54+PBhxMfHIz4+HgAwdOhQxMfHY8yYMQCA4cOHY/Dgwejfvz+qV6+OjIwMbNy4kdcoMsGqQGThH3xFeEWoXl8Acfe8ZYGo9yIgO10vEBFZSlmvv8MGIk8VsKox8Gc70ze0HFIeONVB+9WYqkHa5Vc11q5PSh89oiQNnywlx0CUx+sjL3Kp3dw+bFXDsgtFjRo1ghDC4LFo0SIAgEKhwPjx43Hr1i08fvwYW7ZsQZkyZQp30DKmOb2ZgYjsmrJcc4cMRADQugTQIRKoFAQMr2g4X6kAplQDyvhrvyoVhm2GVdQu3yESSCghrY8h5fK/LWSCq4fDBSJAPrWb24etalh2oYhsS3sOEQMR2S/1rjkOGYgA7ceb0/9Z5XYjl7PRCGDPHe33e+5onz8vd7n0p8AxIx+XtqQPY8uRbagSRjlcIALkU7u5fdiqhmV3ThG9OAxEZA/E2W1m59trIAKAi+lA9Gog0A24kG68TavNQKwfcN7Ep4rnnwO2Jmuvbv0g23C+JX28dwDY10baNpB5isBIqH/o61CBCJBP7eb24e1imxpmKHJSsghEngGSx08E2HcgyvUg2/g/hFxPNcCpFPPrMPUPw9I+cngz2AKj/m28wwWiXHKo3dw+TJ1zZC0ePnNCsghE3kW1d48mkkgOgUhRzD6uvkyFR9xNMj3TjgORo2IocjKyCUS9FwKuXtI3hJyaLAJReEWoWo+Rugnk7BiIZImhyInIKhC5+2rvHk1kJdkEotcXQDy8KnUzyJnJJBAp4ppIGLxjYyhyErILREveMH/3aCIjZBWI7p7XXsndmvErgIFx2ofKyEeUAaBJKDCmMlDcxI7U4l7a+U1Cjc9X2aAPKkByCURVOkHVwLo7QXQp6fi1yxOtnYAsA9GDy0CoiSt6ERkhu0C09G0gqJRV29ApEvi40r/P55zVn1/cC/itOeCiBJqEGb9j+NIGQL0Q7cnR0au1dxZ/Vv8ywDe18tcHFRA5BaJ2n0FzejNU5VtaPHxnqF3uKXJwisiq8gxERFaQZSAy9/ogep7cAtGRFXneC9MZcU+Rg1M1G275vcxkHIjUGkAl8whvD2O0R8r4zlBV7+kQgejnq8D1fxadf85w/o0soPVmoG4IsOC88XX03AX0iwX+uG34Tvv59Urtg2xMjoHot/FAqHWXgf7iuLZ+Hbl2GYocnLj2p90HIkAbNnrtAs6kSl5FgSrrD/zQoLBH4ZgcJRAB2ivwPn9I4HnbbmkfptzMAj77y/R8tQ36IBtSusgzEEm4JfeqK9qrTJviCLXLUOTg1Fun230gynUm1fwLkhyT+tBPDhGIyDmpmg6FIiLe7gORs2AocnSaHJOz7CkQkfPSHF1tdj4DEcmZIqIq1CsHMxDZCZ4B4aRkEYhcPSSOnkiLgYjkTr1lCgORHWEockKyCERuXlAljLJq3P5upucVcQeifU3Pd1UC5QO0X02J9tWuR2of9GLJIhD5h+VjC7TkULsu/E9QYMTVP83Mte9AJIfaze3DVjXMl4KTkU0geu07KAIjrRr72iZAlJEXR5QvkNQZONtJe50LYzY2B4631341pn8Z7fJJnaX3QS+OLAJRUCm4tBmXj62QT+1+W1Pa+Ck/7DsQyaV2c/uwVQ0zFDkRWQWiYrFQ/zbeqvF7uwJVjNwJOT4I8HXVft/YyBt3pQKoF6z9vl6w9vnzcpfzldiHwsTVV8n2ZBOIei8CnubvsJocalepML4cFSR5BCJFZFUpgwcgn9rN7cNWNcxQ5CRkF4h+7Gf+7tFGbE8GNlw3nP7bdWDNVeD4A2DK34bzNQIYfgQ4m6r9qjHyN2LK39rl11yV1ofgofoXQlaBKDsdOb8mSt4WQB61qxHA16fztRlkFZkEotiGUDUbLmUDAMindnP7sFUN89NnTkCWgejm31bf5mP4YeCR2nD6IzXQZbv5Zb8+pX2YcvQBUHWd6fmW9EEFS3aBaElfwDdY+gZBPrW77CIwtIL5NmQLMgpEXWdCXPsTitLSjjvJpXZz+4gPsk0Nc0+Rg1MUi5FnICKygiwDkbnXB5EBmQWipF3a69iRHoYiB6dqPYaBiOyaIq4JAxHZORkGolVDzV7HzlkxFDk48fAqAxHZNVWDgQxEZNfkGYhMvz6cGc8pcnDqDRMYiMiuaU5vZiAiu6Ws1x/Kcs0ZiOwE9xQ5uqePTc+z00BU3AvY0Ur7CPcy3uarGsDJDkC7COPz20Vo539Vo+D6INvQ7JkPRwlEwR6sXWfjSIFofh3Hr12GImclh0CklLajsl8sUC9E++gXazi/nD8wuBwQ5w9MqmZ8HZOraecPLqdtXxB9UMGzp0AEAO0jWbvORr1rjkMEIgCIL+L4tctQ5IxkEYhcoWo6VNLw99wGcjTaxx+3DedfzQQuZ2i/33zT+Do2/TP9coa2fUH0QQVLFoHIM8CqMR+7z9p1NuLsNrPz7SUQAc5RuzynyNnIJRB1mQ5FhLSrqW67BUT/c+P0G0b+t2XmAJXXApHewOlU4+v48CAw/6z2RZZp5AMY1vYRzysCv1CyCETeReHSNtGqcR+6L7/apcJjT4EIANpvBU6kOHbtMhQ5EzkFopgGUG+ZApdWn0raFGMvmGdl5uT9oslrvi36INuTTSDqvRBwNXHigxmsXQLkEYgUxWKsGvOdx+ZryxFql4fPnIXcAtHK9/O4ezSRIVkFIndf5KwfK31jyGnJIhCFV4Sq9Ripm+CwGIqcgRwD0fmdEjeGnJXsAtGSN4DUZMnbQ85JNoHo9QUQD69K3QyHxVDk6PzDGIjI7skyEJl7fRAZIatAdPe89jp2pIehyMG5tBnnMIGoebjped1KAR+/BPiYOEuuUiAwtrL2qzE+Ltrlu5WS3gcVDEVkVYcORHKo3Vg/KwZMksguEC192/x17Cwgh9rN7cNWNWx3f94TExMxbtw4vWlxcXE4c+ZMIY1I5p5mOUQgAoDPqwEH7gI7n/uoZqNQ4KeG2u9LeAODD+jPVwDY3AIo4gG8WxYIXW74J2ZSNWBgWe33tx9J64MKhqrZcIiknQ4ZiORSu7Nr2WBjyCRZBiJzrw8LyKV2c/tIyc7X5ujYXSgCgAoVKmDLli265y4udrkZL0TOr4kOEYjMEab/ZthVH2ScuPanQwYigLXrDJTxnaGq3tOhAhHguLVrl2nCxcUFoaGhhT0M+/AoxfQ8OwtEnxwxfCcBaKf13AmU9gFmGdlhKAA03wR0iATWXDX+Z2bkEeB6JnApQ3ofVDDUW6c7ZCAC5FO77+7/9x052ZYjBiJAPrWb28eZVNvUsF2GovPnzyM8PBweHh6oXbs2Jk2ahMjISKNts7OzkZ397361tLQ0AIBarYZarTZor1KpCmbQNmZs7M8zuy0yCkSWbou5K5iuuGx++eMPtQ9TMnKAL06YX0defQDGt8WS7TPH6WtYY+Qqb/+QSyDKz+tRDrV7XltSrF8rWPo7Vx/6SfaBSGr9yqF2c/vIvYBufmvY7kJRzZo1sWjRIsTFxSE5ORnjxo1D/fr1ceLECfj6+hq0nzRpksE5SABw9uxZ+Pj46E3z8PBATIx1F7MqLJcuXcLjx6ZPkjO7LbIIRAoo6/XP/7bIjLFtycjIyNc6WcPGySIQuXrYZFvkgvVrOUt/55qjq82up7ADkTXbYg/yW8N2F4oSEhJ031eqVAk1a9ZEyZIlsWLFCvTr18+g/ciRIzF06L/32EpLS0NERATi4uLg52e/H7koXbq0tAXlEohaj4GyXHMA+dgWGTK2LbnvjKViDRuSRSBy84IqYRQAx6lh1q/lbPE7l0MgAhynfoH817DdhaLnBQQEoEyZMkhKSjI6393dHe7u7gbTVSqV3eymNUbS2OUUiKp1g3rXHLg0HGTXv4fnGduW/G4fa1ifbALRa99BEag9bG/Pv4dnsX4tl9+xyyIQ+YcBcJz6BfJfw3Z/naKMjAxcuHABYWFhhT0UeZNbIFo3Os+7R5tT3Ev7MMXHBSjnb34d5fwBbzNvC2zRB9mWrAJRsViofxtv9TawdkkWgSiolPY6dlYI9nD82rW7UPTRRx9h586duHz5Mvbu3YuOHTtCpVKhR48ehT00+ZJjIDr2s8SNAZqEAhc6ax9NjHwI0ccFONYe+LsD8FUN4+v4qoZ2/l/tjb9AbdEH2ZbsAtGP/SDuGt9DbUr1IqxdZyebQNR7EfDUuk+irW3q+LVrd6Ho+vXr6NGjB+Li4tCtWzcUKVIE+/fvR7FixQp7aPLkGeBQgQgA6oUALkrto26I4fwIb6DUP+dvmroKdot/ppfyASK9C6YPsh1ZBiJzrw8TqhRh7TozWQWi7HTtdeys4Ay1a3fnFP33v/8t7CHYFZe2iYDKzWECEQAsOA80Cfv3++edTgW+Oa190Yw8YnwdI45or6a6+aa2fUH0QbahKBYDVcIouw9EALD2KlA+QPs9a9e5yC4QLekL+AZbtQ1H7wOZOY5du3YXishKrl7IWfS6wwQiALiRBTTaaL7NhwfNz193TfuwVR+518gg21O1HgNx56zdByIAuPNYfrVLBU+WgSjzntWhqP9e4OgD0/MdoXYZihxczvqxDhWIyPmIh1cdIhCRc1LENYGqwUD5BSIyyu7OKSIrpSabnsdARHZAvWECAxHZLQYi+8JQ5KwYiMhePDV9pV0GIpI7zenNDER2hKHIGckkECnjO0sbPxEgj0Ck5BkIZJ5mz3wwENkPhiJnI5dAVP8dqKr3tGroU14GPI1cmNRTBaxqDPzZzvQJz0PKA6c6aL8aUzVIu/yqxtL7oBdIFoHIFaqmQ03Pt4BcardHlKThUz7ZcyCSS+3m9mGrGmYociZyCkSNh0B96Cerht84DEgoYTi9dQmgQyRQKQgYXtFIfwpgSjWgjL/2q1Jh2GZYRe3yHSKl9aEwsk4qIHIJRF2mQxFRVeJGaMmhdpUKYEi5fG0GSSCLQOQZIHn8cqnd3D5sVcMMRc5CboFo+9d53j36eZlPgWNGPg569AGQ/s/fk+1GzivXCGDPHe33e+5onz8vd7l0iX0I03vHyZbkFIhiGkC9ZYrEDdGSQ+1qhPHlqODIIhB5F9Vex04iudRubh+2qmEeEHcGcgxEu+cCoSb2qZrwyjbgYrrh9IvpQPRqINANuGBkPgC02gzE+gHnTdwsef45YGsy8PAJ8CBbWh9UwOQWiFa+D5F+V+LGaMmldt87AOxrI20byDqyCUS9FwKuZm4ylge51G5uH94utqlh7ilydK4e8gxEEqQ9MT3vQbb5sPJUA5xK0X415UK68RempX1QAZJjIDL7+rCcHGo3x8y6yXZkFYjcfbXXscsHOdRubh+2qmHuKXJwqoRRUASUsPtARE7MPwwuCaMdMhCR85BdIFryBuAmfU+Ro+KeIgenCIxkICK75tJmHAMR2TVZBiJzrw8nxj1FDk7923gGIrJvT7MYiMhuKSKrQtVsGAORneCeIgcn7iaZnmmngUilAAbGaR8qEx+FbxIKjKkMFDexd7i4l3Z+k9CC64NsI+fXRIcJRErWrtNRNRvuMIGoS0nHr13uKXJWdhqIAKB/GeCbWv8+n3NWf35xL+C35oCLEmgSZvyuy0sbAPVCtCfnRa/W3p05P33wruMF6FGK6Xl2FIgAoFMk8HGlf5/LoXbzuis55Y+49qdDBCLAOWqXe4qckUwCkSKuiYTBE/3DzgIROSf11ukOEYicBfcUORu5BKIqnaBqMFDCBmivbWHs+1w3soDWm4G6IcCC88bX0XMX0C8W+OO24bsVKX2EeFi3DZRPsghECijr9bdq2D9fBa7/U29yqV0qYJock7PsLRB9cVxbv45cuwxFzkROgajdZ9Cc3gxV+ZZWb4ZaGO5Wfd62W9qHKTezgM/+sl0fDEUvkFwCUesxUJZrbtXQNTKsXSocsghErtb94Vp1RXuVaVMcoXZ5+MxZyC0QHVnxz92jiawgp0BUrRvUu+ZI3BByZrIIRG5eUCWMkrgFjouhyBnIMRD9Nl7ChpBTk1sgWjca4uw2iRtDzko2gei176AIjJS4FY6LocjRKV1kGoh4B1WyghwDUR6vD6LnySoQFYuFmm9ODTAUOThV06EOE4j83UzPK+IORPuanu+qBMoHaL+aEu2rXY/UPqiAeAY4dCCSQ+268D9BgZNdIPqxn/nr2FlADrWb24etapgvBQeniKjqEIEIANY2AaKMvDiifIGkzsDZTtrrXBizsTlwvL32qzH9y2iXT+osvQ8qGC5tEx02EMmldr+tKW38ZBlZBiJzrw8LyKV2c/uwVQ0zFDk49ZYpDhGIAMDbFagSZDg9PgjwddV+3zjMyJgVQL1g7ff1grXPn5e7nK/EPhQmrr5KNuDq5ZCBCJBH7SoVxpcj21AUi3G4QATIp3Zz+7BVDTMUOThx9U8zc+0nEAHA9mRgw3XD6b9dB9ZcBY4/AKYYea1rBDD8CHA2VftVY2QoU/7WLr/mqrQ+BE+RKjA568c6ZCAC5FG7GgF8fTr/20LGqVqPcbhABMindnP7sFUN8zpFTsu+AhEADD8MPFIbTn+kBrpsN7/s16e0D1OOPgCqrjM935I+qICkJpueZ8eBCJBP7S67CAytYL4NSSMeXnW4QATIp3Zz+4gPsk0Nc0+RU5JHIFJEVpUyeCItOw9E5BzUGyY4XCByZAxFTkcmgSi2IVTNhkvZACLZBCJlfGdp4yfn8fSx6XkMRLLDUORUZBSIus6EuGbufCciE+QSiOq/A1X1ntK2gUgOgUjJM2iex1DkNGQWiJJ2ae8eTWQNOQWixkOgPvSTtO0g5yaLQOQKVdOhEjfAcTEUOQUZBqJVQ83ePdqc4l7AjlbaR7iX8TZf1QBOdgDaRRif3y5CO/+rGgXXB9mY3ALR9q+hObraqk0I9mDtOj25BKIu06GIsO68zvl1HL92GYqcgDwD0VMpmwIA6BcL1AvRPvrFGs4v5w8MLgfE+QOTqhlfx+Rq2vmDy2nbF0QfZENyDER5vD6MaR/J2nVqcgpEMQ2g3jLFquHHF3H82rXbUDRr1iyUKlUKHh4eqFmzJg4ePFjYQ5IlZb3+DhWIAGDPbSBHo338cdtw/tVM4HKG9vvNN42vY9M/0y9naNsXRB9kI64eDhGIAODYfdau05JbIFr5fh7XsTPkDLVrl2dZLV++HEOHDsXcuXNRs2ZNzJgxAy1btsTZs2cRHBxc2MOTFWW55g4ViABg2y0g+p+jFjeMfNI1MweovBaI9AZOpxpfx4cHgflntS+yTCNH8aztI55XBC4wqoRRUASUsPtABACH7suvdukFkGMgOr8TCC1v1Wa03wqcSHHs2rXLPUXTp0/H22+/jb59+6J8+fKYO3cuvLy88J///KewhyY76l1zHCoQ5bqRZfxFkyszJ+8XzelU4y9MW/ZB+acIjHSIQJSLtetk/MPkGYgkuPPY8WvX7vYUPXnyBEeOHMHIkSN105RKJZo1a4Z9+/YZtM/OzkZ2drbueWqq9qf58OFDqNWGl0dWqVQICAjQW0ZOAgICkJaWZnTsz1OpVMi5dhbC38jB2X8oK70CVbVuUG//HprjWwEzbRWxDaCq+xY0h9ZAs+8nwD/GdNsSlaFq/AHEqT1Q75wN+JYybONVHC5WbEuUC6D2yLNpoYhyAdLSYHRb0tLSAABC4r1AnL2G1bvmQpP52HRtKl2gavgeFMGVoV77GcSdm2brWFn7DShjm0C9YTrEpb/Nt83j9eEoNcz6tZy19Ssafgw8vI+c3ycBLoGAf6Dxxp7+cGk5EnjqgpxfRwNqV9O16eoBVfNhUHiEQb16NITE14ej1C9gwxoWdubGjRsCgNi7d6/e9GHDhokaNWoYtB87dqyAdncGH3wU6uPatWuSap41zIccHqxfPuz9YUkNK4Swr1tZ3rx5E8WLF8fevXtRu3Zt3fThw4dj586dOHDggF7759+laDQaPHjwAEWKFIGCtzanF0AIgfT0dISHh0OptP6INWuYChPrl+ydNTVsd4fPihYtCpVKhdu39U9Nv337NkJDQw3au7u7w93dXW9aQEBAQQ6RyIC/v7/kZVnDVNhYv2TvLK1huzvR2s3NDdWqVcPWrVt10zQaDbZu3aq354iIiIjIGna3pwgAhg4dij59+uDll19GjRo1MGPGDGRmZqJv376FPTQiIiKyU3YZil599VXcvXsXY8aMwa1bt1ClShVs3LgRISEhhT00IiIislN2d6I1ERERUUGwu3OKiIiIiAoCQxERERERGIqIiIiIADAUEREREQFgKCIiIiICwFBEREREBIChiIiIiAgAQxERERERAIYiIiIiIgAMRUREREQAGIqIyIFcvnwZCoUCx44dK+yhkANq1KgRPvjgg8IeBhUghiKymkajkXV/b7zxBhQKBSZPnqw3fc2aNVAoFBavx9QfwEWLFiEgIMCqMcmNeMG/Q6FRW9xWoVCYfSQmJhbcQC1gLnjZ+z9N9YstC6v7mzt3Lnx9fZGTk6OblpGRAVdXVzRq1Eiv7Y4dO6BQKHDhwgUbjNQ4R/4b4axcCnsAZH+USiXmzZuH5OTkAu8rLCwMAwYMsHo5Dw8PfPHFFxgwYAACAwMLYGT2TaFUImf9eIgbf5lu5BkAl7aJgKsXctaPBVLN/L5dPaBKGAVFYCTUv42HuJv0b19Fo+DSaarFY3u2rpYvX44xY8bg7Nmzumk+Pj4Wr4uso1ICvXYBZ1L1p5f1B8ZUBq5nAaOPAtnPZVx3FfBZPFDCCxj3F3D2ueUBoEcU0DkSWH0VWHZRu84fGlg3vsaNGyMjIwOHDx9GrVq1AAC7d+9GaGgoDhw4gMePH8PDwwMAsH37dkRGRiI6OtqqPoQQUKvVcHHhv0dnxD1FJElycjKuXLlS4A+pwatZs2YIDQ3FpEmTTLZZvXo1KlSoAHd3d5QqVQrTpk2T+uPAnDlzEB0dDTc3N8TFxeGHH37Qm69QKDBnzhwkJCTA09MTUVFRWLVqleT+bEHc+Au4dcr4I/0OXFqNBFRuyFn0OnB2q+m2Dy5D1ez/oAgoAfUPfSH+/p/efHHvolXjCg0N1T38/f2hUCh0z4ODgzF9+nSUKFEC7u7uqFKlCjZu3GhyXWq1Gm+++SbKli2Lq1evAgDWrl2LqlWrwsPDA1FRURg3bpzengeFQoHvv/8eHTt2hJeXF2JjY/G///1P0s/44cOH6N27NwIDA+Hl5YWEhAScP39eNz93j8KaNWsQGxsLDw8PtGzZEteuXZPUny2cTQOOPtB/vBIJxPoDjcOAcC/D+cW9tPNi/YH2kYbz/3oIDCkHlPTVfv3roWHwskRcXBzCwsKwY8cO3bQdO3agffv2KF26NPbv3683vXHjxsjOzsb777+P4OBgeHh4oF69ejh06JBeO4VCgQ0bNqBatWpwd3fHnj17kJmZid69e8PHxwdhYWH5+vsA2OffCGfEUEQOSaVS4fPPP8c333yD69evG8w/cuQIunXrhu7du+Pvv/9GYmIiRo8ejUWLFlnd1y+//IIhQ4bg//7v/3DixAkMGDAAffv2xfbt2/XajR49Gp07d8Zff/2F1157Dd27d8fp06elbmLB8S4Kl94LAXdf5Cx5A3hw2XRbNy+oXvsOimKxUP/YD+Lm3wU6tK+//hrTpk3Dl19+iePHj6Nly5Z45ZVX9IJGruzsbHTt2hXHjh3D7t27ERkZid27d6N3794YMmQITp06hXnz5mHRokWYOHGi3rLjxo1Dt27dcPz4cbRu3RqvvfYaHjx4YPV433jjDRw+fBj/+9//sG/fPggh0Lp1azx9+lTXJisrCxMnTsSSJUvwxx9/ICUlBd27d7f+h2MjQhhO2/7Pe5P0p8AxIz+Gow+0855t+yyNAPbc0X6/5472uVSNGzfWe21t374djRo1QsOGDXXTHz16hAMHDqBx48YYPnw4Vq9ejcWLF+PPP/9ETEwMWrZsafD7HDFiBCZPnozTp0+jUqVKGDZsGHbu3Im1a9di06ZN2LFjB/78809JY3a4vxEOTCGEsZcAkXmJiYm4cuVKgfdTsmRJq88heeONN5CSkoI1a9agdu3aKF++PBYsWIA1a9agY8eOEELgtddew927d7Fp0ybdcsOHD8f69etx8uRJANrzBfbu3Qs3Nze99efk5MDDwwMpKSkAgLp166JChQqYP3++rk23bt2QmZmJ9evXA9C+C3znnXcwZ84cXZtatWqhatWqmD17tlXbZytP53fW7s15VkEEotDycO2/WtIYFy1ahA8++ED3sy5evDgGDRqETz75RNemRo0aqF69OmbNmoXLly+jdOnS2L17NxITE5GdnY1ff/0V/v7+ALR7EJs2bYqRI0fqlv/xxx8xfPhw3Lx5E4D2dzVq1Ch89tlnAIDMzEz4+Phgw4YNaNWqla4PT09PKJX67ysfPXqEwYMHY8aMGTh//jzKlCmDP/74A3Xq1AEA3L9/HxEREVi8eDG6du2KRYsWoW/fvti/fz9q1qwJADhz5gzKlSuHAwcOoEaNGpJ+bvlRfZ025Dwv2hd4+AR4kG18uSB3INANuJBufL6rEoj1A86nAU81QHwQcKid9eP7/vvvdTXx6NEjBAUF4ebNm9iyZQvmzp2LnTt3Ytu2bWjatCkuX76M2NhYLFq0CD179gQAPH36FKVKlcIHH3yAYcOG6fYorVmzBu3btwegPU+pSJEi+PHHH9G1a1cAwIMHD1CiRAn0798fM2bMAOD4fyOcEfcUkUP74osvsHjxYoN3W6dPn0bdunX1ptWtWxfnz5+HWv3vCROvvfYajh07pvcYP368Ret6vs/atWsbPJfVu8CC2kOktM25GWlpabh586ZFP+sePXogMzMTmzZt0gUiAPjrr78wfvx4+Pj46B5vv/02kpOTkZWVpWtXqVIl3ffe3t7w8/PDnTt39PpYvny5QW28/PLLuvmnT5+Gi4uLLuwAQJEiRRAXF6c3XhcXF1SvXl33vGzZsggICJBXbUAbdkwFIkA7z1QgArRB6FSK9mt+NGrUCJmZmTh06BB2796NMmXKoFixYmjYsKHuvKIdO3YgKioKqampePr0qV7NuLq6okaNGgY/32d/dxcuXMCTJ0/0fndBQUGIi4szGI9T/Y1wAjyTjBxagwYN0LJlS4wcORJvvPGG1cv7+/sjJiZGb1pwcLCNRicjBRaIXKFqOtTWo81T69at8eOPP2Lfvn1o0qSJbnpGRgbGjRuHTp06GSyTe4IuoP3H+SyFQmHwKciIiAiD2vD09LTF8MmMmJgYlChRAtu3b8fDhw/RsGFDAEB4eDgiIiKwd+9ebN++Xe/3bglvb29J43GavxFOgnuKyOFNnjwZ69atw759+3TTypUrhz/++EOv3R9//IEyZcpApVJZtX5T6ypfvrzetGdPAs19Xq5cOav6KhAFGYi6TIcioqpNhunn54fw8HCLftYDBw7E5MmT8corr2Dnzp266VWrVsXZs2cRExNj8Hj+UFh+lStXDjk5OThw4IBu2v3793H27Fm98ebk5ODw4cO652fPnkVKSoo8akOmGjdujB07dmDHjh16H8Vv0KABNmzYgIMHD6Jx48a6E5ufrZmnT5/i0KFDBjXzrOjoaLi6uur97h4+fIhz585JGq/d/41wItxTRJKEhYXZTT8VK1bEa6+9hpkzZ+qm/d///R+qV6+Ozz77DK+++ir27duHb7/9VtKx+2HDhqFbt26Ij49Hs2bNsG7dOvz888/YsmWLXruVK1fi5ZdfRr169bB06VIcPHgQCxYsyPf2SaUoGgXx/Mfu3byAUBP/LJ7/2L1Gbbqt0gWqpkOhiKgKzcEfoKrzpk3GPGzYMIwdOxbR0dGoUqUKFi5ciGPHjmHp0qUGbQcPHgy1Wo22bdtiw4YNqFevHsaMGYO2bdsiMjISXbp0gVKpxF9//YUTJ05gwoQJNhljrtjYWLRv3x5vv/025s2bB19fX4wYMQLFixfXnbsCaPdKDR48GDNnzoSLiwvee+891KpVq1DOJwK0H5WXez+NGzfGoEGD8PTpU92eIgBo2LAh3nvvPTx58gSNGzeGt7c3Bg4ciGHDhiEoKAiRkZGYMmUKsrKy0K9fP5Pr9/HxQb9+/TBs2DAUKVIEwcHB+PTTTyUHZ3v9G+GUBJGV1Gq1rPvr06ePaN++vd60S5cuCTc3N/Fsya9atUqUL19euLq6isjISDF16lS9ZRo2bCiGDBlisP6FCxcKf39/vWmzZ88WUVFRwtXVVZQpU0YsWbJEbz4AMWvWLNG8eXPh7u4uSpUqJZYvX27VdtmSRp1jF/09/7NWq9UiMTFRFC9eXLi6uorKlSuLDRs26OZfunRJABBHjx7VTZs2bZrw9fUVf/zxhxBCiI0bN4o6deoIT09P4efnJ2rUqCHmz5+vaw9A/PLLL3rj8Pf3FwsXLjTZR67na+bBgweiV69ewt/fX3h6eoqWLVuKc+fOGWzf6tWrRVRUlHB3dxfNmjUTV65csf6HZQM5L/alLXI00pbL/R2ULVtWb/rly5cFABEXF6eb9ujRIzF48GBRtGhR4e7uLurWrSsOHjyom799+3YBQDx8+FBvXenp6eL1118XXl5eIiQkREyZMsXg9+vIfyOcFT99RvQCKBQK/PLLL+jQoUNhD4Vk5PlP15Hz4t8IeeA5RURERERgKCIiIiICwIs3EhEREQHgniIiIiIiAAxFRERERAAYioiIiIgAMBQRERERAWAoIiIiIgLAUEREREQEgKGIiIiICABDEREREREAhiIiIiIiAAxFRERERAAYioiIiIgAMBQRERERAWAoIiIiIgLAUEREREQEAPh//1rsSgNxj0AAAAAASUVORK5CYII=",
|
188 |
+
"text/plain": [
|
189 |
+
"<Figure size 600x400 with 6 Axes>"
|
190 |
+
]
|
191 |
+
},
|
192 |
+
"metadata": {},
|
193 |
+
"output_type": "display_data"
|
194 |
+
}
|
195 |
+
],
|
196 |
+
"source": [
|
197 |
+
"plot_surprisal_differences_checkpoints(seeds=[53], checkpoints=CHECKPOINTS, pos_encodings=False)\n",
|
198 |
+
"plt.savefig(f\"figures/hop_surprisals_no_pos_encodings.pdf\", format=\"pdf\", bbox_inches=\"tight\")"
|
199 |
+
]
|
200 |
+
}
|
201 |
+
],
|
202 |
+
"metadata": {
|
203 |
+
"kernelspec": {
|
204 |
+
"display_name": "babyenv",
|
205 |
+
"language": "python",
|
206 |
+
"name": "python3"
|
207 |
+
},
|
208 |
+
"language_info": {
|
209 |
+
"codemirror_mode": {
|
210 |
+
"name": "ipython",
|
211 |
+
"version": 3
|
212 |
+
},
|
213 |
+
"file_extension": ".py",
|
214 |
+
"mimetype": "text/x-python",
|
215 |
+
"name": "python",
|
216 |
+
"nbconvert_exporter": "python",
|
217 |
+
"pygments_lexer": "ipython3",
|
218 |
+
"version": "3.10.11"
|
219 |
+
}
|
220 |
+
},
|
221 |
+
"nbformat": 4,
|
222 |
+
"nbformat_minor": 2
|
223 |
+
}
|
impossible_llm.yaml
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: impossible_llm
|
2 |
+
channels:
|
3 |
+
- defaults
|
4 |
+
dependencies:
|
5 |
+
- _libgcc_mutex=0.1=main
|
6 |
+
- _openmp_mutex=5.1=1_gnu
|
7 |
+
- ca-certificates=2024.7.2=h06a4308_0
|
8 |
+
- ld_impl_linux-64=2.38=h1181459_1
|
9 |
+
- libffi=3.4.4=h6a678d5_1
|
10 |
+
- libgcc-ng=11.2.0=h1234567_1
|
11 |
+
- libgomp=11.2.0=h1234567_1
|
12 |
+
- libstdcxx-ng=11.2.0=h1234567_1
|
13 |
+
- ncurses=6.4=h6a678d5_0
|
14 |
+
- openssl=3.0.15=h5eee18b_0
|
15 |
+
- pip=24.2=py39h06a4308_0
|
16 |
+
- python=3.9.19=h955ad1f_1
|
17 |
+
- readline=8.2=h5eee18b_0
|
18 |
+
- setuptools=72.1.0=py39h06a4308_0
|
19 |
+
- sqlite=3.45.3=h5eee18b_0
|
20 |
+
- tk=8.6.14=h39e8969_0
|
21 |
+
- wheel=0.44.0=py39h06a4308_0
|
22 |
+
- xz=5.4.6=h5eee18b_1
|
23 |
+
- zlib=1.2.13=h5eee18b_1
|
24 |
+
- pip:
|
25 |
+
- accelerate==0.34.2
|
26 |
+
- aiohappyeyeballs==2.4.2
|
27 |
+
- aiohttp==3.10.6
|
28 |
+
- aiosignal==1.3.1
|
29 |
+
- asttokens==2.2.1
|
30 |
+
- async-timeout==4.0.3
|
31 |
+
- attrs==24.2.0
|
32 |
+
- backcall==0.2.0
|
33 |
+
- black==24.8.0
|
34 |
+
- blessed==1.20.0
|
35 |
+
- certifi==2023.11.17
|
36 |
+
- charset-normalizer==3.3.2
|
37 |
+
- click==8.1.7
|
38 |
+
- cmake==3.30.3
|
39 |
+
- comm==0.1.2
|
40 |
+
- contourpy==1.2.0
|
41 |
+
- cycler==0.12.1
|
42 |
+
- data==0.4
|
43 |
+
- datasets==3.0.1
|
44 |
+
- debugpy==1.6.7
|
45 |
+
- decorator==5.1.1
|
46 |
+
- dill==0.3.8
|
47 |
+
- emoji==2.8.0
|
48 |
+
- exceptiongroup==1.1.0
|
49 |
+
- executing==1.2.0
|
50 |
+
- filelock==3.12.2
|
51 |
+
- fonttools==4.45.1
|
52 |
+
- frozenlist==1.4.1
|
53 |
+
- fsspec==2023.10.0
|
54 |
+
- funcsigs==1.0.2
|
55 |
+
- future==0.18.3
|
56 |
+
- gmpy2==2.1.0
|
57 |
+
- gpustat==1.1.1
|
58 |
+
- huggingface-hub==0.25.0
|
59 |
+
- idna==3.6
|
60 |
+
- importlib-metadata==6.0.0
|
61 |
+
- importlib-resources==6.4.5
|
62 |
+
- iniconfig==2.0.0
|
63 |
+
- ipykernel==6.23.1
|
64 |
+
- ipython==8.0.0
|
65 |
+
- jedi==0.18.2
|
66 |
+
- jinja2==3.1.2
|
67 |
+
- joblib==1.3.2
|
68 |
+
- jupyter-client==8.1.0
|
69 |
+
- jupyter-core==5.1.0
|
70 |
+
- kiwisolver==1.4.5
|
71 |
+
- latex==0.7.0
|
72 |
+
- latexcodec==1.0.0
|
73 |
+
- lit==18.1.8
|
74 |
+
- markupsafe==2.1.2
|
75 |
+
- matplotlib==3.8.2
|
76 |
+
- matplotlib-inline==0.1.6
|
77 |
+
- mizani==0.9.3
|
78 |
+
- mpmath==1.2.1
|
79 |
+
- multidict==6.1.0
|
80 |
+
- multiprocess==0.70.16
|
81 |
+
- mypy-extensions==1.0.0
|
82 |
+
- nest-asyncio==1.5.6
|
83 |
+
- networkx==2.8.6
|
84 |
+
- nltk==3.8.1
|
85 |
+
- numpy==1.26.2
|
86 |
+
- nvidia-cublas-cu11==11.10.3.66
|
87 |
+
- nvidia-cuda-cupti-cu11==11.7.101
|
88 |
+
- nvidia-cuda-nvrtc-cu11==11.7.99
|
89 |
+
- nvidia-cuda-runtime-cu11==11.7.99
|
90 |
+
- nvidia-cudnn-cu11==8.5.0.96
|
91 |
+
- nvidia-cufft-cu11==10.9.0.58
|
92 |
+
- nvidia-curand-cu11==10.2.10.91
|
93 |
+
- nvidia-cusolver-cu11==11.4.0.1
|
94 |
+
- nvidia-cusparse-cu11==11.7.4.91
|
95 |
+
- nvidia-ml-py==12.560.30
|
96 |
+
- nvidia-nccl-cu11==2.14.3
|
97 |
+
- nvidia-nvtx-cu11==11.7.91
|
98 |
+
- packaging==23.0
|
99 |
+
- pandas==2.1.3
|
100 |
+
- parso==0.8.3
|
101 |
+
- pathspec==0.12.1
|
102 |
+
- patsy==0.5.3
|
103 |
+
- peft==0.13.0
|
104 |
+
- pexpect==4.8.0
|
105 |
+
- pickleshare==0.7.5
|
106 |
+
- pillow==10.1.0
|
107 |
+
- platformdirs==2.5.2
|
108 |
+
- plotnine==0.12.4
|
109 |
+
- pluggy==1.3.0
|
110 |
+
- pluralizer==1.2.0
|
111 |
+
- prompt-toolkit==3.0.30
|
112 |
+
- protobuf==4.25.1
|
113 |
+
- psutil==5.9.1
|
114 |
+
- ptyprocess==0.7.0
|
115 |
+
- pure-eval==0.2.2
|
116 |
+
- pyarrow==17.0.0
|
117 |
+
- pygments==2.15.0
|
118 |
+
- pyparsing==3.1.1
|
119 |
+
- pytest==7.4.3
|
120 |
+
- python-dateutil==2.8.2
|
121 |
+
- pytz==2023.3.post1
|
122 |
+
- pyyaml==6.0.1
|
123 |
+
- pyzmq==23.0.0
|
124 |
+
- regex==2023.10.3
|
125 |
+
- requests==2.32.3
|
126 |
+
- safetensors==0.4.5
|
127 |
+
- scikit-learn==1.3.2
|
128 |
+
- scipy==1.11.4
|
129 |
+
- seaborn==0.13.0
|
130 |
+
- sentencepiece==0.2.0
|
131 |
+
- shutilwhich==1.1.0
|
132 |
+
- six==1.16.0
|
133 |
+
- stack-data==0.6.0
|
134 |
+
- stanza==1.9.2
|
135 |
+
- statsmodels==0.14.0
|
136 |
+
- sympy==1.11.1
|
137 |
+
- tempdir==0.7.1
|
138 |
+
- threadpoolctl==3.2.0
|
139 |
+
- tokenizers==0.20.0
|
140 |
+
- tomli==2.0.1
|
141 |
+
- torch==2.0.0
|
142 |
+
- tornado==6.2
|
143 |
+
- tqdm==4.66.5
|
144 |
+
- traitlets==5.7.1
|
145 |
+
- transformers==4.45.1
|
146 |
+
- triton==2.0.0
|
147 |
+
- typing-extensions==4.6.0
|
148 |
+
- tzdata==2023.3
|
149 |
+
- urllib3==2.1.0
|
150 |
+
- wcwidth==0.2.5
|
151 |
+
- xxhash==3.5.0
|
152 |
+
- yarl==1.13.0
|
153 |
+
- zipp==3.12.0
|
154 |
+
prefix: /home/yiren/new_ssd2/chunhui/miniconda/envs/impossible_llm
|
impossible_llm_update.yaml
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: impossible_llm
|
2 |
+
channels:
|
3 |
+
- defaults
|
4 |
+
dependencies:
|
5 |
+
- _libgcc_mutex=0.1=main
|
6 |
+
- _openmp_mutex=5.1=1_gnu
|
7 |
+
- ca-certificates=2024.7.2=h06a4308_0
|
8 |
+
- ld_impl_linux-64=2.38=h1181459_1
|
9 |
+
- libffi=3.4.4=h6a678d5_1
|
10 |
+
- libgcc-ng=11.2.0=h1234567_1
|
11 |
+
- libgomp=11.2.0=h1234567_1
|
12 |
+
- libstdcxx-ng=11.2.0=h1234567_1
|
13 |
+
- ncurses=6.4=h6a678d5_0
|
14 |
+
- openssl=3.0.15=h5eee18b_0
|
15 |
+
- pip=24.2=py39h06a4308_0
|
16 |
+
- python=3.9.19=h955ad1f_1
|
17 |
+
- readline=8.2=h5eee18b_0
|
18 |
+
- setuptools=72.1.0=py39h06a4308_0
|
19 |
+
- sqlite=3.45.3=h5eee18b_0
|
20 |
+
- tk=8.6.14=h39e8969_0
|
21 |
+
- wheel=0.44.0=py39h06a4308_0
|
22 |
+
- xz=5.4.6=h5eee18b_1
|
23 |
+
- zlib=1.2.13=h5eee18b_1
|
24 |
+
- pip:
|
25 |
+
- accelerate==1.0.0
|
26 |
+
- aiohappyeyeballs==2.4.2
|
27 |
+
- aiohttp==3.10.6
|
28 |
+
- aiosignal==1.3.1
|
29 |
+
- annotated-types==0.7.0
|
30 |
+
- asttokens==2.2.1
|
31 |
+
- async-timeout==4.0.3
|
32 |
+
- attrs==24.2.0
|
33 |
+
- backcall==0.2.0
|
34 |
+
- black==24.8.0
|
35 |
+
- blessed==1.20.0
|
36 |
+
- certifi==2023.11.17
|
37 |
+
- charset-normalizer==3.3.2
|
38 |
+
- click==8.1.7
|
39 |
+
- cmake==3.30.3
|
40 |
+
- comm==0.1.2
|
41 |
+
- contourpy==1.2.0
|
42 |
+
- cycler==0.12.1
|
43 |
+
- data==0.4
|
44 |
+
- datasets==3.0.1
|
45 |
+
- debugpy==1.6.7
|
46 |
+
- decorator==5.1.1
|
47 |
+
- deepspeed==0.15.2
|
48 |
+
- dill==0.3.8
|
49 |
+
- emoji==2.8.0
|
50 |
+
- exceptiongroup==1.1.0
|
51 |
+
- executing==1.2.0
|
52 |
+
- filelock==3.12.2
|
53 |
+
- fonttools==4.45.1
|
54 |
+
- frozenlist==1.4.1
|
55 |
+
- fsspec==2023.10.0
|
56 |
+
- funcsigs==1.0.2
|
57 |
+
- future==0.18.3
|
58 |
+
- gmpy2==2.1.0
|
59 |
+
- gpustat==1.1.1
|
60 |
+
- hjson==3.1.0
|
61 |
+
- huggingface-hub==0.25.0
|
62 |
+
- idna==3.6
|
63 |
+
- importlib-metadata==6.0.0
|
64 |
+
- importlib-resources==6.4.5
|
65 |
+
- iniconfig==2.0.0
|
66 |
+
- ipykernel==6.23.1
|
67 |
+
- ipython==8.0.0
|
68 |
+
- jedi==0.18.2
|
69 |
+
- jinja2==3.1.2
|
70 |
+
- joblib==1.3.2
|
71 |
+
- jupyter-client==8.1.0
|
72 |
+
- jupyter-core==5.1.0
|
73 |
+
- kiwisolver==1.4.5
|
74 |
+
- latex==0.7.0
|
75 |
+
- latexcodec==1.0.0
|
76 |
+
- lit==18.1.8
|
77 |
+
- markupsafe==2.1.2
|
78 |
+
- matplotlib==3.8.2
|
79 |
+
- matplotlib-inline==0.1.6
|
80 |
+
- mizani==0.9.3
|
81 |
+
- mpmath==1.2.1
|
82 |
+
- msgpack==1.1.0
|
83 |
+
- multidict==6.1.0
|
84 |
+
- multiprocess==0.70.16
|
85 |
+
- mypy-extensions==1.0.0
|
86 |
+
- nest-asyncio==1.5.6
|
87 |
+
- networkx==2.8.6
|
88 |
+
- ninja==1.11.1.1
|
89 |
+
- nltk==3.8.1
|
90 |
+
- numpy==1.26.2
|
91 |
+
- nvidia-cublas-cu11==11.10.3.66
|
92 |
+
- nvidia-cuda-cupti-cu11==11.7.101
|
93 |
+
- nvidia-cuda-nvrtc-cu11==11.7.99
|
94 |
+
- nvidia-cuda-runtime-cu11==11.7.99
|
95 |
+
- nvidia-cudnn-cu11==8.5.0.96
|
96 |
+
- nvidia-cufft-cu11==10.9.0.58
|
97 |
+
- nvidia-curand-cu11==10.2.10.91
|
98 |
+
- nvidia-cusolver-cu11==11.4.0.1
|
99 |
+
- nvidia-cusparse-cu11==11.7.4.91
|
100 |
+
- nvidia-ml-py==12.560.30
|
101 |
+
- nvidia-nccl-cu11==2.14.3
|
102 |
+
- nvidia-nvtx-cu11==11.7.91
|
103 |
+
- packaging==23.0
|
104 |
+
- pandas==2.1.3
|
105 |
+
- parso==0.8.3
|
106 |
+
- pathspec==0.12.1
|
107 |
+
- patsy==0.5.3
|
108 |
+
- peft==0.13.0
|
109 |
+
- pexpect==4.8.0
|
110 |
+
- pickleshare==0.7.5
|
111 |
+
- pillow==10.1.0
|
112 |
+
- platformdirs==2.5.2
|
113 |
+
- plotnine==0.12.4
|
114 |
+
- pluggy==1.3.0
|
115 |
+
- pluralizer==1.2.0
|
116 |
+
- prompt-toolkit==3.0.30
|
117 |
+
- protobuf==4.25.1
|
118 |
+
- psutil==5.9.1
|
119 |
+
- ptyprocess==0.7.0
|
120 |
+
- pure-eval==0.2.2
|
121 |
+
- py-cpuinfo==9.0.0
|
122 |
+
- pyarrow==17.0.0
|
123 |
+
- pydantic==2.9.2
|
124 |
+
- pydantic-core==2.23.4
|
125 |
+
- pygments==2.15.0
|
126 |
+
- pyparsing==3.1.1
|
127 |
+
- pytest==7.4.3
|
128 |
+
- python-dateutil==2.8.2
|
129 |
+
- pytz==2023.3.post1
|
130 |
+
- pyyaml==6.0.1
|
131 |
+
- pyzmq==23.0.0
|
132 |
+
- regex==2023.10.3
|
133 |
+
- requests==2.32.3
|
134 |
+
- safetensors==0.4.5
|
135 |
+
- scikit-learn==1.3.2
|
136 |
+
- scipy==1.11.4
|
137 |
+
- seaborn==0.13.0
|
138 |
+
- sentencepiece==0.2.0
|
139 |
+
- shutilwhich==1.1.0
|
140 |
+
- six==1.16.0
|
141 |
+
- stack-data==0.6.0
|
142 |
+
- stanza==1.9.2
|
143 |
+
- statsmodels==0.14.0
|
144 |
+
- sympy==1.11.1
|
145 |
+
- tempdir==0.7.1
|
146 |
+
- threadpoolctl==3.2.0
|
147 |
+
- tokenizers==0.20.0
|
148 |
+
- tomli==2.0.1
|
149 |
+
- torch==2.0.0
|
150 |
+
- tornado==6.2
|
151 |
+
- tqdm==4.66.5
|
152 |
+
- traitlets==5.7.1
|
153 |
+
- transformers==4.45.1
|
154 |
+
- triton==2.0.0
|
155 |
+
- typing-extensions==4.12.2
|
156 |
+
- tzdata==2023.3
|
157 |
+
- urllib3==2.1.0
|
158 |
+
- wcwidth==0.2.5
|
159 |
+
- xxhash==3.5.0
|
160 |
+
- yarl==1.13.0
|
161 |
+
- zipp==3.12.0
|
162 |
+
prefix: /home/yiren/new_ssd2/chunhui/miniconda/envs/impossible_llm
|
requirements.txt
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
certifi==2023.11.17
|
2 |
+
charset-normalizer==3.3.2
|
3 |
+
click==8.1.7
|
4 |
+
contourpy==1.1.1
|
5 |
+
cycler==0.12.1
|
6 |
+
data==0.4
|
7 |
+
emoji==2.8.0
|
8 |
+
fonttools==4.45.1
|
9 |
+
fsspec==2023.10.0
|
10 |
+
funcsigs==1.0.2
|
11 |
+
future==0.18.3
|
12 |
+
huggingface-hub==0.19.4
|
13 |
+
idna==3.6
|
14 |
+
iniconfig==2.0.0
|
15 |
+
joblib==1.3.2
|
16 |
+
kiwisolver==1.4.5
|
17 |
+
latex==0.7.0
|
18 |
+
matplotlib==3.7.5
|
19 |
+
mizani==0.9.3
|
20 |
+
nltk==3.8.1
|
21 |
+
numpy==1.24.4
|
22 |
+
pandas==2.0.3
|
23 |
+
patsy==0.5.3
|
24 |
+
Pillow==10.1.0
|
25 |
+
plotnine==0.12.4
|
26 |
+
pluggy==1.3.0
|
27 |
+
pluralizer==1.2.0
|
28 |
+
protobuf==4.25.1
|
29 |
+
pyparsing==3.1.1
|
30 |
+
pytest==7.4.3
|
31 |
+
pytz==2023.3.post1
|
32 |
+
PyYAML==6.0.1
|
33 |
+
regex==2023.10.3
|
34 |
+
requests==2.31.0
|
35 |
+
safetensors==0.4.1
|
36 |
+
scikit-learn==1.3.2
|
37 |
+
scipy==1.10.1
|
38 |
+
seaborn==0.13.0
|
39 |
+
shutilwhich==1.1.0
|
40 |
+
stanza==1.6.1
|
41 |
+
statsmodels==0.14.0
|
42 |
+
tempdir==0.7.1
|
43 |
+
threadpoolctl==3.2.0
|
44 |
+
tokenizers==0.15.0
|
45 |
+
tomli==2.0.1
|
46 |
+
torch==2.0.0
|
47 |
+
tqdm==4.66.1
|
48 |
+
transformers==4.35.2
|
49 |
+
triton==2.0.0
|
50 |
+
tzdata==2023.3
|
51 |
+
urllib3==2.1.0
|
52 |
+
asttokens==2.0.5
|
53 |
+
comm==0.1.2
|
54 |
+
debugpy==1.6.7
|
55 |
+
decorator==5.1.1
|
56 |
+
exceptiongroup==1.1.0
|
57 |
+
executing==1.2.0
|
58 |
+
filelock==3.12.2
|
59 |
+
gmpy2==2.1.0
|
60 |
+
importlib-metadata==6.0.0
|
61 |
+
ipykernel==6.23.1
|
62 |
+
ipython==8.0.0
|
63 |
+
jedi==0.18.2
|
64 |
+
Jinja2==3.1.2
|
65 |
+
jupyter_client==8.1.0
|
66 |
+
jupyter_core==5.1.0
|
67 |
+
latexcodec==1.0.0
|
68 |
+
MarkupSafe==2.1.2
|
69 |
+
matplotlib-inline==0.1.6
|
70 |
+
mpmath==1.2.1
|
71 |
+
nest-asyncio==1.5.6
|
72 |
+
networkx==2.8.6
|
73 |
+
packaging==23.0
|
74 |
+
parso==0.8.3
|
75 |
+
pexpect==4.8.0
|
76 |
+
pickleshare==0.7.5
|
77 |
+
platformdirs==2.5.2
|
78 |
+
prompt-toolkit==3.0.30
|
79 |
+
psutil==5.9.1
|
80 |
+
ptyprocess==0.7.0
|
81 |
+
pure-eval==0.2.2
|
82 |
+
Pygments==2.15.0
|
83 |
+
python-dateutil==2.8.2
|
84 |
+
pyzmq==23.0.0
|
85 |
+
six==1.16.0
|
86 |
+
stack-data==0.6.0
|
87 |
+
sympy==1.11.1
|
88 |
+
tornado==6.2
|
89 |
+
traitlets==5.7.1
|
90 |
+
typing_extensions==4.6.0
|
91 |
+
wcwidth==0.2.5
|
92 |
+
zipp==3.12.0
|
93 |
+
|
94 |
+
|
requirements_1.txt
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
certifi==2023.11.17
|
2 |
+
charset-normalizer==3.3.2
|
3 |
+
click==8.1.7
|
4 |
+
contourpy==1.2.0
|
5 |
+
cycler==0.12.1
|
6 |
+
data==0.4
|
7 |
+
emoji==2.8.0
|
8 |
+
fonttools==4.45.1
|
9 |
+
fsspec==2023.10.0
|
10 |
+
funcsigs==1.0.2
|
11 |
+
future==0.18.3
|
12 |
+
huggingface-hub==0.19.4
|
13 |
+
idna==3.6
|
14 |
+
iniconfig==2.0.0
|
15 |
+
joblib==1.3.2
|
16 |
+
kiwisolver==1.4.5
|
17 |
+
latex==0.7.0
|
18 |
+
matplotlib==3.8.2
|
19 |
+
mizani==0.9.3
|
20 |
+
nltk==3.8.1
|
21 |
+
numpy==1.26.2
|
22 |
+
pandas==2.1.3
|
23 |
+
patsy==0.5.3
|
24 |
+
Pillow==10.1.0
|
25 |
+
plotnine==0.12.4
|
26 |
+
pluggy==1.3.0
|
27 |
+
pluralizer==1.2.0
|
28 |
+
protobuf==4.25.1
|
29 |
+
pyparsing==3.1.1
|
30 |
+
pytest==7.4.3
|
31 |
+
pytz==2023.3.post1
|
32 |
+
PyYAML==6.0.1
|
33 |
+
regex==2023.10.3
|
34 |
+
requests==2.31.0
|
35 |
+
safetensors==0.4.1
|
36 |
+
scikit-learn==1.3.2
|
37 |
+
scipy==1.11.4
|
38 |
+
seaborn==0.13.0
|
39 |
+
shutilwhich==1.1.0
|
40 |
+
stanza==1.6.1
|
41 |
+
statsmodels==0.14.0
|
42 |
+
tempdir==0.7.1
|
43 |
+
threadpoolctl==3.2.0
|
44 |
+
tokenizers==0.15.0
|
45 |
+
tomli==2.0.1
|
46 |
+
torch==2.0.0
|
47 |
+
tqdm==4.66.1
|
48 |
+
transformers==4.35.2
|
49 |
+
triton==2.0.0
|
50 |
+
tzdata==2023.3
|
51 |
+
urllib3==2.1.0
|
requirements_2.txt
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
asttokens==2.2.1
|
2 |
+
comm==0.1.2
|
3 |
+
debugpy==1.6.7
|
4 |
+
decorator==5.1.1
|
5 |
+
exceptiongroup==1.1.0
|
6 |
+
executing==1.2.0
|
7 |
+
filelock==3.12.2
|
8 |
+
gmpy2==2.1.0
|
9 |
+
importlib-metadata==6.0.0
|
10 |
+
ipykernel==6.23.1
|
11 |
+
ipython==8.0.0
|
12 |
+
jedi==0.18.2
|
13 |
+
Jinja2==3.1.2
|
14 |
+
jupyter_client==8.1.0
|
15 |
+
jupyter_core==5.1.0
|
16 |
+
latexcodec==1.0.0
|
17 |
+
MarkupSafe==2.1.2
|
18 |
+
matplotlib-inline==0.1.6
|
19 |
+
mpmath==1.2.1
|
20 |
+
nest-asyncio==1.5.6
|
21 |
+
networkx==2.8.6
|
22 |
+
packaging==23.0
|
23 |
+
parso==0.8.3
|
24 |
+
pexpect==4.8.0
|
25 |
+
pickleshare==0.7.5
|
26 |
+
platformdirs==2.5.2
|
27 |
+
prompt-toolkit==3.0.30
|
28 |
+
psutil==5.9.1
|
29 |
+
ptyprocess==0.7.0
|
30 |
+
pure-eval==0.2.2
|
31 |
+
Pygments==2.15.0
|
32 |
+
python-dateutil==2.8.2
|
33 |
+
pyzmq==23.0.0
|
34 |
+
six==1.16.0
|
35 |
+
stack-data==0.6.0
|
36 |
+
sympy==1.11.1
|
37 |
+
tornado==6.2
|
38 |
+
traitlets==5.7.1
|
39 |
+
typing_extensions==4.6.0
|
40 |
+
wcwidth==0.2.5
|
41 |
+
zipp==3.12.0
|
42 |
+
# asttokens @ file:///home/conda/feedstock_root/build_artifacts/asttokens_1698341106958/work
|
43 |
+
# comm @ file:///home/conda/feedstock_root/build_artifacts/comm_1691044910542/work
|
44 |
+
# debugpy @ file:///croot/debugpy_1690905042057/work
|
45 |
+
# decorator @ file:///home/conda/feedstock_root/build_artifacts/decorator_1641555617451/work
|
46 |
+
# exceptiongroup @ file:///home/conda/feedstock_root/build_artifacts/exceptiongroup_1700579780973/work
|
47 |
+
# executing @ file:///home/conda/feedstock_root/build_artifacts/executing_1698579936712/work
|
48 |
+
# filelock @ file:///croot/filelock_1700591183607/work
|
49 |
+
# gmpy2 @ file:///tmp/build/80754af9/gmpy2_1645455533097/work
|
50 |
+
# importlib-metadata @ file:///home/conda/feedstock_root/build_artifacts/importlib-metadata_1688754491823/work
|
51 |
+
# ipykernel @ file:///home/conda/feedstock_root/build_artifacts/ipykernel_1698244021190/work
|
52 |
+
# ipython @ file:///home/conda/feedstock_root/build_artifacts/ipython_1701092366260/work
|
53 |
+
# jedi @ file:///home/conda/feedstock_root/build_artifacts/jedi_1696326070614/work
|
54 |
+
# Jinja2 @ file:///croot/jinja2_1666908132255/work
|
55 |
+
# jupyter_client @ file:///home/conda/feedstock_root/build_artifacts/jupyter_client_1699283905679/work
|
56 |
+
# jupyter_core @ file:///home/conda/feedstock_root/build_artifacts/jupyter_core_1698673647019/work
|
57 |
+
# latexcodec @ file:///home/conda/feedstock_root/build_artifacts/latexcodec_1592937263153/work
|
58 |
+
# MarkupSafe @ file:///opt/conda/conda-bld/markupsafe_1654597864307/work
|
59 |
+
# matplotlib-inline @ file:///home/conda/feedstock_root/build_artifacts/matplotlib-inline_1660814786464/work
|
60 |
+
# mpmath @ file:///croot/mpmath_1690848262763/work
|
61 |
+
# nest-asyncio @ file:///home/conda/feedstock_root/build_artifacts/nest-asyncio_1697083700168/work
|
62 |
+
# networkx @ file:///croot/networkx_1690561992265/work
|
63 |
+
# packaging @ file:///home/conda/feedstock_root/build_artifacts/packaging_1696202382185/work
|
64 |
+
# parso @ file:///home/conda/feedstock_root/build_artifacts/parso_1638334955874/work
|
65 |
+
# pexpect @ file:///home/conda/feedstock_root/build_artifacts/pexpect_1667297516076/work
|
66 |
+
# pickleshare @ file:///home/conda/feedstock_root/build_artifacts/pickleshare_1602536217715/work
|
67 |
+
# platformdirs @ file:///home/conda/feedstock_root/build_artifacts/platformdirs_1699715570510/work
|
68 |
+
# prompt-toolkit @ file:///home/conda/feedstock_root/build_artifacts/prompt-toolkit_1699963054032/work
|
69 |
+
# psutil @ file:///home/conda/feedstock_root/build_artifacts/psutil_1695367094274/work
|
70 |
+
# ptyprocess @ file:///home/conda/feedstock_root/build_artifacts/ptyprocess_1609419310487/work/dist/ptyprocess-0.7.0-py2.py3-none-any.whl
|
71 |
+
# pure-eval @ file:///home/conda/feedstock_root/build_artifacts/pure_eval_1642875951954/work
|
72 |
+
# Pygments @ file:///home/conda/feedstock_root/build_artifacts/pygments_1700607939962/work
|
73 |
+
# python-dateutil @ file:///home/conda/feedstock_root/build_artifacts/python-dateutil_1626286286081/work
|
74 |
+
# pyzmq @ file:///home/conda/feedstock_root/build_artifacts/pyzmq_1652965335788/work
|
75 |
+
# six @ file:///home/conda/feedstock_root/build_artifacts/six_1620240208055/work
|
76 |
+
# stack-data @ file:///home/conda/feedstock_root/build_artifacts/stack_data_1669632077133/work
|
77 |
+
# sympy @ file:///croot/sympy_1668202399572/work
|
78 |
+
# tornado @ file:///home/conda/feedstock_root/build_artifacts/tornado_1695373560918/work
|
79 |
+
# traitlets @ file:///home/conda/feedstock_root/build_artifacts/traitlets_1701095650114/work
|
80 |
+
# typing_extensions @ file:///croot/typing_extensions_1690297465030/work
|
81 |
+
# wcwidth @ file:///home/conda/feedstock_root/build_artifacts/wcwidth_1700607916581/work
|
82 |
+
# zipp @ file:///home/conda/feedstock_root/build_artifacts/zipp_1695255097490/work
|
test.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import upload_folder
|
2 |
+
|
3 |
+
upload_folder(
|
4 |
+
folder_path="/home/yiren/new_ssd2/chunhui/yaning/project/mission-impossible-language-models",
|
5 |
+
repo_id="Yaning1001/impossible_llm",
|
6 |
+
path_in_repo="mission-impossible-language-models"
|
7 |
+
)
|
8 |
+
|
9 |
+
# import torch
|
10 |
+
# from transformers import AutoModelForCausalLM, AutoTokenizer
|
11 |
+
|
12 |
+
# model_id_1 = "meta-llama/Llama-3.2-3B"
|
13 |
+
# model_id_2 = "Qwen/Qwen2.5-7B"
|
14 |
+
|
15 |
+
# # Check your authentication - this line should succeed without errors!
|
16 |
+
# tokenizer_0 = AutoTokenizer.from_pretrained('gpt2')
|
17 |
+
# tokenizer_1 = AutoTokenizer.from_pretrained(model_id_1)
|
18 |
+
# tokenizer_2 = AutoTokenizer.from_pretrained(model_id_2)
|
19 |
+
# tokenizer_2.pad_token = tokenizer_1.pad_token
|
20 |
+
|
21 |
+
# print("tokenizer_0.pad_token:", type(tokenizer_0.pad_token))
|
22 |
+
# print("tokenizer_1.pad_token:", type(tokenizer_1.pad_token))
|
23 |
+
# print("tokenizer_2.pad_token:", type(tokenizer_2.pad_token))
|
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/artifacts/models--meta-llama--Llama-3.2-3B/refs/main
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
13afe5124825b4f3751f836b40dafda64c1ed062
|
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/artifacts/models--meta-llama--Llama-3.2-3B/snapshots/5cc0ffe09ee49f7be6ca7c794ee6bd7245e84e60/generation_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 128000,
|
4 |
+
"eos_token_id": 128001,
|
5 |
+
"transformers_version": "4.45.0.dev0",
|
6 |
+
"do_sample": true,
|
7 |
+
"temperature": 0.6,
|
8 |
+
"top_p": 0.9
|
9 |
+
}
|
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/artifacts/models--meta-llama--Llama-3.2-3B/snapshots/5cc0ffe09ee49f7be6ca7c794ee6bd7245e84e60/model.safetensors.index.json
ADDED
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 6425499648
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
7 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
64 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
66 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
67 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
73 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
74 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
76 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
77 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
78 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
79 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
85 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
86 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
88 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
89 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
90 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
91 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
97 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
98 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
100 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
101 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
102 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
103 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
109 |
+
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
110 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
112 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
113 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
114 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
115 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
125 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
126 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
127 |
+
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
129 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
133 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
134 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
135 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
136 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
137 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
138 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
139 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
140 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
141 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
142 |
+
"model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
143 |
+
"model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
144 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
145 |
+
"model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
146 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
147 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
148 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
149 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
150 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
151 |
+
"model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
152 |
+
"model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
153 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
154 |
+
"model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
155 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
156 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
157 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
158 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
159 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
160 |
+
"model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
161 |
+
"model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
162 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
163 |
+
"model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
164 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
165 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
166 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
167 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
168 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
169 |
+
"model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
170 |
+
"model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
171 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
172 |
+
"model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
173 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
174 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
175 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
176 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
177 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
178 |
+
"model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
179 |
+
"model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
180 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
181 |
+
"model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
182 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
183 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
184 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
185 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
186 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
187 |
+
"model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
188 |
+
"model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
189 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
190 |
+
"model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
191 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
192 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
193 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
194 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
195 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
196 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
197 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
198 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
199 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
200 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
201 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
202 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
203 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
204 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
205 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
206 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
207 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
208 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
209 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
210 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
211 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
212 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
213 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
214 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
215 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
216 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
217 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
218 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
219 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
220 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
221 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
222 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
223 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
224 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
225 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
226 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
227 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
228 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
229 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
230 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
231 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
232 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
233 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
234 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
235 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
236 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
237 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
238 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
239 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
240 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
241 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
242 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
243 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
244 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
245 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
246 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
247 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
248 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
249 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
250 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
251 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
252 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
253 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
254 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
255 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
256 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
257 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
258 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
259 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
260 |
+
}
|
261 |
+
}
|
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1050/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6fba7b84ac8c089d417b794dfc0527040604b90e2cdfe6e9df5b55afe9eab61a
|
3 |
+
size 17210282
|
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1050/tokenizer_config.json
ADDED
@@ -0,0 +1,2078 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"128000": {
|
4 |
+
"content": "<|begin_of_text|>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"128001": {
|
12 |
+
"content": "<|end_of_text|>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"128002": {
|
20 |
+
"content": "<|reserved_special_token_0|>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"128003": {
|
28 |
+
"content": "<|reserved_special_token_1|>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"128004": {
|
36 |
+
"content": "<|finetune_right_pad_id|>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"128005": {
|
44 |
+
"content": "<|reserved_special_token_2|>",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"128006": {
|
52 |
+
"content": "<|start_header_id|>",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": true
|
58 |
+
},
|
59 |
+
"128007": {
|
60 |
+
"content": "<|end_header_id|>",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": true
|
66 |
+
},
|
67 |
+
"128008": {
|
68 |
+
"content": "<|eom_id|>",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": false,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": true
|
74 |
+
},
|
75 |
+
"128009": {
|
76 |
+
"content": "<|eot_id|>",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": false,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": true
|
82 |
+
},
|
83 |
+
"128010": {
|
84 |
+
"content": "<|python_tag|>",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": false,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": true
|
90 |
+
},
|
91 |
+
"128011": {
|
92 |
+
"content": "<|reserved_special_token_3|>",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": false,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": true
|
98 |
+
},
|
99 |
+
"128012": {
|
100 |
+
"content": "<|reserved_special_token_4|>",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": false,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": true
|
106 |
+
},
|
107 |
+
"128013": {
|
108 |
+
"content": "<|reserved_special_token_5|>",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": false,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false,
|
113 |
+
"special": true
|
114 |
+
},
|
115 |
+
"128014": {
|
116 |
+
"content": "<|reserved_special_token_6|>",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": false,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false,
|
121 |
+
"special": true
|
122 |
+
},
|
123 |
+
"128015": {
|
124 |
+
"content": "<|reserved_special_token_7|>",
|
125 |
+
"lstrip": false,
|
126 |
+
"normalized": false,
|
127 |
+
"rstrip": false,
|
128 |
+
"single_word": false,
|
129 |
+
"special": true
|
130 |
+
},
|
131 |
+
"128016": {
|
132 |
+
"content": "<|reserved_special_token_8|>",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": false,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": false,
|
137 |
+
"special": true
|
138 |
+
},
|
139 |
+
"128017": {
|
140 |
+
"content": "<|reserved_special_token_9|>",
|
141 |
+
"lstrip": false,
|
142 |
+
"normalized": false,
|
143 |
+
"rstrip": false,
|
144 |
+
"single_word": false,
|
145 |
+
"special": true
|
146 |
+
},
|
147 |
+
"128018": {
|
148 |
+
"content": "<|reserved_special_token_10|>",
|
149 |
+
"lstrip": false,
|
150 |
+
"normalized": false,
|
151 |
+
"rstrip": false,
|
152 |
+
"single_word": false,
|
153 |
+
"special": true
|
154 |
+
},
|
155 |
+
"128019": {
|
156 |
+
"content": "<|reserved_special_token_11|>",
|
157 |
+
"lstrip": false,
|
158 |
+
"normalized": false,
|
159 |
+
"rstrip": false,
|
160 |
+
"single_word": false,
|
161 |
+
"special": true
|
162 |
+
},
|
163 |
+
"128020": {
|
164 |
+
"content": "<|reserved_special_token_12|>",
|
165 |
+
"lstrip": false,
|
166 |
+
"normalized": false,
|
167 |
+
"rstrip": false,
|
168 |
+
"single_word": false,
|
169 |
+
"special": true
|
170 |
+
},
|
171 |
+
"128021": {
|
172 |
+
"content": "<|reserved_special_token_13|>",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": false,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false,
|
177 |
+
"special": true
|
178 |
+
},
|
179 |
+
"128022": {
|
180 |
+
"content": "<|reserved_special_token_14|>",
|
181 |
+
"lstrip": false,
|
182 |
+
"normalized": false,
|
183 |
+
"rstrip": false,
|
184 |
+
"single_word": false,
|
185 |
+
"special": true
|
186 |
+
},
|
187 |
+
"128023": {
|
188 |
+
"content": "<|reserved_special_token_15|>",
|
189 |
+
"lstrip": false,
|
190 |
+
"normalized": false,
|
191 |
+
"rstrip": false,
|
192 |
+
"single_word": false,
|
193 |
+
"special": true
|
194 |
+
},
|
195 |
+
"128024": {
|
196 |
+
"content": "<|reserved_special_token_16|>",
|
197 |
+
"lstrip": false,
|
198 |
+
"normalized": false,
|
199 |
+
"rstrip": false,
|
200 |
+
"single_word": false,
|
201 |
+
"special": true
|
202 |
+
},
|
203 |
+
"128025": {
|
204 |
+
"content": "<|reserved_special_token_17|>",
|
205 |
+
"lstrip": false,
|
206 |
+
"normalized": false,
|
207 |
+
"rstrip": false,
|
208 |
+
"single_word": false,
|
209 |
+
"special": true
|
210 |
+
},
|
211 |
+
"128026": {
|
212 |
+
"content": "<|reserved_special_token_18|>",
|
213 |
+
"lstrip": false,
|
214 |
+
"normalized": false,
|
215 |
+
"rstrip": false,
|
216 |
+
"single_word": false,
|
217 |
+
"special": true
|
218 |
+
},
|
219 |
+
"128027": {
|
220 |
+
"content": "<|reserved_special_token_19|>",
|
221 |
+
"lstrip": false,
|
222 |
+
"normalized": false,
|
223 |
+
"rstrip": false,
|
224 |
+
"single_word": false,
|
225 |
+
"special": true
|
226 |
+
},
|
227 |
+
"128028": {
|
228 |
+
"content": "<|reserved_special_token_20|>",
|
229 |
+
"lstrip": false,
|
230 |
+
"normalized": false,
|
231 |
+
"rstrip": false,
|
232 |
+
"single_word": false,
|
233 |
+
"special": true
|
234 |
+
},
|
235 |
+
"128029": {
|
236 |
+
"content": "<|reserved_special_token_21|>",
|
237 |
+
"lstrip": false,
|
238 |
+
"normalized": false,
|
239 |
+
"rstrip": false,
|
240 |
+
"single_word": false,
|
241 |
+
"special": true
|
242 |
+
},
|
243 |
+
"128030": {
|
244 |
+
"content": "<|reserved_special_token_22|>",
|
245 |
+
"lstrip": false,
|
246 |
+
"normalized": false,
|
247 |
+
"rstrip": false,
|
248 |
+
"single_word": false,
|
249 |
+
"special": true
|
250 |
+
},
|
251 |
+
"128031": {
|
252 |
+
"content": "<|reserved_special_token_23|>",
|
253 |
+
"lstrip": false,
|
254 |
+
"normalized": false,
|
255 |
+
"rstrip": false,
|
256 |
+
"single_word": false,
|
257 |
+
"special": true
|
258 |
+
},
|
259 |
+
"128032": {
|
260 |
+
"content": "<|reserved_special_token_24|>",
|
261 |
+
"lstrip": false,
|
262 |
+
"normalized": false,
|
263 |
+
"rstrip": false,
|
264 |
+
"single_word": false,
|
265 |
+
"special": true
|
266 |
+
},
|
267 |
+
"128033": {
|
268 |
+
"content": "<|reserved_special_token_25|>",
|
269 |
+
"lstrip": false,
|
270 |
+
"normalized": false,
|
271 |
+
"rstrip": false,
|
272 |
+
"single_word": false,
|
273 |
+
"special": true
|
274 |
+
},
|
275 |
+
"128034": {
|
276 |
+
"content": "<|reserved_special_token_26|>",
|
277 |
+
"lstrip": false,
|
278 |
+
"normalized": false,
|
279 |
+
"rstrip": false,
|
280 |
+
"single_word": false,
|
281 |
+
"special": true
|
282 |
+
},
|
283 |
+
"128035": {
|
284 |
+
"content": "<|reserved_special_token_27|>",
|
285 |
+
"lstrip": false,
|
286 |
+
"normalized": false,
|
287 |
+
"rstrip": false,
|
288 |
+
"single_word": false,
|
289 |
+
"special": true
|
290 |
+
},
|
291 |
+
"128036": {
|
292 |
+
"content": "<|reserved_special_token_28|>",
|
293 |
+
"lstrip": false,
|
294 |
+
"normalized": false,
|
295 |
+
"rstrip": false,
|
296 |
+
"single_word": false,
|
297 |
+
"special": true
|
298 |
+
},
|
299 |
+
"128037": {
|
300 |
+
"content": "<|reserved_special_token_29|>",
|
301 |
+
"lstrip": false,
|
302 |
+
"normalized": false,
|
303 |
+
"rstrip": false,
|
304 |
+
"single_word": false,
|
305 |
+
"special": true
|
306 |
+
},
|
307 |
+
"128038": {
|
308 |
+
"content": "<|reserved_special_token_30|>",
|
309 |
+
"lstrip": false,
|
310 |
+
"normalized": false,
|
311 |
+
"rstrip": false,
|
312 |
+
"single_word": false,
|
313 |
+
"special": true
|
314 |
+
},
|
315 |
+
"128039": {
|
316 |
+
"content": "<|reserved_special_token_31|>",
|
317 |
+
"lstrip": false,
|
318 |
+
"normalized": false,
|
319 |
+
"rstrip": false,
|
320 |
+
"single_word": false,
|
321 |
+
"special": true
|
322 |
+
},
|
323 |
+
"128040": {
|
324 |
+
"content": "<|reserved_special_token_32|>",
|
325 |
+
"lstrip": false,
|
326 |
+
"normalized": false,
|
327 |
+
"rstrip": false,
|
328 |
+
"single_word": false,
|
329 |
+
"special": true
|
330 |
+
},
|
331 |
+
"128041": {
|
332 |
+
"content": "<|reserved_special_token_33|>",
|
333 |
+
"lstrip": false,
|
334 |
+
"normalized": false,
|
335 |
+
"rstrip": false,
|
336 |
+
"single_word": false,
|
337 |
+
"special": true
|
338 |
+
},
|
339 |
+
"128042": {
|
340 |
+
"content": "<|reserved_special_token_34|>",
|
341 |
+
"lstrip": false,
|
342 |
+
"normalized": false,
|
343 |
+
"rstrip": false,
|
344 |
+
"single_word": false,
|
345 |
+
"special": true
|
346 |
+
},
|
347 |
+
"128043": {
|
348 |
+
"content": "<|reserved_special_token_35|>",
|
349 |
+
"lstrip": false,
|
350 |
+
"normalized": false,
|
351 |
+
"rstrip": false,
|
352 |
+
"single_word": false,
|
353 |
+
"special": true
|
354 |
+
},
|
355 |
+
"128044": {
|
356 |
+
"content": "<|reserved_special_token_36|>",
|
357 |
+
"lstrip": false,
|
358 |
+
"normalized": false,
|
359 |
+
"rstrip": false,
|
360 |
+
"single_word": false,
|
361 |
+
"special": true
|
362 |
+
},
|
363 |
+
"128045": {
|
364 |
+
"content": "<|reserved_special_token_37|>",
|
365 |
+
"lstrip": false,
|
366 |
+
"normalized": false,
|
367 |
+
"rstrip": false,
|
368 |
+
"single_word": false,
|
369 |
+
"special": true
|
370 |
+
},
|
371 |
+
"128046": {
|
372 |
+
"content": "<|reserved_special_token_38|>",
|
373 |
+
"lstrip": false,
|
374 |
+
"normalized": false,
|
375 |
+
"rstrip": false,
|
376 |
+
"single_word": false,
|
377 |
+
"special": true
|
378 |
+
},
|
379 |
+
"128047": {
|
380 |
+
"content": "<|reserved_special_token_39|>",
|
381 |
+
"lstrip": false,
|
382 |
+
"normalized": false,
|
383 |
+
"rstrip": false,
|
384 |
+
"single_word": false,
|
385 |
+
"special": true
|
386 |
+
},
|
387 |
+
"128048": {
|
388 |
+
"content": "<|reserved_special_token_40|>",
|
389 |
+
"lstrip": false,
|
390 |
+
"normalized": false,
|
391 |
+
"rstrip": false,
|
392 |
+
"single_word": false,
|
393 |
+
"special": true
|
394 |
+
},
|
395 |
+
"128049": {
|
396 |
+
"content": "<|reserved_special_token_41|>",
|
397 |
+
"lstrip": false,
|
398 |
+
"normalized": false,
|
399 |
+
"rstrip": false,
|
400 |
+
"single_word": false,
|
401 |
+
"special": true
|
402 |
+
},
|
403 |
+
"128050": {
|
404 |
+
"content": "<|reserved_special_token_42|>",
|
405 |
+
"lstrip": false,
|
406 |
+
"normalized": false,
|
407 |
+
"rstrip": false,
|
408 |
+
"single_word": false,
|
409 |
+
"special": true
|
410 |
+
},
|
411 |
+
"128051": {
|
412 |
+
"content": "<|reserved_special_token_43|>",
|
413 |
+
"lstrip": false,
|
414 |
+
"normalized": false,
|
415 |
+
"rstrip": false,
|
416 |
+
"single_word": false,
|
417 |
+
"special": true
|
418 |
+
},
|
419 |
+
"128052": {
|
420 |
+
"content": "<|reserved_special_token_44|>",
|
421 |
+
"lstrip": false,
|
422 |
+
"normalized": false,
|
423 |
+
"rstrip": false,
|
424 |
+
"single_word": false,
|
425 |
+
"special": true
|
426 |
+
},
|
427 |
+
"128053": {
|
428 |
+
"content": "<|reserved_special_token_45|>",
|
429 |
+
"lstrip": false,
|
430 |
+
"normalized": false,
|
431 |
+
"rstrip": false,
|
432 |
+
"single_word": false,
|
433 |
+
"special": true
|
434 |
+
},
|
435 |
+
"128054": {
|
436 |
+
"content": "<|reserved_special_token_46|>",
|
437 |
+
"lstrip": false,
|
438 |
+
"normalized": false,
|
439 |
+
"rstrip": false,
|
440 |
+
"single_word": false,
|
441 |
+
"special": true
|
442 |
+
},
|
443 |
+
"128055": {
|
444 |
+
"content": "<|reserved_special_token_47|>",
|
445 |
+
"lstrip": false,
|
446 |
+
"normalized": false,
|
447 |
+
"rstrip": false,
|
448 |
+
"single_word": false,
|
449 |
+
"special": true
|
450 |
+
},
|
451 |
+
"128056": {
|
452 |
+
"content": "<|reserved_special_token_48|>",
|
453 |
+
"lstrip": false,
|
454 |
+
"normalized": false,
|
455 |
+
"rstrip": false,
|
456 |
+
"single_word": false,
|
457 |
+
"special": true
|
458 |
+
},
|
459 |
+
"128057": {
|
460 |
+
"content": "<|reserved_special_token_49|>",
|
461 |
+
"lstrip": false,
|
462 |
+
"normalized": false,
|
463 |
+
"rstrip": false,
|
464 |
+
"single_word": false,
|
465 |
+
"special": true
|
466 |
+
},
|
467 |
+
"128058": {
|
468 |
+
"content": "<|reserved_special_token_50|>",
|
469 |
+
"lstrip": false,
|
470 |
+
"normalized": false,
|
471 |
+
"rstrip": false,
|
472 |
+
"single_word": false,
|
473 |
+
"special": true
|
474 |
+
},
|
475 |
+
"128059": {
|
476 |
+
"content": "<|reserved_special_token_51|>",
|
477 |
+
"lstrip": false,
|
478 |
+
"normalized": false,
|
479 |
+
"rstrip": false,
|
480 |
+
"single_word": false,
|
481 |
+
"special": true
|
482 |
+
},
|
483 |
+
"128060": {
|
484 |
+
"content": "<|reserved_special_token_52|>",
|
485 |
+
"lstrip": false,
|
486 |
+
"normalized": false,
|
487 |
+
"rstrip": false,
|
488 |
+
"single_word": false,
|
489 |
+
"special": true
|
490 |
+
},
|
491 |
+
"128061": {
|
492 |
+
"content": "<|reserved_special_token_53|>",
|
493 |
+
"lstrip": false,
|
494 |
+
"normalized": false,
|
495 |
+
"rstrip": false,
|
496 |
+
"single_word": false,
|
497 |
+
"special": true
|
498 |
+
},
|
499 |
+
"128062": {
|
500 |
+
"content": "<|reserved_special_token_54|>",
|
501 |
+
"lstrip": false,
|
502 |
+
"normalized": false,
|
503 |
+
"rstrip": false,
|
504 |
+
"single_word": false,
|
505 |
+
"special": true
|
506 |
+
},
|
507 |
+
"128063": {
|
508 |
+
"content": "<|reserved_special_token_55|>",
|
509 |
+
"lstrip": false,
|
510 |
+
"normalized": false,
|
511 |
+
"rstrip": false,
|
512 |
+
"single_word": false,
|
513 |
+
"special": true
|
514 |
+
},
|
515 |
+
"128064": {
|
516 |
+
"content": "<|reserved_special_token_56|>",
|
517 |
+
"lstrip": false,
|
518 |
+
"normalized": false,
|
519 |
+
"rstrip": false,
|
520 |
+
"single_word": false,
|
521 |
+
"special": true
|
522 |
+
},
|
523 |
+
"128065": {
|
524 |
+
"content": "<|reserved_special_token_57|>",
|
525 |
+
"lstrip": false,
|
526 |
+
"normalized": false,
|
527 |
+
"rstrip": false,
|
528 |
+
"single_word": false,
|
529 |
+
"special": true
|
530 |
+
},
|
531 |
+
"128066": {
|
532 |
+
"content": "<|reserved_special_token_58|>",
|
533 |
+
"lstrip": false,
|
534 |
+
"normalized": false,
|
535 |
+
"rstrip": false,
|
536 |
+
"single_word": false,
|
537 |
+
"special": true
|
538 |
+
},
|
539 |
+
"128067": {
|
540 |
+
"content": "<|reserved_special_token_59|>",
|
541 |
+
"lstrip": false,
|
542 |
+
"normalized": false,
|
543 |
+
"rstrip": false,
|
544 |
+
"single_word": false,
|
545 |
+
"special": true
|
546 |
+
},
|
547 |
+
"128068": {
|
548 |
+
"content": "<|reserved_special_token_60|>",
|
549 |
+
"lstrip": false,
|
550 |
+
"normalized": false,
|
551 |
+
"rstrip": false,
|
552 |
+
"single_word": false,
|
553 |
+
"special": true
|
554 |
+
},
|
555 |
+
"128069": {
|
556 |
+
"content": "<|reserved_special_token_61|>",
|
557 |
+
"lstrip": false,
|
558 |
+
"normalized": false,
|
559 |
+
"rstrip": false,
|
560 |
+
"single_word": false,
|
561 |
+
"special": true
|
562 |
+
},
|
563 |
+
"128070": {
|
564 |
+
"content": "<|reserved_special_token_62|>",
|
565 |
+
"lstrip": false,
|
566 |
+
"normalized": false,
|
567 |
+
"rstrip": false,
|
568 |
+
"single_word": false,
|
569 |
+
"special": true
|
570 |
+
},
|
571 |
+
"128071": {
|
572 |
+
"content": "<|reserved_special_token_63|>",
|
573 |
+
"lstrip": false,
|
574 |
+
"normalized": false,
|
575 |
+
"rstrip": false,
|
576 |
+
"single_word": false,
|
577 |
+
"special": true
|
578 |
+
},
|
579 |
+
"128072": {
|
580 |
+
"content": "<|reserved_special_token_64|>",
|
581 |
+
"lstrip": false,
|
582 |
+
"normalized": false,
|
583 |
+
"rstrip": false,
|
584 |
+
"single_word": false,
|
585 |
+
"special": true
|
586 |
+
},
|
587 |
+
"128073": {
|
588 |
+
"content": "<|reserved_special_token_65|>",
|
589 |
+
"lstrip": false,
|
590 |
+
"normalized": false,
|
591 |
+
"rstrip": false,
|
592 |
+
"single_word": false,
|
593 |
+
"special": true
|
594 |
+
},
|
595 |
+
"128074": {
|
596 |
+
"content": "<|reserved_special_token_66|>",
|
597 |
+
"lstrip": false,
|
598 |
+
"normalized": false,
|
599 |
+
"rstrip": false,
|
600 |
+
"single_word": false,
|
601 |
+
"special": true
|
602 |
+
},
|
603 |
+
"128075": {
|
604 |
+
"content": "<|reserved_special_token_67|>",
|
605 |
+
"lstrip": false,
|
606 |
+
"normalized": false,
|
607 |
+
"rstrip": false,
|
608 |
+
"single_word": false,
|
609 |
+
"special": true
|
610 |
+
},
|
611 |
+
"128076": {
|
612 |
+
"content": "<|reserved_special_token_68|>",
|
613 |
+
"lstrip": false,
|
614 |
+
"normalized": false,
|
615 |
+
"rstrip": false,
|
616 |
+
"single_word": false,
|
617 |
+
"special": true
|
618 |
+
},
|
619 |
+
"128077": {
|
620 |
+
"content": "<|reserved_special_token_69|>",
|
621 |
+
"lstrip": false,
|
622 |
+
"normalized": false,
|
623 |
+
"rstrip": false,
|
624 |
+
"single_word": false,
|
625 |
+
"special": true
|
626 |
+
},
|
627 |
+
"128078": {
|
628 |
+
"content": "<|reserved_special_token_70|>",
|
629 |
+
"lstrip": false,
|
630 |
+
"normalized": false,
|
631 |
+
"rstrip": false,
|
632 |
+
"single_word": false,
|
633 |
+
"special": true
|
634 |
+
},
|
635 |
+
"128079": {
|
636 |
+
"content": "<|reserved_special_token_71|>",
|
637 |
+
"lstrip": false,
|
638 |
+
"normalized": false,
|
639 |
+
"rstrip": false,
|
640 |
+
"single_word": false,
|
641 |
+
"special": true
|
642 |
+
},
|
643 |
+
"128080": {
|
644 |
+
"content": "<|reserved_special_token_72|>",
|
645 |
+
"lstrip": false,
|
646 |
+
"normalized": false,
|
647 |
+
"rstrip": false,
|
648 |
+
"single_word": false,
|
649 |
+
"special": true
|
650 |
+
},
|
651 |
+
"128081": {
|
652 |
+
"content": "<|reserved_special_token_73|>",
|
653 |
+
"lstrip": false,
|
654 |
+
"normalized": false,
|
655 |
+
"rstrip": false,
|
656 |
+
"single_word": false,
|
657 |
+
"special": true
|
658 |
+
},
|
659 |
+
"128082": {
|
660 |
+
"content": "<|reserved_special_token_74|>",
|
661 |
+
"lstrip": false,
|
662 |
+
"normalized": false,
|
663 |
+
"rstrip": false,
|
664 |
+
"single_word": false,
|
665 |
+
"special": true
|
666 |
+
},
|
667 |
+
"128083": {
|
668 |
+
"content": "<|reserved_special_token_75|>",
|
669 |
+
"lstrip": false,
|
670 |
+
"normalized": false,
|
671 |
+
"rstrip": false,
|
672 |
+
"single_word": false,
|
673 |
+
"special": true
|
674 |
+
},
|
675 |
+
"128084": {
|
676 |
+
"content": "<|reserved_special_token_76|>",
|
677 |
+
"lstrip": false,
|
678 |
+
"normalized": false,
|
679 |
+
"rstrip": false,
|
680 |
+
"single_word": false,
|
681 |
+
"special": true
|
682 |
+
},
|
683 |
+
"128085": {
|
684 |
+
"content": "<|reserved_special_token_77|>",
|
685 |
+
"lstrip": false,
|
686 |
+
"normalized": false,
|
687 |
+
"rstrip": false,
|
688 |
+
"single_word": false,
|
689 |
+
"special": true
|
690 |
+
},
|
691 |
+
"128086": {
|
692 |
+
"content": "<|reserved_special_token_78|>",
|
693 |
+
"lstrip": false,
|
694 |
+
"normalized": false,
|
695 |
+
"rstrip": false,
|
696 |
+
"single_word": false,
|
697 |
+
"special": true
|
698 |
+
},
|
699 |
+
"128087": {
|
700 |
+
"content": "<|reserved_special_token_79|>",
|
701 |
+
"lstrip": false,
|
702 |
+
"normalized": false,
|
703 |
+
"rstrip": false,
|
704 |
+
"single_word": false,
|
705 |
+
"special": true
|
706 |
+
},
|
707 |
+
"128088": {
|
708 |
+
"content": "<|reserved_special_token_80|>",
|
709 |
+
"lstrip": false,
|
710 |
+
"normalized": false,
|
711 |
+
"rstrip": false,
|
712 |
+
"single_word": false,
|
713 |
+
"special": true
|
714 |
+
},
|
715 |
+
"128089": {
|
716 |
+
"content": "<|reserved_special_token_81|>",
|
717 |
+
"lstrip": false,
|
718 |
+
"normalized": false,
|
719 |
+
"rstrip": false,
|
720 |
+
"single_word": false,
|
721 |
+
"special": true
|
722 |
+
},
|
723 |
+
"128090": {
|
724 |
+
"content": "<|reserved_special_token_82|>",
|
725 |
+
"lstrip": false,
|
726 |
+
"normalized": false,
|
727 |
+
"rstrip": false,
|
728 |
+
"single_word": false,
|
729 |
+
"special": true
|
730 |
+
},
|
731 |
+
"128091": {
|
732 |
+
"content": "<|reserved_special_token_83|>",
|
733 |
+
"lstrip": false,
|
734 |
+
"normalized": false,
|
735 |
+
"rstrip": false,
|
736 |
+
"single_word": false,
|
737 |
+
"special": true
|
738 |
+
},
|
739 |
+
"128092": {
|
740 |
+
"content": "<|reserved_special_token_84|>",
|
741 |
+
"lstrip": false,
|
742 |
+
"normalized": false,
|
743 |
+
"rstrip": false,
|
744 |
+
"single_word": false,
|
745 |
+
"special": true
|
746 |
+
},
|
747 |
+
"128093": {
|
748 |
+
"content": "<|reserved_special_token_85|>",
|
749 |
+
"lstrip": false,
|
750 |
+
"normalized": false,
|
751 |
+
"rstrip": false,
|
752 |
+
"single_word": false,
|
753 |
+
"special": true
|
754 |
+
},
|
755 |
+
"128094": {
|
756 |
+
"content": "<|reserved_special_token_86|>",
|
757 |
+
"lstrip": false,
|
758 |
+
"normalized": false,
|
759 |
+
"rstrip": false,
|
760 |
+
"single_word": false,
|
761 |
+
"special": true
|
762 |
+
},
|
763 |
+
"128095": {
|
764 |
+
"content": "<|reserved_special_token_87|>",
|
765 |
+
"lstrip": false,
|
766 |
+
"normalized": false,
|
767 |
+
"rstrip": false,
|
768 |
+
"single_word": false,
|
769 |
+
"special": true
|
770 |
+
},
|
771 |
+
"128096": {
|
772 |
+
"content": "<|reserved_special_token_88|>",
|
773 |
+
"lstrip": false,
|
774 |
+
"normalized": false,
|
775 |
+
"rstrip": false,
|
776 |
+
"single_word": false,
|
777 |
+
"special": true
|
778 |
+
},
|
779 |
+
"128097": {
|
780 |
+
"content": "<|reserved_special_token_89|>",
|
781 |
+
"lstrip": false,
|
782 |
+
"normalized": false,
|
783 |
+
"rstrip": false,
|
784 |
+
"single_word": false,
|
785 |
+
"special": true
|
786 |
+
},
|
787 |
+
"128098": {
|
788 |
+
"content": "<|reserved_special_token_90|>",
|
789 |
+
"lstrip": false,
|
790 |
+
"normalized": false,
|
791 |
+
"rstrip": false,
|
792 |
+
"single_word": false,
|
793 |
+
"special": true
|
794 |
+
},
|
795 |
+
"128099": {
|
796 |
+
"content": "<|reserved_special_token_91|>",
|
797 |
+
"lstrip": false,
|
798 |
+
"normalized": false,
|
799 |
+
"rstrip": false,
|
800 |
+
"single_word": false,
|
801 |
+
"special": true
|
802 |
+
},
|
803 |
+
"128100": {
|
804 |
+
"content": "<|reserved_special_token_92|>",
|
805 |
+
"lstrip": false,
|
806 |
+
"normalized": false,
|
807 |
+
"rstrip": false,
|
808 |
+
"single_word": false,
|
809 |
+
"special": true
|
810 |
+
},
|
811 |
+
"128101": {
|
812 |
+
"content": "<|reserved_special_token_93|>",
|
813 |
+
"lstrip": false,
|
814 |
+
"normalized": false,
|
815 |
+
"rstrip": false,
|
816 |
+
"single_word": false,
|
817 |
+
"special": true
|
818 |
+
},
|
819 |
+
"128102": {
|
820 |
+
"content": "<|reserved_special_token_94|>",
|
821 |
+
"lstrip": false,
|
822 |
+
"normalized": false,
|
823 |
+
"rstrip": false,
|
824 |
+
"single_word": false,
|
825 |
+
"special": true
|
826 |
+
},
|
827 |
+
"128103": {
|
828 |
+
"content": "<|reserved_special_token_95|>",
|
829 |
+
"lstrip": false,
|
830 |
+
"normalized": false,
|
831 |
+
"rstrip": false,
|
832 |
+
"single_word": false,
|
833 |
+
"special": true
|
834 |
+
},
|
835 |
+
"128104": {
|
836 |
+
"content": "<|reserved_special_token_96|>",
|
837 |
+
"lstrip": false,
|
838 |
+
"normalized": false,
|
839 |
+
"rstrip": false,
|
840 |
+
"single_word": false,
|
841 |
+
"special": true
|
842 |
+
},
|
843 |
+
"128105": {
|
844 |
+
"content": "<|reserved_special_token_97|>",
|
845 |
+
"lstrip": false,
|
846 |
+
"normalized": false,
|
847 |
+
"rstrip": false,
|
848 |
+
"single_word": false,
|
849 |
+
"special": true
|
850 |
+
},
|
851 |
+
"128106": {
|
852 |
+
"content": "<|reserved_special_token_98|>",
|
853 |
+
"lstrip": false,
|
854 |
+
"normalized": false,
|
855 |
+
"rstrip": false,
|
856 |
+
"single_word": false,
|
857 |
+
"special": true
|
858 |
+
},
|
859 |
+
"128107": {
|
860 |
+
"content": "<|reserved_special_token_99|>",
|
861 |
+
"lstrip": false,
|
862 |
+
"normalized": false,
|
863 |
+
"rstrip": false,
|
864 |
+
"single_word": false,
|
865 |
+
"special": true
|
866 |
+
},
|
867 |
+
"128108": {
|
868 |
+
"content": "<|reserved_special_token_100|>",
|
869 |
+
"lstrip": false,
|
870 |
+
"normalized": false,
|
871 |
+
"rstrip": false,
|
872 |
+
"single_word": false,
|
873 |
+
"special": true
|
874 |
+
},
|
875 |
+
"128109": {
|
876 |
+
"content": "<|reserved_special_token_101|>",
|
877 |
+
"lstrip": false,
|
878 |
+
"normalized": false,
|
879 |
+
"rstrip": false,
|
880 |
+
"single_word": false,
|
881 |
+
"special": true
|
882 |
+
},
|
883 |
+
"128110": {
|
884 |
+
"content": "<|reserved_special_token_102|>",
|
885 |
+
"lstrip": false,
|
886 |
+
"normalized": false,
|
887 |
+
"rstrip": false,
|
888 |
+
"single_word": false,
|
889 |
+
"special": true
|
890 |
+
},
|
891 |
+
"128111": {
|
892 |
+
"content": "<|reserved_special_token_103|>",
|
893 |
+
"lstrip": false,
|
894 |
+
"normalized": false,
|
895 |
+
"rstrip": false,
|
896 |
+
"single_word": false,
|
897 |
+
"special": true
|
898 |
+
},
|
899 |
+
"128112": {
|
900 |
+
"content": "<|reserved_special_token_104|>",
|
901 |
+
"lstrip": false,
|
902 |
+
"normalized": false,
|
903 |
+
"rstrip": false,
|
904 |
+
"single_word": false,
|
905 |
+
"special": true
|
906 |
+
},
|
907 |
+
"128113": {
|
908 |
+
"content": "<|reserved_special_token_105|>",
|
909 |
+
"lstrip": false,
|
910 |
+
"normalized": false,
|
911 |
+
"rstrip": false,
|
912 |
+
"single_word": false,
|
913 |
+
"special": true
|
914 |
+
},
|
915 |
+
"128114": {
|
916 |
+
"content": "<|reserved_special_token_106|>",
|
917 |
+
"lstrip": false,
|
918 |
+
"normalized": false,
|
919 |
+
"rstrip": false,
|
920 |
+
"single_word": false,
|
921 |
+
"special": true
|
922 |
+
},
|
923 |
+
"128115": {
|
924 |
+
"content": "<|reserved_special_token_107|>",
|
925 |
+
"lstrip": false,
|
926 |
+
"normalized": false,
|
927 |
+
"rstrip": false,
|
928 |
+
"single_word": false,
|
929 |
+
"special": true
|
930 |
+
},
|
931 |
+
"128116": {
|
932 |
+
"content": "<|reserved_special_token_108|>",
|
933 |
+
"lstrip": false,
|
934 |
+
"normalized": false,
|
935 |
+
"rstrip": false,
|
936 |
+
"single_word": false,
|
937 |
+
"special": true
|
938 |
+
},
|
939 |
+
"128117": {
|
940 |
+
"content": "<|reserved_special_token_109|>",
|
941 |
+
"lstrip": false,
|
942 |
+
"normalized": false,
|
943 |
+
"rstrip": false,
|
944 |
+
"single_word": false,
|
945 |
+
"special": true
|
946 |
+
},
|
947 |
+
"128118": {
|
948 |
+
"content": "<|reserved_special_token_110|>",
|
949 |
+
"lstrip": false,
|
950 |
+
"normalized": false,
|
951 |
+
"rstrip": false,
|
952 |
+
"single_word": false,
|
953 |
+
"special": true
|
954 |
+
},
|
955 |
+
"128119": {
|
956 |
+
"content": "<|reserved_special_token_111|>",
|
957 |
+
"lstrip": false,
|
958 |
+
"normalized": false,
|
959 |
+
"rstrip": false,
|
960 |
+
"single_word": false,
|
961 |
+
"special": true
|
962 |
+
},
|
963 |
+
"128120": {
|
964 |
+
"content": "<|reserved_special_token_112|>",
|
965 |
+
"lstrip": false,
|
966 |
+
"normalized": false,
|
967 |
+
"rstrip": false,
|
968 |
+
"single_word": false,
|
969 |
+
"special": true
|
970 |
+
},
|
971 |
+
"128121": {
|
972 |
+
"content": "<|reserved_special_token_113|>",
|
973 |
+
"lstrip": false,
|
974 |
+
"normalized": false,
|
975 |
+
"rstrip": false,
|
976 |
+
"single_word": false,
|
977 |
+
"special": true
|
978 |
+
},
|
979 |
+
"128122": {
|
980 |
+
"content": "<|reserved_special_token_114|>",
|
981 |
+
"lstrip": false,
|
982 |
+
"normalized": false,
|
983 |
+
"rstrip": false,
|
984 |
+
"single_word": false,
|
985 |
+
"special": true
|
986 |
+
},
|
987 |
+
"128123": {
|
988 |
+
"content": "<|reserved_special_token_115|>",
|
989 |
+
"lstrip": false,
|
990 |
+
"normalized": false,
|
991 |
+
"rstrip": false,
|
992 |
+
"single_word": false,
|
993 |
+
"special": true
|
994 |
+
},
|
995 |
+
"128124": {
|
996 |
+
"content": "<|reserved_special_token_116|>",
|
997 |
+
"lstrip": false,
|
998 |
+
"normalized": false,
|
999 |
+
"rstrip": false,
|
1000 |
+
"single_word": false,
|
1001 |
+
"special": true
|
1002 |
+
},
|
1003 |
+
"128125": {
|
1004 |
+
"content": "<|reserved_special_token_117|>",
|
1005 |
+
"lstrip": false,
|
1006 |
+
"normalized": false,
|
1007 |
+
"rstrip": false,
|
1008 |
+
"single_word": false,
|
1009 |
+
"special": true
|
1010 |
+
},
|
1011 |
+
"128126": {
|
1012 |
+
"content": "<|reserved_special_token_118|>",
|
1013 |
+
"lstrip": false,
|
1014 |
+
"normalized": false,
|
1015 |
+
"rstrip": false,
|
1016 |
+
"single_word": false,
|
1017 |
+
"special": true
|
1018 |
+
},
|
1019 |
+
"128127": {
|
1020 |
+
"content": "<|reserved_special_token_119|>",
|
1021 |
+
"lstrip": false,
|
1022 |
+
"normalized": false,
|
1023 |
+
"rstrip": false,
|
1024 |
+
"single_word": false,
|
1025 |
+
"special": true
|
1026 |
+
},
|
1027 |
+
"128128": {
|
1028 |
+
"content": "<|reserved_special_token_120|>",
|
1029 |
+
"lstrip": false,
|
1030 |
+
"normalized": false,
|
1031 |
+
"rstrip": false,
|
1032 |
+
"single_word": false,
|
1033 |
+
"special": true
|
1034 |
+
},
|
1035 |
+
"128129": {
|
1036 |
+
"content": "<|reserved_special_token_121|>",
|
1037 |
+
"lstrip": false,
|
1038 |
+
"normalized": false,
|
1039 |
+
"rstrip": false,
|
1040 |
+
"single_word": false,
|
1041 |
+
"special": true
|
1042 |
+
},
|
1043 |
+
"128130": {
|
1044 |
+
"content": "<|reserved_special_token_122|>",
|
1045 |
+
"lstrip": false,
|
1046 |
+
"normalized": false,
|
1047 |
+
"rstrip": false,
|
1048 |
+
"single_word": false,
|
1049 |
+
"special": true
|
1050 |
+
},
|
1051 |
+
"128131": {
|
1052 |
+
"content": "<|reserved_special_token_123|>",
|
1053 |
+
"lstrip": false,
|
1054 |
+
"normalized": false,
|
1055 |
+
"rstrip": false,
|
1056 |
+
"single_word": false,
|
1057 |
+
"special": true
|
1058 |
+
},
|
1059 |
+
"128132": {
|
1060 |
+
"content": "<|reserved_special_token_124|>",
|
1061 |
+
"lstrip": false,
|
1062 |
+
"normalized": false,
|
1063 |
+
"rstrip": false,
|
1064 |
+
"single_word": false,
|
1065 |
+
"special": true
|
1066 |
+
},
|
1067 |
+
"128133": {
|
1068 |
+
"content": "<|reserved_special_token_125|>",
|
1069 |
+
"lstrip": false,
|
1070 |
+
"normalized": false,
|
1071 |
+
"rstrip": false,
|
1072 |
+
"single_word": false,
|
1073 |
+
"special": true
|
1074 |
+
},
|
1075 |
+
"128134": {
|
1076 |
+
"content": "<|reserved_special_token_126|>",
|
1077 |
+
"lstrip": false,
|
1078 |
+
"normalized": false,
|
1079 |
+
"rstrip": false,
|
1080 |
+
"single_word": false,
|
1081 |
+
"special": true
|
1082 |
+
},
|
1083 |
+
"128135": {
|
1084 |
+
"content": "<|reserved_special_token_127|>",
|
1085 |
+
"lstrip": false,
|
1086 |
+
"normalized": false,
|
1087 |
+
"rstrip": false,
|
1088 |
+
"single_word": false,
|
1089 |
+
"special": true
|
1090 |
+
},
|
1091 |
+
"128136": {
|
1092 |
+
"content": "<|reserved_special_token_128|>",
|
1093 |
+
"lstrip": false,
|
1094 |
+
"normalized": false,
|
1095 |
+
"rstrip": false,
|
1096 |
+
"single_word": false,
|
1097 |
+
"special": true
|
1098 |
+
},
|
1099 |
+
"128137": {
|
1100 |
+
"content": "<|reserved_special_token_129|>",
|
1101 |
+
"lstrip": false,
|
1102 |
+
"normalized": false,
|
1103 |
+
"rstrip": false,
|
1104 |
+
"single_word": false,
|
1105 |
+
"special": true
|
1106 |
+
},
|
1107 |
+
"128138": {
|
1108 |
+
"content": "<|reserved_special_token_130|>",
|
1109 |
+
"lstrip": false,
|
1110 |
+
"normalized": false,
|
1111 |
+
"rstrip": false,
|
1112 |
+
"single_word": false,
|
1113 |
+
"special": true
|
1114 |
+
},
|
1115 |
+
"128139": {
|
1116 |
+
"content": "<|reserved_special_token_131|>",
|
1117 |
+
"lstrip": false,
|
1118 |
+
"normalized": false,
|
1119 |
+
"rstrip": false,
|
1120 |
+
"single_word": false,
|
1121 |
+
"special": true
|
1122 |
+
},
|
1123 |
+
"128140": {
|
1124 |
+
"content": "<|reserved_special_token_132|>",
|
1125 |
+
"lstrip": false,
|
1126 |
+
"normalized": false,
|
1127 |
+
"rstrip": false,
|
1128 |
+
"single_word": false,
|
1129 |
+
"special": true
|
1130 |
+
},
|
1131 |
+
"128141": {
|
1132 |
+
"content": "<|reserved_special_token_133|>",
|
1133 |
+
"lstrip": false,
|
1134 |
+
"normalized": false,
|
1135 |
+
"rstrip": false,
|
1136 |
+
"single_word": false,
|
1137 |
+
"special": true
|
1138 |
+
},
|
1139 |
+
"128142": {
|
1140 |
+
"content": "<|reserved_special_token_134|>",
|
1141 |
+
"lstrip": false,
|
1142 |
+
"normalized": false,
|
1143 |
+
"rstrip": false,
|
1144 |
+
"single_word": false,
|
1145 |
+
"special": true
|
1146 |
+
},
|
1147 |
+
"128143": {
|
1148 |
+
"content": "<|reserved_special_token_135|>",
|
1149 |
+
"lstrip": false,
|
1150 |
+
"normalized": false,
|
1151 |
+
"rstrip": false,
|
1152 |
+
"single_word": false,
|
1153 |
+
"special": true
|
1154 |
+
},
|
1155 |
+
"128144": {
|
1156 |
+
"content": "<|reserved_special_token_136|>",
|
1157 |
+
"lstrip": false,
|
1158 |
+
"normalized": false,
|
1159 |
+
"rstrip": false,
|
1160 |
+
"single_word": false,
|
1161 |
+
"special": true
|
1162 |
+
},
|
1163 |
+
"128145": {
|
1164 |
+
"content": "<|reserved_special_token_137|>",
|
1165 |
+
"lstrip": false,
|
1166 |
+
"normalized": false,
|
1167 |
+
"rstrip": false,
|
1168 |
+
"single_word": false,
|
1169 |
+
"special": true
|
1170 |
+
},
|
1171 |
+
"128146": {
|
1172 |
+
"content": "<|reserved_special_token_138|>",
|
1173 |
+
"lstrip": false,
|
1174 |
+
"normalized": false,
|
1175 |
+
"rstrip": false,
|
1176 |
+
"single_word": false,
|
1177 |
+
"special": true
|
1178 |
+
},
|
1179 |
+
"128147": {
|
1180 |
+
"content": "<|reserved_special_token_139|>",
|
1181 |
+
"lstrip": false,
|
1182 |
+
"normalized": false,
|
1183 |
+
"rstrip": false,
|
1184 |
+
"single_word": false,
|
1185 |
+
"special": true
|
1186 |
+
},
|
1187 |
+
"128148": {
|
1188 |
+
"content": "<|reserved_special_token_140|>",
|
1189 |
+
"lstrip": false,
|
1190 |
+
"normalized": false,
|
1191 |
+
"rstrip": false,
|
1192 |
+
"single_word": false,
|
1193 |
+
"special": true
|
1194 |
+
},
|
1195 |
+
"128149": {
|
1196 |
+
"content": "<|reserved_special_token_141|>",
|
1197 |
+
"lstrip": false,
|
1198 |
+
"normalized": false,
|
1199 |
+
"rstrip": false,
|
1200 |
+
"single_word": false,
|
1201 |
+
"special": true
|
1202 |
+
},
|
1203 |
+
"128150": {
|
1204 |
+
"content": "<|reserved_special_token_142|>",
|
1205 |
+
"lstrip": false,
|
1206 |
+
"normalized": false,
|
1207 |
+
"rstrip": false,
|
1208 |
+
"single_word": false,
|
1209 |
+
"special": true
|
1210 |
+
},
|
1211 |
+
"128151": {
|
1212 |
+
"content": "<|reserved_special_token_143|>",
|
1213 |
+
"lstrip": false,
|
1214 |
+
"normalized": false,
|
1215 |
+
"rstrip": false,
|
1216 |
+
"single_word": false,
|
1217 |
+
"special": true
|
1218 |
+
},
|
1219 |
+
"128152": {
|
1220 |
+
"content": "<|reserved_special_token_144|>",
|
1221 |
+
"lstrip": false,
|
1222 |
+
"normalized": false,
|
1223 |
+
"rstrip": false,
|
1224 |
+
"single_word": false,
|
1225 |
+
"special": true
|
1226 |
+
},
|
1227 |
+
"128153": {
|
1228 |
+
"content": "<|reserved_special_token_145|>",
|
1229 |
+
"lstrip": false,
|
1230 |
+
"normalized": false,
|
1231 |
+
"rstrip": false,
|
1232 |
+
"single_word": false,
|
1233 |
+
"special": true
|
1234 |
+
},
|
1235 |
+
"128154": {
|
1236 |
+
"content": "<|reserved_special_token_146|>",
|
1237 |
+
"lstrip": false,
|
1238 |
+
"normalized": false,
|
1239 |
+
"rstrip": false,
|
1240 |
+
"single_word": false,
|
1241 |
+
"special": true
|
1242 |
+
},
|
1243 |
+
"128155": {
|
1244 |
+
"content": "<|reserved_special_token_147|>",
|
1245 |
+
"lstrip": false,
|
1246 |
+
"normalized": false,
|
1247 |
+
"rstrip": false,
|
1248 |
+
"single_word": false,
|
1249 |
+
"special": true
|
1250 |
+
},
|
1251 |
+
"128156": {
|
1252 |
+
"content": "<|reserved_special_token_148|>",
|
1253 |
+
"lstrip": false,
|
1254 |
+
"normalized": false,
|
1255 |
+
"rstrip": false,
|
1256 |
+
"single_word": false,
|
1257 |
+
"special": true
|
1258 |
+
},
|
1259 |
+
"128157": {
|
1260 |
+
"content": "<|reserved_special_token_149|>",
|
1261 |
+
"lstrip": false,
|
1262 |
+
"normalized": false,
|
1263 |
+
"rstrip": false,
|
1264 |
+
"single_word": false,
|
1265 |
+
"special": true
|
1266 |
+
},
|
1267 |
+
"128158": {
|
1268 |
+
"content": "<|reserved_special_token_150|>",
|
1269 |
+
"lstrip": false,
|
1270 |
+
"normalized": false,
|
1271 |
+
"rstrip": false,
|
1272 |
+
"single_word": false,
|
1273 |
+
"special": true
|
1274 |
+
},
|
1275 |
+
"128159": {
|
1276 |
+
"content": "<|reserved_special_token_151|>",
|
1277 |
+
"lstrip": false,
|
1278 |
+
"normalized": false,
|
1279 |
+
"rstrip": false,
|
1280 |
+
"single_word": false,
|
1281 |
+
"special": true
|
1282 |
+
},
|
1283 |
+
"128160": {
|
1284 |
+
"content": "<|reserved_special_token_152|>",
|
1285 |
+
"lstrip": false,
|
1286 |
+
"normalized": false,
|
1287 |
+
"rstrip": false,
|
1288 |
+
"single_word": false,
|
1289 |
+
"special": true
|
1290 |
+
},
|
1291 |
+
"128161": {
|
1292 |
+
"content": "<|reserved_special_token_153|>",
|
1293 |
+
"lstrip": false,
|
1294 |
+
"normalized": false,
|
1295 |
+
"rstrip": false,
|
1296 |
+
"single_word": false,
|
1297 |
+
"special": true
|
1298 |
+
},
|
1299 |
+
"128162": {
|
1300 |
+
"content": "<|reserved_special_token_154|>",
|
1301 |
+
"lstrip": false,
|
1302 |
+
"normalized": false,
|
1303 |
+
"rstrip": false,
|
1304 |
+
"single_word": false,
|
1305 |
+
"special": true
|
1306 |
+
},
|
1307 |
+
"128163": {
|
1308 |
+
"content": "<|reserved_special_token_155|>",
|
1309 |
+
"lstrip": false,
|
1310 |
+
"normalized": false,
|
1311 |
+
"rstrip": false,
|
1312 |
+
"single_word": false,
|
1313 |
+
"special": true
|
1314 |
+
},
|
1315 |
+
"128164": {
|
1316 |
+
"content": "<|reserved_special_token_156|>",
|
1317 |
+
"lstrip": false,
|
1318 |
+
"normalized": false,
|
1319 |
+
"rstrip": false,
|
1320 |
+
"single_word": false,
|
1321 |
+
"special": true
|
1322 |
+
},
|
1323 |
+
"128165": {
|
1324 |
+
"content": "<|reserved_special_token_157|>",
|
1325 |
+
"lstrip": false,
|
1326 |
+
"normalized": false,
|
1327 |
+
"rstrip": false,
|
1328 |
+
"single_word": false,
|
1329 |
+
"special": true
|
1330 |
+
},
|
1331 |
+
"128166": {
|
1332 |
+
"content": "<|reserved_special_token_158|>",
|
1333 |
+
"lstrip": false,
|
1334 |
+
"normalized": false,
|
1335 |
+
"rstrip": false,
|
1336 |
+
"single_word": false,
|
1337 |
+
"special": true
|
1338 |
+
},
|
1339 |
+
"128167": {
|
1340 |
+
"content": "<|reserved_special_token_159|>",
|
1341 |
+
"lstrip": false,
|
1342 |
+
"normalized": false,
|
1343 |
+
"rstrip": false,
|
1344 |
+
"single_word": false,
|
1345 |
+
"special": true
|
1346 |
+
},
|
1347 |
+
"128168": {
|
1348 |
+
"content": "<|reserved_special_token_160|>",
|
1349 |
+
"lstrip": false,
|
1350 |
+
"normalized": false,
|
1351 |
+
"rstrip": false,
|
1352 |
+
"single_word": false,
|
1353 |
+
"special": true
|
1354 |
+
},
|
1355 |
+
"128169": {
|
1356 |
+
"content": "<|reserved_special_token_161|>",
|
1357 |
+
"lstrip": false,
|
1358 |
+
"normalized": false,
|
1359 |
+
"rstrip": false,
|
1360 |
+
"single_word": false,
|
1361 |
+
"special": true
|
1362 |
+
},
|
1363 |
+
"128170": {
|
1364 |
+
"content": "<|reserved_special_token_162|>",
|
1365 |
+
"lstrip": false,
|
1366 |
+
"normalized": false,
|
1367 |
+
"rstrip": false,
|
1368 |
+
"single_word": false,
|
1369 |
+
"special": true
|
1370 |
+
},
|
1371 |
+
"128171": {
|
1372 |
+
"content": "<|reserved_special_token_163|>",
|
1373 |
+
"lstrip": false,
|
1374 |
+
"normalized": false,
|
1375 |
+
"rstrip": false,
|
1376 |
+
"single_word": false,
|
1377 |
+
"special": true
|
1378 |
+
},
|
1379 |
+
"128172": {
|
1380 |
+
"content": "<|reserved_special_token_164|>",
|
1381 |
+
"lstrip": false,
|
1382 |
+
"normalized": false,
|
1383 |
+
"rstrip": false,
|
1384 |
+
"single_word": false,
|
1385 |
+
"special": true
|
1386 |
+
},
|
1387 |
+
"128173": {
|
1388 |
+
"content": "<|reserved_special_token_165|>",
|
1389 |
+
"lstrip": false,
|
1390 |
+
"normalized": false,
|
1391 |
+
"rstrip": false,
|
1392 |
+
"single_word": false,
|
1393 |
+
"special": true
|
1394 |
+
},
|
1395 |
+
"128174": {
|
1396 |
+
"content": "<|reserved_special_token_166|>",
|
1397 |
+
"lstrip": false,
|
1398 |
+
"normalized": false,
|
1399 |
+
"rstrip": false,
|
1400 |
+
"single_word": false,
|
1401 |
+
"special": true
|
1402 |
+
},
|
1403 |
+
"128175": {
|
1404 |
+
"content": "<|reserved_special_token_167|>",
|
1405 |
+
"lstrip": false,
|
1406 |
+
"normalized": false,
|
1407 |
+
"rstrip": false,
|
1408 |
+
"single_word": false,
|
1409 |
+
"special": true
|
1410 |
+
},
|
1411 |
+
"128176": {
|
1412 |
+
"content": "<|reserved_special_token_168|>",
|
1413 |
+
"lstrip": false,
|
1414 |
+
"normalized": false,
|
1415 |
+
"rstrip": false,
|
1416 |
+
"single_word": false,
|
1417 |
+
"special": true
|
1418 |
+
},
|
1419 |
+
"128177": {
|
1420 |
+
"content": "<|reserved_special_token_169|>",
|
1421 |
+
"lstrip": false,
|
1422 |
+
"normalized": false,
|
1423 |
+
"rstrip": false,
|
1424 |
+
"single_word": false,
|
1425 |
+
"special": true
|
1426 |
+
},
|
1427 |
+
"128178": {
|
1428 |
+
"content": "<|reserved_special_token_170|>",
|
1429 |
+
"lstrip": false,
|
1430 |
+
"normalized": false,
|
1431 |
+
"rstrip": false,
|
1432 |
+
"single_word": false,
|
1433 |
+
"special": true
|
1434 |
+
},
|
1435 |
+
"128179": {
|
1436 |
+
"content": "<|reserved_special_token_171|>",
|
1437 |
+
"lstrip": false,
|
1438 |
+
"normalized": false,
|
1439 |
+
"rstrip": false,
|
1440 |
+
"single_word": false,
|
1441 |
+
"special": true
|
1442 |
+
},
|
1443 |
+
"128180": {
|
1444 |
+
"content": "<|reserved_special_token_172|>",
|
1445 |
+
"lstrip": false,
|
1446 |
+
"normalized": false,
|
1447 |
+
"rstrip": false,
|
1448 |
+
"single_word": false,
|
1449 |
+
"special": true
|
1450 |
+
},
|
1451 |
+
"128181": {
|
1452 |
+
"content": "<|reserved_special_token_173|>",
|
1453 |
+
"lstrip": false,
|
1454 |
+
"normalized": false,
|
1455 |
+
"rstrip": false,
|
1456 |
+
"single_word": false,
|
1457 |
+
"special": true
|
1458 |
+
},
|
1459 |
+
"128182": {
|
1460 |
+
"content": "<|reserved_special_token_174|>",
|
1461 |
+
"lstrip": false,
|
1462 |
+
"normalized": false,
|
1463 |
+
"rstrip": false,
|
1464 |
+
"single_word": false,
|
1465 |
+
"special": true
|
1466 |
+
},
|
1467 |
+
"128183": {
|
1468 |
+
"content": "<|reserved_special_token_175|>",
|
1469 |
+
"lstrip": false,
|
1470 |
+
"normalized": false,
|
1471 |
+
"rstrip": false,
|
1472 |
+
"single_word": false,
|
1473 |
+
"special": true
|
1474 |
+
},
|
1475 |
+
"128184": {
|
1476 |
+
"content": "<|reserved_special_token_176|>",
|
1477 |
+
"lstrip": false,
|
1478 |
+
"normalized": false,
|
1479 |
+
"rstrip": false,
|
1480 |
+
"single_word": false,
|
1481 |
+
"special": true
|
1482 |
+
},
|
1483 |
+
"128185": {
|
1484 |
+
"content": "<|reserved_special_token_177|>",
|
1485 |
+
"lstrip": false,
|
1486 |
+
"normalized": false,
|
1487 |
+
"rstrip": false,
|
1488 |
+
"single_word": false,
|
1489 |
+
"special": true
|
1490 |
+
},
|
1491 |
+
"128186": {
|
1492 |
+
"content": "<|reserved_special_token_178|>",
|
1493 |
+
"lstrip": false,
|
1494 |
+
"normalized": false,
|
1495 |
+
"rstrip": false,
|
1496 |
+
"single_word": false,
|
1497 |
+
"special": true
|
1498 |
+
},
|
1499 |
+
"128187": {
|
1500 |
+
"content": "<|reserved_special_token_179|>",
|
1501 |
+
"lstrip": false,
|
1502 |
+
"normalized": false,
|
1503 |
+
"rstrip": false,
|
1504 |
+
"single_word": false,
|
1505 |
+
"special": true
|
1506 |
+
},
|
1507 |
+
"128188": {
|
1508 |
+
"content": "<|reserved_special_token_180|>",
|
1509 |
+
"lstrip": false,
|
1510 |
+
"normalized": false,
|
1511 |
+
"rstrip": false,
|
1512 |
+
"single_word": false,
|
1513 |
+
"special": true
|
1514 |
+
},
|
1515 |
+
"128189": {
|
1516 |
+
"content": "<|reserved_special_token_181|>",
|
1517 |
+
"lstrip": false,
|
1518 |
+
"normalized": false,
|
1519 |
+
"rstrip": false,
|
1520 |
+
"single_word": false,
|
1521 |
+
"special": true
|
1522 |
+
},
|
1523 |
+
"128190": {
|
1524 |
+
"content": "<|reserved_special_token_182|>",
|
1525 |
+
"lstrip": false,
|
1526 |
+
"normalized": false,
|
1527 |
+
"rstrip": false,
|
1528 |
+
"single_word": false,
|
1529 |
+
"special": true
|
1530 |
+
},
|
1531 |
+
"128191": {
|
1532 |
+
"content": "<|reserved_special_token_183|>",
|
1533 |
+
"lstrip": false,
|
1534 |
+
"normalized": false,
|
1535 |
+
"rstrip": false,
|
1536 |
+
"single_word": false,
|
1537 |
+
"special": true
|
1538 |
+
},
|
1539 |
+
"128192": {
|
1540 |
+
"content": "<|reserved_special_token_184|>",
|
1541 |
+
"lstrip": false,
|
1542 |
+
"normalized": false,
|
1543 |
+
"rstrip": false,
|
1544 |
+
"single_word": false,
|
1545 |
+
"special": true
|
1546 |
+
},
|
1547 |
+
"128193": {
|
1548 |
+
"content": "<|reserved_special_token_185|>",
|
1549 |
+
"lstrip": false,
|
1550 |
+
"normalized": false,
|
1551 |
+
"rstrip": false,
|
1552 |
+
"single_word": false,
|
1553 |
+
"special": true
|
1554 |
+
},
|
1555 |
+
"128194": {
|
1556 |
+
"content": "<|reserved_special_token_186|>",
|
1557 |
+
"lstrip": false,
|
1558 |
+
"normalized": false,
|
1559 |
+
"rstrip": false,
|
1560 |
+
"single_word": false,
|
1561 |
+
"special": true
|
1562 |
+
},
|
1563 |
+
"128195": {
|
1564 |
+
"content": "<|reserved_special_token_187|>",
|
1565 |
+
"lstrip": false,
|
1566 |
+
"normalized": false,
|
1567 |
+
"rstrip": false,
|
1568 |
+
"single_word": false,
|
1569 |
+
"special": true
|
1570 |
+
},
|
1571 |
+
"128196": {
|
1572 |
+
"content": "<|reserved_special_token_188|>",
|
1573 |
+
"lstrip": false,
|
1574 |
+
"normalized": false,
|
1575 |
+
"rstrip": false,
|
1576 |
+
"single_word": false,
|
1577 |
+
"special": true
|
1578 |
+
},
|
1579 |
+
"128197": {
|
1580 |
+
"content": "<|reserved_special_token_189|>",
|
1581 |
+
"lstrip": false,
|
1582 |
+
"normalized": false,
|
1583 |
+
"rstrip": false,
|
1584 |
+
"single_word": false,
|
1585 |
+
"special": true
|
1586 |
+
},
|
1587 |
+
"128198": {
|
1588 |
+
"content": "<|reserved_special_token_190|>",
|
1589 |
+
"lstrip": false,
|
1590 |
+
"normalized": false,
|
1591 |
+
"rstrip": false,
|
1592 |
+
"single_word": false,
|
1593 |
+
"special": true
|
1594 |
+
},
|
1595 |
+
"128199": {
|
1596 |
+
"content": "<|reserved_special_token_191|>",
|
1597 |
+
"lstrip": false,
|
1598 |
+
"normalized": false,
|
1599 |
+
"rstrip": false,
|
1600 |
+
"single_word": false,
|
1601 |
+
"special": true
|
1602 |
+
},
|
1603 |
+
"128200": {
|
1604 |
+
"content": "<|reserved_special_token_192|>",
|
1605 |
+
"lstrip": false,
|
1606 |
+
"normalized": false,
|
1607 |
+
"rstrip": false,
|
1608 |
+
"single_word": false,
|
1609 |
+
"special": true
|
1610 |
+
},
|
1611 |
+
"128201": {
|
1612 |
+
"content": "<|reserved_special_token_193|>",
|
1613 |
+
"lstrip": false,
|
1614 |
+
"normalized": false,
|
1615 |
+
"rstrip": false,
|
1616 |
+
"single_word": false,
|
1617 |
+
"special": true
|
1618 |
+
},
|
1619 |
+
"128202": {
|
1620 |
+
"content": "<|reserved_special_token_194|>",
|
1621 |
+
"lstrip": false,
|
1622 |
+
"normalized": false,
|
1623 |
+
"rstrip": false,
|
1624 |
+
"single_word": false,
|
1625 |
+
"special": true
|
1626 |
+
},
|
1627 |
+
"128203": {
|
1628 |
+
"content": "<|reserved_special_token_195|>",
|
1629 |
+
"lstrip": false,
|
1630 |
+
"normalized": false,
|
1631 |
+
"rstrip": false,
|
1632 |
+
"single_word": false,
|
1633 |
+
"special": true
|
1634 |
+
},
|
1635 |
+
"128204": {
|
1636 |
+
"content": "<|reserved_special_token_196|>",
|
1637 |
+
"lstrip": false,
|
1638 |
+
"normalized": false,
|
1639 |
+
"rstrip": false,
|
1640 |
+
"single_word": false,
|
1641 |
+
"special": true
|
1642 |
+
},
|
1643 |
+
"128205": {
|
1644 |
+
"content": "<|reserved_special_token_197|>",
|
1645 |
+
"lstrip": false,
|
1646 |
+
"normalized": false,
|
1647 |
+
"rstrip": false,
|
1648 |
+
"single_word": false,
|
1649 |
+
"special": true
|
1650 |
+
},
|
1651 |
+
"128206": {
|
1652 |
+
"content": "<|reserved_special_token_198|>",
|
1653 |
+
"lstrip": false,
|
1654 |
+
"normalized": false,
|
1655 |
+
"rstrip": false,
|
1656 |
+
"single_word": false,
|
1657 |
+
"special": true
|
1658 |
+
},
|
1659 |
+
"128207": {
|
1660 |
+
"content": "<|reserved_special_token_199|>",
|
1661 |
+
"lstrip": false,
|
1662 |
+
"normalized": false,
|
1663 |
+
"rstrip": false,
|
1664 |
+
"single_word": false,
|
1665 |
+
"special": true
|
1666 |
+
},
|
1667 |
+
"128208": {
|
1668 |
+
"content": "<|reserved_special_token_200|>",
|
1669 |
+
"lstrip": false,
|
1670 |
+
"normalized": false,
|
1671 |
+
"rstrip": false,
|
1672 |
+
"single_word": false,
|
1673 |
+
"special": true
|
1674 |
+
},
|
1675 |
+
"128209": {
|
1676 |
+
"content": "<|reserved_special_token_201|>",
|
1677 |
+
"lstrip": false,
|
1678 |
+
"normalized": false,
|
1679 |
+
"rstrip": false,
|
1680 |
+
"single_word": false,
|
1681 |
+
"special": true
|
1682 |
+
},
|
1683 |
+
"128210": {
|
1684 |
+
"content": "<|reserved_special_token_202|>",
|
1685 |
+
"lstrip": false,
|
1686 |
+
"normalized": false,
|
1687 |
+
"rstrip": false,
|
1688 |
+
"single_word": false,
|
1689 |
+
"special": true
|
1690 |
+
},
|
1691 |
+
"128211": {
|
1692 |
+
"content": "<|reserved_special_token_203|>",
|
1693 |
+
"lstrip": false,
|
1694 |
+
"normalized": false,
|
1695 |
+
"rstrip": false,
|
1696 |
+
"single_word": false,
|
1697 |
+
"special": true
|
1698 |
+
},
|
1699 |
+
"128212": {
|
1700 |
+
"content": "<|reserved_special_token_204|>",
|
1701 |
+
"lstrip": false,
|
1702 |
+
"normalized": false,
|
1703 |
+
"rstrip": false,
|
1704 |
+
"single_word": false,
|
1705 |
+
"special": true
|
1706 |
+
},
|
1707 |
+
"128213": {
|
1708 |
+
"content": "<|reserved_special_token_205|>",
|
1709 |
+
"lstrip": false,
|
1710 |
+
"normalized": false,
|
1711 |
+
"rstrip": false,
|
1712 |
+
"single_word": false,
|
1713 |
+
"special": true
|
1714 |
+
},
|
1715 |
+
"128214": {
|
1716 |
+
"content": "<|reserved_special_token_206|>",
|
1717 |
+
"lstrip": false,
|
1718 |
+
"normalized": false,
|
1719 |
+
"rstrip": false,
|
1720 |
+
"single_word": false,
|
1721 |
+
"special": true
|
1722 |
+
},
|
1723 |
+
"128215": {
|
1724 |
+
"content": "<|reserved_special_token_207|>",
|
1725 |
+
"lstrip": false,
|
1726 |
+
"normalized": false,
|
1727 |
+
"rstrip": false,
|
1728 |
+
"single_word": false,
|
1729 |
+
"special": true
|
1730 |
+
},
|
1731 |
+
"128216": {
|
1732 |
+
"content": "<|reserved_special_token_208|>",
|
1733 |
+
"lstrip": false,
|
1734 |
+
"normalized": false,
|
1735 |
+
"rstrip": false,
|
1736 |
+
"single_word": false,
|
1737 |
+
"special": true
|
1738 |
+
},
|
1739 |
+
"128217": {
|
1740 |
+
"content": "<|reserved_special_token_209|>",
|
1741 |
+
"lstrip": false,
|
1742 |
+
"normalized": false,
|
1743 |
+
"rstrip": false,
|
1744 |
+
"single_word": false,
|
1745 |
+
"special": true
|
1746 |
+
},
|
1747 |
+
"128218": {
|
1748 |
+
"content": "<|reserved_special_token_210|>",
|
1749 |
+
"lstrip": false,
|
1750 |
+
"normalized": false,
|
1751 |
+
"rstrip": false,
|
1752 |
+
"single_word": false,
|
1753 |
+
"special": true
|
1754 |
+
},
|
1755 |
+
"128219": {
|
1756 |
+
"content": "<|reserved_special_token_211|>",
|
1757 |
+
"lstrip": false,
|
1758 |
+
"normalized": false,
|
1759 |
+
"rstrip": false,
|
1760 |
+
"single_word": false,
|
1761 |
+
"special": true
|
1762 |
+
},
|
1763 |
+
"128220": {
|
1764 |
+
"content": "<|reserved_special_token_212|>",
|
1765 |
+
"lstrip": false,
|
1766 |
+
"normalized": false,
|
1767 |
+
"rstrip": false,
|
1768 |
+
"single_word": false,
|
1769 |
+
"special": true
|
1770 |
+
},
|
1771 |
+
"128221": {
|
1772 |
+
"content": "<|reserved_special_token_213|>",
|
1773 |
+
"lstrip": false,
|
1774 |
+
"normalized": false,
|
1775 |
+
"rstrip": false,
|
1776 |
+
"single_word": false,
|
1777 |
+
"special": true
|
1778 |
+
},
|
1779 |
+
"128222": {
|
1780 |
+
"content": "<|reserved_special_token_214|>",
|
1781 |
+
"lstrip": false,
|
1782 |
+
"normalized": false,
|
1783 |
+
"rstrip": false,
|
1784 |
+
"single_word": false,
|
1785 |
+
"special": true
|
1786 |
+
},
|
1787 |
+
"128223": {
|
1788 |
+
"content": "<|reserved_special_token_215|>",
|
1789 |
+
"lstrip": false,
|
1790 |
+
"normalized": false,
|
1791 |
+
"rstrip": false,
|
1792 |
+
"single_word": false,
|
1793 |
+
"special": true
|
1794 |
+
},
|
1795 |
+
"128224": {
|
1796 |
+
"content": "<|reserved_special_token_216|>",
|
1797 |
+
"lstrip": false,
|
1798 |
+
"normalized": false,
|
1799 |
+
"rstrip": false,
|
1800 |
+
"single_word": false,
|
1801 |
+
"special": true
|
1802 |
+
},
|
1803 |
+
"128225": {
|
1804 |
+
"content": "<|reserved_special_token_217|>",
|
1805 |
+
"lstrip": false,
|
1806 |
+
"normalized": false,
|
1807 |
+
"rstrip": false,
|
1808 |
+
"single_word": false,
|
1809 |
+
"special": true
|
1810 |
+
},
|
1811 |
+
"128226": {
|
1812 |
+
"content": "<|reserved_special_token_218|>",
|
1813 |
+
"lstrip": false,
|
1814 |
+
"normalized": false,
|
1815 |
+
"rstrip": false,
|
1816 |
+
"single_word": false,
|
1817 |
+
"special": true
|
1818 |
+
},
|
1819 |
+
"128227": {
|
1820 |
+
"content": "<|reserved_special_token_219|>",
|
1821 |
+
"lstrip": false,
|
1822 |
+
"normalized": false,
|
1823 |
+
"rstrip": false,
|
1824 |
+
"single_word": false,
|
1825 |
+
"special": true
|
1826 |
+
},
|
1827 |
+
"128228": {
|
1828 |
+
"content": "<|reserved_special_token_220|>",
|
1829 |
+
"lstrip": false,
|
1830 |
+
"normalized": false,
|
1831 |
+
"rstrip": false,
|
1832 |
+
"single_word": false,
|
1833 |
+
"special": true
|
1834 |
+
},
|
1835 |
+
"128229": {
|
1836 |
+
"content": "<|reserved_special_token_221|>",
|
1837 |
+
"lstrip": false,
|
1838 |
+
"normalized": false,
|
1839 |
+
"rstrip": false,
|
1840 |
+
"single_word": false,
|
1841 |
+
"special": true
|
1842 |
+
},
|
1843 |
+
"128230": {
|
1844 |
+
"content": "<|reserved_special_token_222|>",
|
1845 |
+
"lstrip": false,
|
1846 |
+
"normalized": false,
|
1847 |
+
"rstrip": false,
|
1848 |
+
"single_word": false,
|
1849 |
+
"special": true
|
1850 |
+
},
|
1851 |
+
"128231": {
|
1852 |
+
"content": "<|reserved_special_token_223|>",
|
1853 |
+
"lstrip": false,
|
1854 |
+
"normalized": false,
|
1855 |
+
"rstrip": false,
|
1856 |
+
"single_word": false,
|
1857 |
+
"special": true
|
1858 |
+
},
|
1859 |
+
"128232": {
|
1860 |
+
"content": "<|reserved_special_token_224|>",
|
1861 |
+
"lstrip": false,
|
1862 |
+
"normalized": false,
|
1863 |
+
"rstrip": false,
|
1864 |
+
"single_word": false,
|
1865 |
+
"special": true
|
1866 |
+
},
|
1867 |
+
"128233": {
|
1868 |
+
"content": "<|reserved_special_token_225|>",
|
1869 |
+
"lstrip": false,
|
1870 |
+
"normalized": false,
|
1871 |
+
"rstrip": false,
|
1872 |
+
"single_word": false,
|
1873 |
+
"special": true
|
1874 |
+
},
|
1875 |
+
"128234": {
|
1876 |
+
"content": "<|reserved_special_token_226|>",
|
1877 |
+
"lstrip": false,
|
1878 |
+
"normalized": false,
|
1879 |
+
"rstrip": false,
|
1880 |
+
"single_word": false,
|
1881 |
+
"special": true
|
1882 |
+
},
|
1883 |
+
"128235": {
|
1884 |
+
"content": "<|reserved_special_token_227|>",
|
1885 |
+
"lstrip": false,
|
1886 |
+
"normalized": false,
|
1887 |
+
"rstrip": false,
|
1888 |
+
"single_word": false,
|
1889 |
+
"special": true
|
1890 |
+
},
|
1891 |
+
"128236": {
|
1892 |
+
"content": "<|reserved_special_token_228|>",
|
1893 |
+
"lstrip": false,
|
1894 |
+
"normalized": false,
|
1895 |
+
"rstrip": false,
|
1896 |
+
"single_word": false,
|
1897 |
+
"special": true
|
1898 |
+
},
|
1899 |
+
"128237": {
|
1900 |
+
"content": "<|reserved_special_token_229|>",
|
1901 |
+
"lstrip": false,
|
1902 |
+
"normalized": false,
|
1903 |
+
"rstrip": false,
|
1904 |
+
"single_word": false,
|
1905 |
+
"special": true
|
1906 |
+
},
|
1907 |
+
"128238": {
|
1908 |
+
"content": "<|reserved_special_token_230|>",
|
1909 |
+
"lstrip": false,
|
1910 |
+
"normalized": false,
|
1911 |
+
"rstrip": false,
|
1912 |
+
"single_word": false,
|
1913 |
+
"special": true
|
1914 |
+
},
|
1915 |
+
"128239": {
|
1916 |
+
"content": "<|reserved_special_token_231|>",
|
1917 |
+
"lstrip": false,
|
1918 |
+
"normalized": false,
|
1919 |
+
"rstrip": false,
|
1920 |
+
"single_word": false,
|
1921 |
+
"special": true
|
1922 |
+
},
|
1923 |
+
"128240": {
|
1924 |
+
"content": "<|reserved_special_token_232|>",
|
1925 |
+
"lstrip": false,
|
1926 |
+
"normalized": false,
|
1927 |
+
"rstrip": false,
|
1928 |
+
"single_word": false,
|
1929 |
+
"special": true
|
1930 |
+
},
|
1931 |
+
"128241": {
|
1932 |
+
"content": "<|reserved_special_token_233|>",
|
1933 |
+
"lstrip": false,
|
1934 |
+
"normalized": false,
|
1935 |
+
"rstrip": false,
|
1936 |
+
"single_word": false,
|
1937 |
+
"special": true
|
1938 |
+
},
|
1939 |
+
"128242": {
|
1940 |
+
"content": "<|reserved_special_token_234|>",
|
1941 |
+
"lstrip": false,
|
1942 |
+
"normalized": false,
|
1943 |
+
"rstrip": false,
|
1944 |
+
"single_word": false,
|
1945 |
+
"special": true
|
1946 |
+
},
|
1947 |
+
"128243": {
|
1948 |
+
"content": "<|reserved_special_token_235|>",
|
1949 |
+
"lstrip": false,
|
1950 |
+
"normalized": false,
|
1951 |
+
"rstrip": false,
|
1952 |
+
"single_word": false,
|
1953 |
+
"special": true
|
1954 |
+
},
|
1955 |
+
"128244": {
|
1956 |
+
"content": "<|reserved_special_token_236|>",
|
1957 |
+
"lstrip": false,
|
1958 |
+
"normalized": false,
|
1959 |
+
"rstrip": false,
|
1960 |
+
"single_word": false,
|
1961 |
+
"special": true
|
1962 |
+
},
|
1963 |
+
"128245": {
|
1964 |
+
"content": "<|reserved_special_token_237|>",
|
1965 |
+
"lstrip": false,
|
1966 |
+
"normalized": false,
|
1967 |
+
"rstrip": false,
|
1968 |
+
"single_word": false,
|
1969 |
+
"special": true
|
1970 |
+
},
|
1971 |
+
"128246": {
|
1972 |
+
"content": "<|reserved_special_token_238|>",
|
1973 |
+
"lstrip": false,
|
1974 |
+
"normalized": false,
|
1975 |
+
"rstrip": false,
|
1976 |
+
"single_word": false,
|
1977 |
+
"special": true
|
1978 |
+
},
|
1979 |
+
"128247": {
|
1980 |
+
"content": "<|reserved_special_token_239|>",
|
1981 |
+
"lstrip": false,
|
1982 |
+
"normalized": false,
|
1983 |
+
"rstrip": false,
|
1984 |
+
"single_word": false,
|
1985 |
+
"special": true
|
1986 |
+
},
|
1987 |
+
"128248": {
|
1988 |
+
"content": "<|reserved_special_token_240|>",
|
1989 |
+
"lstrip": false,
|
1990 |
+
"normalized": false,
|
1991 |
+
"rstrip": false,
|
1992 |
+
"single_word": false,
|
1993 |
+
"special": true
|
1994 |
+
},
|
1995 |
+
"128249": {
|
1996 |
+
"content": "<|reserved_special_token_241|>",
|
1997 |
+
"lstrip": false,
|
1998 |
+
"normalized": false,
|
1999 |
+
"rstrip": false,
|
2000 |
+
"single_word": false,
|
2001 |
+
"special": true
|
2002 |
+
},
|
2003 |
+
"128250": {
|
2004 |
+
"content": "<|reserved_special_token_242|>",
|
2005 |
+
"lstrip": false,
|
2006 |
+
"normalized": false,
|
2007 |
+
"rstrip": false,
|
2008 |
+
"single_word": false,
|
2009 |
+
"special": true
|
2010 |
+
},
|
2011 |
+
"128251": {
|
2012 |
+
"content": "<|reserved_special_token_243|>",
|
2013 |
+
"lstrip": false,
|
2014 |
+
"normalized": false,
|
2015 |
+
"rstrip": false,
|
2016 |
+
"single_word": false,
|
2017 |
+
"special": true
|
2018 |
+
},
|
2019 |
+
"128252": {
|
2020 |
+
"content": "<|reserved_special_token_244|>",
|
2021 |
+
"lstrip": false,
|
2022 |
+
"normalized": false,
|
2023 |
+
"rstrip": false,
|
2024 |
+
"single_word": false,
|
2025 |
+
"special": true
|
2026 |
+
},
|
2027 |
+
"128253": {
|
2028 |
+
"content": "<|reserved_special_token_245|>",
|
2029 |
+
"lstrip": false,
|
2030 |
+
"normalized": false,
|
2031 |
+
"rstrip": false,
|
2032 |
+
"single_word": false,
|
2033 |
+
"special": true
|
2034 |
+
},
|
2035 |
+
"128254": {
|
2036 |
+
"content": "<|reserved_special_token_246|>",
|
2037 |
+
"lstrip": false,
|
2038 |
+
"normalized": false,
|
2039 |
+
"rstrip": false,
|
2040 |
+
"single_word": false,
|
2041 |
+
"special": true
|
2042 |
+
},
|
2043 |
+
"128255": {
|
2044 |
+
"content": "<|reserved_special_token_247|>",
|
2045 |
+
"lstrip": false,
|
2046 |
+
"normalized": false,
|
2047 |
+
"rstrip": false,
|
2048 |
+
"single_word": false,
|
2049 |
+
"special": true
|
2050 |
+
},
|
2051 |
+
"128256": {
|
2052 |
+
"content": "[PAD]",
|
2053 |
+
"lstrip": false,
|
2054 |
+
"normalized": false,
|
2055 |
+
"rstrip": false,
|
2056 |
+
"single_word": false,
|
2057 |
+
"special": true
|
2058 |
+
},
|
2059 |
+
"128257": {
|
2060 |
+
"content": "🅁",
|
2061 |
+
"lstrip": true,
|
2062 |
+
"normalized": true,
|
2063 |
+
"rstrip": false,
|
2064 |
+
"single_word": false,
|
2065 |
+
"special": false
|
2066 |
+
}
|
2067 |
+
},
|
2068 |
+
"bos_token": "<|begin_of_text|>",
|
2069 |
+
"clean_up_tokenization_spaces": true,
|
2070 |
+
"eos_token": "<|end_of_text|>",
|
2071 |
+
"model_input_names": [
|
2072 |
+
"input_ids",
|
2073 |
+
"attention_mask"
|
2074 |
+
],
|
2075 |
+
"model_max_length": 131072,
|
2076 |
+
"pad_token": "[PAD]",
|
2077 |
+
"tokenizer_class": "PreTrainedTokenizerFast"
|
2078 |
+
}
|
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1200/config.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "meta-llama/Llama-3.2-3B",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 128000,
|
9 |
+
"eos_token_id": 128001,
|
10 |
+
"head_dim": 128,
|
11 |
+
"hidden_act": "silu",
|
12 |
+
"hidden_size": 3072,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 8192,
|
15 |
+
"max_position_embeddings": 131072,
|
16 |
+
"mlp_bias": false,
|
17 |
+
"model_type": "llama",
|
18 |
+
"num_attention_heads": 24,
|
19 |
+
"num_hidden_layers": 28,
|
20 |
+
"num_key_value_heads": 8,
|
21 |
+
"pretraining_tp": 1,
|
22 |
+
"rms_norm_eps": 1e-05,
|
23 |
+
"rope_scaling": {
|
24 |
+
"factor": 32.0,
|
25 |
+
"high_freq_factor": 4.0,
|
26 |
+
"low_freq_factor": 1.0,
|
27 |
+
"original_max_position_embeddings": 8192,
|
28 |
+
"rope_type": "llama3"
|
29 |
+
},
|
30 |
+
"rope_theta": 500000.0,
|
31 |
+
"tie_word_embeddings": true,
|
32 |
+
"torch_dtype": "float16",
|
33 |
+
"transformers_version": "4.45.1",
|
34 |
+
"use_cache": true,
|
35 |
+
"vocab_size": 128256
|
36 |
+
}
|
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1200/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:70c0a65a1f48609b709cff4968a5ca16f280b65798ab3e96b60a43db042976c5
|
3 |
+
size 20599
|
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1200/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:01a7577bee4c118f55763b566db086aa10d2ec5a2d46bc623db8c8381f4ba7c5
|
3 |
+
size 20599
|
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1200/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:db09e5b1b76154e3b7043e11a650fd3051b5b3ab595a43c485df65a086c6f540
|
3 |
+
size 20599
|
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1200/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:671e665f8b90df160f325e725a02c3635553d4058486bf76788722e80c8864e6
|
3 |
+
size 20599
|
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1200/rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7169d16d22347ae1ff1b51cfe165ad5333e47dc6b178e93f63331e743d23305a
|
3 |
+
size 20599
|
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1200/rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d866764dfa788f78507a77e36fe7f085156ee01dd1d0ef2cc476f85d7a3134dd
|
3 |
+
size 20599
|
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1200/rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eeb1301b45d7398af92537a9959369547a41f37de86e06f898e44fa1c6e0ffcc
|
3 |
+
size 20599
|
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1200/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8b8dd10e3f7f429a30da6714b6bc34fffe93612cca0d55e0213efbb5aac3b13
|
3 |
+
size 627
|
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1200/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d396f0642c83730ebff54eaafc7dfb38092d5d41fd28ce6ebbd56ec539612e4b
|
3 |
+
size 6011
|
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1350/config.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "meta-llama/Llama-3.2-3B",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 128000,
|
9 |
+
"eos_token_id": 128001,
|
10 |
+
"head_dim": 128,
|
11 |
+
"hidden_act": "silu",
|
12 |
+
"hidden_size": 3072,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 8192,
|
15 |
+
"max_position_embeddings": 131072,
|
16 |
+
"mlp_bias": false,
|
17 |
+
"model_type": "llama",
|
18 |
+
"num_attention_heads": 24,
|
19 |
+
"num_hidden_layers": 28,
|
20 |
+
"num_key_value_heads": 8,
|
21 |
+
"pretraining_tp": 1,
|
22 |
+
"rms_norm_eps": 1e-05,
|
23 |
+
"rope_scaling": {
|
24 |
+
"factor": 32.0,
|
25 |
+
"high_freq_factor": 4.0,
|
26 |
+
"low_freq_factor": 1.0,
|
27 |
+
"original_max_position_embeddings": 8192,
|
28 |
+
"rope_type": "llama3"
|
29 |
+
},
|
30 |
+
"rope_theta": 500000.0,
|
31 |
+
"tie_word_embeddings": true,
|
32 |
+
"torch_dtype": "float16",
|
33 |
+
"transformers_version": "4.45.1",
|
34 |
+
"use_cache": true,
|
35 |
+
"vocab_size": 128256
|
36 |
+
}
|
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1350/generation_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 128000,
|
4 |
+
"do_sample": true,
|
5 |
+
"eos_token_id": 128001,
|
6 |
+
"temperature": 0.6,
|
7 |
+
"top_p": 0.9,
|
8 |
+
"transformers_version": "4.45.1"
|
9 |
+
}
|
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1350/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step1350
|
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1350/model.safetensors.index.json
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 7213504512
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00002-of-00002.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
89 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
98 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
125 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
134 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
143 |
+
"model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
152 |
+
"model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
161 |
+
"model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
170 |
+
"model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
179 |
+
"model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
188 |
+
"model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
197 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
198 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
199 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
200 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
201 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
202 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
203 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
204 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
205 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
206 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
207 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
208 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
209 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
210 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
211 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
212 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
213 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
214 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
215 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
216 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
217 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
218 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
219 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
220 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
221 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
222 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
223 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
224 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
225 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
226 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
227 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
228 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
229 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
230 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
231 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
232 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
233 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
234 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
235 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
236 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
237 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
238 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
239 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
240 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
241 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
242 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
243 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
244 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
245 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
246 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
247 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
248 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
249 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
250 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
251 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
252 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
253 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
254 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
255 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
256 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
257 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
258 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
259 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
260 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
261 |
+
}
|
262 |
+
}
|
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1350/special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|begin_of_text|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|end_of_text|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1350/trainer_state.json
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 6.467065868263473,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 1350,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.718562874251497,
|
13 |
+
"grad_norm": 0.661852240562439,
|
14 |
+
"learning_rate": 4.6899038461538465e-05,
|
15 |
+
"loss": 2.1718,
|
16 |
+
"step": 150
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 1.437125748502994,
|
20 |
+
"grad_norm": 0.7592059373855591,
|
21 |
+
"learning_rate": 4.329326923076924e-05,
|
22 |
+
"loss": 1.5828,
|
23 |
+
"step": 300
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 2.155688622754491,
|
27 |
+
"grad_norm": 0.6453707218170166,
|
28 |
+
"learning_rate": 3.96875e-05,
|
29 |
+
"loss": 1.478,
|
30 |
+
"step": 450
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 2.874251497005988,
|
34 |
+
"grad_norm": 0.6175025105476379,
|
35 |
+
"learning_rate": 3.608173076923077e-05,
|
36 |
+
"loss": 1.4098,
|
37 |
+
"step": 600
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 3.592814371257485,
|
41 |
+
"grad_norm": 0.7075008749961853,
|
42 |
+
"learning_rate": 3.247596153846154e-05,
|
43 |
+
"loss": 1.3483,
|
44 |
+
"step": 750
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 4.311377245508982,
|
48 |
+
"grad_norm": 0.8413554430007935,
|
49 |
+
"learning_rate": 2.8870192307692306e-05,
|
50 |
+
"loss": 1.3009,
|
51 |
+
"step": 900
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 5.029940119760479,
|
55 |
+
"grad_norm": 0.9734054207801819,
|
56 |
+
"learning_rate": 2.5264423076923078e-05,
|
57 |
+
"loss": 1.2617,
|
58 |
+
"step": 1050
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 5.748502994011976,
|
62 |
+
"grad_norm": 0.8429175019264221,
|
63 |
+
"learning_rate": 2.1658653846153847e-05,
|
64 |
+
"loss": 1.1814,
|
65 |
+
"step": 1200
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 6.467065868263473,
|
69 |
+
"grad_norm": 0.9255201816558838,
|
70 |
+
"learning_rate": 1.8052884615384616e-05,
|
71 |
+
"loss": 1.1207,
|
72 |
+
"step": 1350
|
73 |
+
}
|
74 |
+
],
|
75 |
+
"logging_steps": 150,
|
76 |
+
"max_steps": 2080,
|
77 |
+
"num_input_tokens_seen": 0,
|
78 |
+
"num_train_epochs": 10,
|
79 |
+
"save_steps": 150,
|
80 |
+
"stateful_callbacks": {
|
81 |
+
"TrainerControl": {
|
82 |
+
"args": {
|
83 |
+
"should_epoch_stop": false,
|
84 |
+
"should_evaluate": false,
|
85 |
+
"should_log": false,
|
86 |
+
"should_save": true,
|
87 |
+
"should_training_stop": false
|
88 |
+
},
|
89 |
+
"attributes": {}
|
90 |
+
}
|
91 |
+
},
|
92 |
+
"total_flos": 1.9639047370404004e+18,
|
93 |
+
"train_batch_size": 3,
|
94 |
+
"trial_name": null,
|
95 |
+
"trial_params": null
|
96 |
+
}
|
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1500/config.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "meta-llama/Llama-3.2-3B",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 128000,
|
9 |
+
"eos_token_id": 128001,
|
10 |
+
"head_dim": 128,
|
11 |
+
"hidden_act": "silu",
|
12 |
+
"hidden_size": 3072,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 8192,
|
15 |
+
"max_position_embeddings": 131072,
|
16 |
+
"mlp_bias": false,
|
17 |
+
"model_type": "llama",
|
18 |
+
"num_attention_heads": 24,
|
19 |
+
"num_hidden_layers": 28,
|
20 |
+
"num_key_value_heads": 8,
|
21 |
+
"pretraining_tp": 1,
|
22 |
+
"rms_norm_eps": 1e-05,
|
23 |
+
"rope_scaling": {
|
24 |
+
"factor": 32.0,
|
25 |
+
"high_freq_factor": 4.0,
|
26 |
+
"low_freq_factor": 1.0,
|
27 |
+
"original_max_position_embeddings": 8192,
|
28 |
+
"rope_type": "llama3"
|
29 |
+
},
|
30 |
+
"rope_theta": 500000.0,
|
31 |
+
"tie_word_embeddings": true,
|
32 |
+
"torch_dtype": "float16",
|
33 |
+
"transformers_version": "4.45.1",
|
34 |
+
"use_cache": true,
|
35 |
+
"vocab_size": 128256
|
36 |
+
}
|
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1500/generation_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 128000,
|
4 |
+
"do_sample": true,
|
5 |
+
"eos_token_id": 128001,
|
6 |
+
"temperature": 0.6,
|
7 |
+
"top_p": 0.9,
|
8 |
+
"transformers_version": "4.45.1"
|
9 |
+
}
|
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1500/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step1500
|
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1500/model.safetensors.index.json
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 7213504512
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00002-of-00002.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
89 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
98 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
125 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
134 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
143 |
+
"model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
152 |
+
"model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
161 |
+
"model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
170 |
+
"model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
179 |
+
"model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
188 |
+
"model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
197 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
198 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
199 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
200 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
201 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
202 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
203 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
204 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
205 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
206 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
207 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
208 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
209 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
210 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
211 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
212 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
213 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
214 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
215 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
216 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
217 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
218 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
219 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
220 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
221 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
222 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
223 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
224 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
225 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
226 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
227 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
228 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
229 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
230 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
231 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
232 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
233 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
234 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
235 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
236 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
237 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
238 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
239 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
240 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
241 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
242 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
243 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
244 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
245 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
246 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
247 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
248 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
249 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
250 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
251 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
252 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
253 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
254 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
255 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
256 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
257 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
258 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
259 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
260 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
261 |
+
}
|
262 |
+
}
|
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1500/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:638670b4f96148564ef368df48443cdaa781c9697294452c3ff15d3f926e388a
|
3 |
+
size 20599
|
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1500/rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:595fa5c22607d6ab832d0b14385e9e6b9bfeb5d4c181d0acb849edd1df3e66a1
|
3 |
+
size 20599
|
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1500/special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|begin_of_text|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|end_of_text|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1500/tokenizer_config.json
ADDED
@@ -0,0 +1,2078 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"128000": {
|
4 |
+
"content": "<|begin_of_text|>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"128001": {
|
12 |
+
"content": "<|end_of_text|>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"128002": {
|
20 |
+
"content": "<|reserved_special_token_0|>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"128003": {
|
28 |
+
"content": "<|reserved_special_token_1|>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"128004": {
|
36 |
+
"content": "<|finetune_right_pad_id|>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"128005": {
|
44 |
+
"content": "<|reserved_special_token_2|>",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"128006": {
|
52 |
+
"content": "<|start_header_id|>",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": true
|
58 |
+
},
|
59 |
+
"128007": {
|
60 |
+
"content": "<|end_header_id|>",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": true
|
66 |
+
},
|
67 |
+
"128008": {
|
68 |
+
"content": "<|eom_id|>",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": false,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": true
|
74 |
+
},
|
75 |
+
"128009": {
|
76 |
+
"content": "<|eot_id|>",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": false,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": true
|
82 |
+
},
|
83 |
+
"128010": {
|
84 |
+
"content": "<|python_tag|>",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": false,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": true
|
90 |
+
},
|
91 |
+
"128011": {
|
92 |
+
"content": "<|reserved_special_token_3|>",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": false,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": true
|
98 |
+
},
|
99 |
+
"128012": {
|
100 |
+
"content": "<|reserved_special_token_4|>",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": false,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": true
|
106 |
+
},
|
107 |
+
"128013": {
|
108 |
+
"content": "<|reserved_special_token_5|>",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": false,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false,
|
113 |
+
"special": true
|
114 |
+
},
|
115 |
+
"128014": {
|
116 |
+
"content": "<|reserved_special_token_6|>",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": false,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false,
|
121 |
+
"special": true
|
122 |
+
},
|
123 |
+
"128015": {
|
124 |
+
"content": "<|reserved_special_token_7|>",
|
125 |
+
"lstrip": false,
|
126 |
+
"normalized": false,
|
127 |
+
"rstrip": false,
|
128 |
+
"single_word": false,
|
129 |
+
"special": true
|
130 |
+
},
|
131 |
+
"128016": {
|
132 |
+
"content": "<|reserved_special_token_8|>",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": false,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": false,
|
137 |
+
"special": true
|
138 |
+
},
|
139 |
+
"128017": {
|
140 |
+
"content": "<|reserved_special_token_9|>",
|
141 |
+
"lstrip": false,
|
142 |
+
"normalized": false,
|
143 |
+
"rstrip": false,
|
144 |
+
"single_word": false,
|
145 |
+
"special": true
|
146 |
+
},
|
147 |
+
"128018": {
|
148 |
+
"content": "<|reserved_special_token_10|>",
|
149 |
+
"lstrip": false,
|
150 |
+
"normalized": false,
|
151 |
+
"rstrip": false,
|
152 |
+
"single_word": false,
|
153 |
+
"special": true
|
154 |
+
},
|
155 |
+
"128019": {
|
156 |
+
"content": "<|reserved_special_token_11|>",
|
157 |
+
"lstrip": false,
|
158 |
+
"normalized": false,
|
159 |
+
"rstrip": false,
|
160 |
+
"single_word": false,
|
161 |
+
"special": true
|
162 |
+
},
|
163 |
+
"128020": {
|
164 |
+
"content": "<|reserved_special_token_12|>",
|
165 |
+
"lstrip": false,
|
166 |
+
"normalized": false,
|
167 |
+
"rstrip": false,
|
168 |
+
"single_word": false,
|
169 |
+
"special": true
|
170 |
+
},
|
171 |
+
"128021": {
|
172 |
+
"content": "<|reserved_special_token_13|>",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": false,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false,
|
177 |
+
"special": true
|
178 |
+
},
|
179 |
+
"128022": {
|
180 |
+
"content": "<|reserved_special_token_14|>",
|
181 |
+
"lstrip": false,
|
182 |
+
"normalized": false,
|
183 |
+
"rstrip": false,
|
184 |
+
"single_word": false,
|
185 |
+
"special": true
|
186 |
+
},
|
187 |
+
"128023": {
|
188 |
+
"content": "<|reserved_special_token_15|>",
|
189 |
+
"lstrip": false,
|
190 |
+
"normalized": false,
|
191 |
+
"rstrip": false,
|
192 |
+
"single_word": false,
|
193 |
+
"special": true
|
194 |
+
},
|
195 |
+
"128024": {
|
196 |
+
"content": "<|reserved_special_token_16|>",
|
197 |
+
"lstrip": false,
|
198 |
+
"normalized": false,
|
199 |
+
"rstrip": false,
|
200 |
+
"single_word": false,
|
201 |
+
"special": true
|
202 |
+
},
|
203 |
+
"128025": {
|
204 |
+
"content": "<|reserved_special_token_17|>",
|
205 |
+
"lstrip": false,
|
206 |
+
"normalized": false,
|
207 |
+
"rstrip": false,
|
208 |
+
"single_word": false,
|
209 |
+
"special": true
|
210 |
+
},
|
211 |
+
"128026": {
|
212 |
+
"content": "<|reserved_special_token_18|>",
|
213 |
+
"lstrip": false,
|
214 |
+
"normalized": false,
|
215 |
+
"rstrip": false,
|
216 |
+
"single_word": false,
|
217 |
+
"special": true
|
218 |
+
},
|
219 |
+
"128027": {
|
220 |
+
"content": "<|reserved_special_token_19|>",
|
221 |
+
"lstrip": false,
|
222 |
+
"normalized": false,
|
223 |
+
"rstrip": false,
|
224 |
+
"single_word": false,
|
225 |
+
"special": true
|
226 |
+
},
|
227 |
+
"128028": {
|
228 |
+
"content": "<|reserved_special_token_20|>",
|
229 |
+
"lstrip": false,
|
230 |
+
"normalized": false,
|
231 |
+
"rstrip": false,
|
232 |
+
"single_word": false,
|
233 |
+
"special": true
|
234 |
+
},
|
235 |
+
"128029": {
|
236 |
+
"content": "<|reserved_special_token_21|>",
|
237 |
+
"lstrip": false,
|
238 |
+
"normalized": false,
|
239 |
+
"rstrip": false,
|
240 |
+
"single_word": false,
|
241 |
+
"special": true
|
242 |
+
},
|
243 |
+
"128030": {
|
244 |
+
"content": "<|reserved_special_token_22|>",
|
245 |
+
"lstrip": false,
|
246 |
+
"normalized": false,
|
247 |
+
"rstrip": false,
|
248 |
+
"single_word": false,
|
249 |
+
"special": true
|
250 |
+
},
|
251 |
+
"128031": {
|
252 |
+
"content": "<|reserved_special_token_23|>",
|
253 |
+
"lstrip": false,
|
254 |
+
"normalized": false,
|
255 |
+
"rstrip": false,
|
256 |
+
"single_word": false,
|
257 |
+
"special": true
|
258 |
+
},
|
259 |
+
"128032": {
|
260 |
+
"content": "<|reserved_special_token_24|>",
|
261 |
+
"lstrip": false,
|
262 |
+
"normalized": false,
|
263 |
+
"rstrip": false,
|
264 |
+
"single_word": false,
|
265 |
+
"special": true
|
266 |
+
},
|
267 |
+
"128033": {
|
268 |
+
"content": "<|reserved_special_token_25|>",
|
269 |
+
"lstrip": false,
|
270 |
+
"normalized": false,
|
271 |
+
"rstrip": false,
|
272 |
+
"single_word": false,
|
273 |
+
"special": true
|
274 |
+
},
|
275 |
+
"128034": {
|
276 |
+
"content": "<|reserved_special_token_26|>",
|
277 |
+
"lstrip": false,
|
278 |
+
"normalized": false,
|
279 |
+
"rstrip": false,
|
280 |
+
"single_word": false,
|
281 |
+
"special": true
|
282 |
+
},
|
283 |
+
"128035": {
|
284 |
+
"content": "<|reserved_special_token_27|>",
|
285 |
+
"lstrip": false,
|
286 |
+
"normalized": false,
|
287 |
+
"rstrip": false,
|
288 |
+
"single_word": false,
|
289 |
+
"special": true
|
290 |
+
},
|
291 |
+
"128036": {
|
292 |
+
"content": "<|reserved_special_token_28|>",
|
293 |
+
"lstrip": false,
|
294 |
+
"normalized": false,
|
295 |
+
"rstrip": false,
|
296 |
+
"single_word": false,
|
297 |
+
"special": true
|
298 |
+
},
|
299 |
+
"128037": {
|
300 |
+
"content": "<|reserved_special_token_29|>",
|
301 |
+
"lstrip": false,
|
302 |
+
"normalized": false,
|
303 |
+
"rstrip": false,
|
304 |
+
"single_word": false,
|
305 |
+
"special": true
|
306 |
+
},
|
307 |
+
"128038": {
|
308 |
+
"content": "<|reserved_special_token_30|>",
|
309 |
+
"lstrip": false,
|
310 |
+
"normalized": false,
|
311 |
+
"rstrip": false,
|
312 |
+
"single_word": false,
|
313 |
+
"special": true
|
314 |
+
},
|
315 |
+
"128039": {
|
316 |
+
"content": "<|reserved_special_token_31|>",
|
317 |
+
"lstrip": false,
|
318 |
+
"normalized": false,
|
319 |
+
"rstrip": false,
|
320 |
+
"single_word": false,
|
321 |
+
"special": true
|
322 |
+
},
|
323 |
+
"128040": {
|
324 |
+
"content": "<|reserved_special_token_32|>",
|
325 |
+
"lstrip": false,
|
326 |
+
"normalized": false,
|
327 |
+
"rstrip": false,
|
328 |
+
"single_word": false,
|
329 |
+
"special": true
|
330 |
+
},
|
331 |
+
"128041": {
|
332 |
+
"content": "<|reserved_special_token_33|>",
|
333 |
+
"lstrip": false,
|
334 |
+
"normalized": false,
|
335 |
+
"rstrip": false,
|
336 |
+
"single_word": false,
|
337 |
+
"special": true
|
338 |
+
},
|
339 |
+
"128042": {
|
340 |
+
"content": "<|reserved_special_token_34|>",
|
341 |
+
"lstrip": false,
|
342 |
+
"normalized": false,
|
343 |
+
"rstrip": false,
|
344 |
+
"single_word": false,
|
345 |
+
"special": true
|
346 |
+
},
|
347 |
+
"128043": {
|
348 |
+
"content": "<|reserved_special_token_35|>",
|
349 |
+
"lstrip": false,
|
350 |
+
"normalized": false,
|
351 |
+
"rstrip": false,
|
352 |
+
"single_word": false,
|
353 |
+
"special": true
|
354 |
+
},
|
355 |
+
"128044": {
|
356 |
+
"content": "<|reserved_special_token_36|>",
|
357 |
+
"lstrip": false,
|
358 |
+
"normalized": false,
|
359 |
+
"rstrip": false,
|
360 |
+
"single_word": false,
|
361 |
+
"special": true
|
362 |
+
},
|
363 |
+
"128045": {
|
364 |
+
"content": "<|reserved_special_token_37|>",
|
365 |
+
"lstrip": false,
|
366 |
+
"normalized": false,
|
367 |
+
"rstrip": false,
|
368 |
+
"single_word": false,
|
369 |
+
"special": true
|
370 |
+
},
|
371 |
+
"128046": {
|
372 |
+
"content": "<|reserved_special_token_38|>",
|
373 |
+
"lstrip": false,
|
374 |
+
"normalized": false,
|
375 |
+
"rstrip": false,
|
376 |
+
"single_word": false,
|
377 |
+
"special": true
|
378 |
+
},
|
379 |
+
"128047": {
|
380 |
+
"content": "<|reserved_special_token_39|>",
|
381 |
+
"lstrip": false,
|
382 |
+
"normalized": false,
|
383 |
+
"rstrip": false,
|
384 |
+
"single_word": false,
|
385 |
+
"special": true
|
386 |
+
},
|
387 |
+
"128048": {
|
388 |
+
"content": "<|reserved_special_token_40|>",
|
389 |
+
"lstrip": false,
|
390 |
+
"normalized": false,
|
391 |
+
"rstrip": false,
|
392 |
+
"single_word": false,
|
393 |
+
"special": true
|
394 |
+
},
|
395 |
+
"128049": {
|
396 |
+
"content": "<|reserved_special_token_41|>",
|
397 |
+
"lstrip": false,
|
398 |
+
"normalized": false,
|
399 |
+
"rstrip": false,
|
400 |
+
"single_word": false,
|
401 |
+
"special": true
|
402 |
+
},
|
403 |
+
"128050": {
|
404 |
+
"content": "<|reserved_special_token_42|>",
|
405 |
+
"lstrip": false,
|
406 |
+
"normalized": false,
|
407 |
+
"rstrip": false,
|
408 |
+
"single_word": false,
|
409 |
+
"special": true
|
410 |
+
},
|
411 |
+
"128051": {
|
412 |
+
"content": "<|reserved_special_token_43|>",
|
413 |
+
"lstrip": false,
|
414 |
+
"normalized": false,
|
415 |
+
"rstrip": false,
|
416 |
+
"single_word": false,
|
417 |
+
"special": true
|
418 |
+
},
|
419 |
+
"128052": {
|
420 |
+
"content": "<|reserved_special_token_44|>",
|
421 |
+
"lstrip": false,
|
422 |
+
"normalized": false,
|
423 |
+
"rstrip": false,
|
424 |
+
"single_word": false,
|
425 |
+
"special": true
|
426 |
+
},
|
427 |
+
"128053": {
|
428 |
+
"content": "<|reserved_special_token_45|>",
|
429 |
+
"lstrip": false,
|
430 |
+
"normalized": false,
|
431 |
+
"rstrip": false,
|
432 |
+
"single_word": false,
|
433 |
+
"special": true
|
434 |
+
},
|
435 |
+
"128054": {
|
436 |
+
"content": "<|reserved_special_token_46|>",
|
437 |
+
"lstrip": false,
|
438 |
+
"normalized": false,
|
439 |
+
"rstrip": false,
|
440 |
+
"single_word": false,
|
441 |
+
"special": true
|
442 |
+
},
|
443 |
+
"128055": {
|
444 |
+
"content": "<|reserved_special_token_47|>",
|
445 |
+
"lstrip": false,
|
446 |
+
"normalized": false,
|
447 |
+
"rstrip": false,
|
448 |
+
"single_word": false,
|
449 |
+
"special": true
|
450 |
+
},
|
451 |
+
"128056": {
|
452 |
+
"content": "<|reserved_special_token_48|>",
|
453 |
+
"lstrip": false,
|
454 |
+
"normalized": false,
|
455 |
+
"rstrip": false,
|
456 |
+
"single_word": false,
|
457 |
+
"special": true
|
458 |
+
},
|
459 |
+
"128057": {
|
460 |
+
"content": "<|reserved_special_token_49|>",
|
461 |
+
"lstrip": false,
|
462 |
+
"normalized": false,
|
463 |
+
"rstrip": false,
|
464 |
+
"single_word": false,
|
465 |
+
"special": true
|
466 |
+
},
|
467 |
+
"128058": {
|
468 |
+
"content": "<|reserved_special_token_50|>",
|
469 |
+
"lstrip": false,
|
470 |
+
"normalized": false,
|
471 |
+
"rstrip": false,
|
472 |
+
"single_word": false,
|
473 |
+
"special": true
|
474 |
+
},
|
475 |
+
"128059": {
|
476 |
+
"content": "<|reserved_special_token_51|>",
|
477 |
+
"lstrip": false,
|
478 |
+
"normalized": false,
|
479 |
+
"rstrip": false,
|
480 |
+
"single_word": false,
|
481 |
+
"special": true
|
482 |
+
},
|
483 |
+
"128060": {
|
484 |
+
"content": "<|reserved_special_token_52|>",
|
485 |
+
"lstrip": false,
|
486 |
+
"normalized": false,
|
487 |
+
"rstrip": false,
|
488 |
+
"single_word": false,
|
489 |
+
"special": true
|
490 |
+
},
|
491 |
+
"128061": {
|
492 |
+
"content": "<|reserved_special_token_53|>",
|
493 |
+
"lstrip": false,
|
494 |
+
"normalized": false,
|
495 |
+
"rstrip": false,
|
496 |
+
"single_word": false,
|
497 |
+
"special": true
|
498 |
+
},
|
499 |
+
"128062": {
|
500 |
+
"content": "<|reserved_special_token_54|>",
|
501 |
+
"lstrip": false,
|
502 |
+
"normalized": false,
|
503 |
+
"rstrip": false,
|
504 |
+
"single_word": false,
|
505 |
+
"special": true
|
506 |
+
},
|
507 |
+
"128063": {
|
508 |
+
"content": "<|reserved_special_token_55|>",
|
509 |
+
"lstrip": false,
|
510 |
+
"normalized": false,
|
511 |
+
"rstrip": false,
|
512 |
+
"single_word": false,
|
513 |
+
"special": true
|
514 |
+
},
|
515 |
+
"128064": {
|
516 |
+
"content": "<|reserved_special_token_56|>",
|
517 |
+
"lstrip": false,
|
518 |
+
"normalized": false,
|
519 |
+
"rstrip": false,
|
520 |
+
"single_word": false,
|
521 |
+
"special": true
|
522 |
+
},
|
523 |
+
"128065": {
|
524 |
+
"content": "<|reserved_special_token_57|>",
|
525 |
+
"lstrip": false,
|
526 |
+
"normalized": false,
|
527 |
+
"rstrip": false,
|
528 |
+
"single_word": false,
|
529 |
+
"special": true
|
530 |
+
},
|
531 |
+
"128066": {
|
532 |
+
"content": "<|reserved_special_token_58|>",
|
533 |
+
"lstrip": false,
|
534 |
+
"normalized": false,
|
535 |
+
"rstrip": false,
|
536 |
+
"single_word": false,
|
537 |
+
"special": true
|
538 |
+
},
|
539 |
+
"128067": {
|
540 |
+
"content": "<|reserved_special_token_59|>",
|
541 |
+
"lstrip": false,
|
542 |
+
"normalized": false,
|
543 |
+
"rstrip": false,
|
544 |
+
"single_word": false,
|
545 |
+
"special": true
|
546 |
+
},
|
547 |
+
"128068": {
|
548 |
+
"content": "<|reserved_special_token_60|>",
|
549 |
+
"lstrip": false,
|
550 |
+
"normalized": false,
|
551 |
+
"rstrip": false,
|
552 |
+
"single_word": false,
|
553 |
+
"special": true
|
554 |
+
},
|
555 |
+
"128069": {
|
556 |
+
"content": "<|reserved_special_token_61|>",
|
557 |
+
"lstrip": false,
|
558 |
+
"normalized": false,
|
559 |
+
"rstrip": false,
|
560 |
+
"single_word": false,
|
561 |
+
"special": true
|
562 |
+
},
|
563 |
+
"128070": {
|
564 |
+
"content": "<|reserved_special_token_62|>",
|
565 |
+
"lstrip": false,
|
566 |
+
"normalized": false,
|
567 |
+
"rstrip": false,
|
568 |
+
"single_word": false,
|
569 |
+
"special": true
|
570 |
+
},
|
571 |
+
"128071": {
|
572 |
+
"content": "<|reserved_special_token_63|>",
|
573 |
+
"lstrip": false,
|
574 |
+
"normalized": false,
|
575 |
+
"rstrip": false,
|
576 |
+
"single_word": false,
|
577 |
+
"special": true
|
578 |
+
},
|
579 |
+
"128072": {
|
580 |
+
"content": "<|reserved_special_token_64|>",
|
581 |
+
"lstrip": false,
|
582 |
+
"normalized": false,
|
583 |
+
"rstrip": false,
|
584 |
+
"single_word": false,
|
585 |
+
"special": true
|
586 |
+
},
|
587 |
+
"128073": {
|
588 |
+
"content": "<|reserved_special_token_65|>",
|
589 |
+
"lstrip": false,
|
590 |
+
"normalized": false,
|
591 |
+
"rstrip": false,
|
592 |
+
"single_word": false,
|
593 |
+
"special": true
|
594 |
+
},
|
595 |
+
"128074": {
|
596 |
+
"content": "<|reserved_special_token_66|>",
|
597 |
+
"lstrip": false,
|
598 |
+
"normalized": false,
|
599 |
+
"rstrip": false,
|
600 |
+
"single_word": false,
|
601 |
+
"special": true
|
602 |
+
},
|
603 |
+
"128075": {
|
604 |
+
"content": "<|reserved_special_token_67|>",
|
605 |
+
"lstrip": false,
|
606 |
+
"normalized": false,
|
607 |
+
"rstrip": false,
|
608 |
+
"single_word": false,
|
609 |
+
"special": true
|
610 |
+
},
|
611 |
+
"128076": {
|
612 |
+
"content": "<|reserved_special_token_68|>",
|
613 |
+
"lstrip": false,
|
614 |
+
"normalized": false,
|
615 |
+
"rstrip": false,
|
616 |
+
"single_word": false,
|
617 |
+
"special": true
|
618 |
+
},
|
619 |
+
"128077": {
|
620 |
+
"content": "<|reserved_special_token_69|>",
|
621 |
+
"lstrip": false,
|
622 |
+
"normalized": false,
|
623 |
+
"rstrip": false,
|
624 |
+
"single_word": false,
|
625 |
+
"special": true
|
626 |
+
},
|
627 |
+
"128078": {
|
628 |
+
"content": "<|reserved_special_token_70|>",
|
629 |
+
"lstrip": false,
|
630 |
+
"normalized": false,
|
631 |
+
"rstrip": false,
|
632 |
+
"single_word": false,
|
633 |
+
"special": true
|
634 |
+
},
|
635 |
+
"128079": {
|
636 |
+
"content": "<|reserved_special_token_71|>",
|
637 |
+
"lstrip": false,
|
638 |
+
"normalized": false,
|
639 |
+
"rstrip": false,
|
640 |
+
"single_word": false,
|
641 |
+
"special": true
|
642 |
+
},
|
643 |
+
"128080": {
|
644 |
+
"content": "<|reserved_special_token_72|>",
|
645 |
+
"lstrip": false,
|
646 |
+
"normalized": false,
|
647 |
+
"rstrip": false,
|
648 |
+
"single_word": false,
|
649 |
+
"special": true
|
650 |
+
},
|
651 |
+
"128081": {
|
652 |
+
"content": "<|reserved_special_token_73|>",
|
653 |
+
"lstrip": false,
|
654 |
+
"normalized": false,
|
655 |
+
"rstrip": false,
|
656 |
+
"single_word": false,
|
657 |
+
"special": true
|
658 |
+
},
|
659 |
+
"128082": {
|
660 |
+
"content": "<|reserved_special_token_74|>",
|
661 |
+
"lstrip": false,
|
662 |
+
"normalized": false,
|
663 |
+
"rstrip": false,
|
664 |
+
"single_word": false,
|
665 |
+
"special": true
|
666 |
+
},
|
667 |
+
"128083": {
|
668 |
+
"content": "<|reserved_special_token_75|>",
|
669 |
+
"lstrip": false,
|
670 |
+
"normalized": false,
|
671 |
+
"rstrip": false,
|
672 |
+
"single_word": false,
|
673 |
+
"special": true
|
674 |
+
},
|
675 |
+
"128084": {
|
676 |
+
"content": "<|reserved_special_token_76|>",
|
677 |
+
"lstrip": false,
|
678 |
+
"normalized": false,
|
679 |
+
"rstrip": false,
|
680 |
+
"single_word": false,
|
681 |
+
"special": true
|
682 |
+
},
|
683 |
+
"128085": {
|
684 |
+
"content": "<|reserved_special_token_77|>",
|
685 |
+
"lstrip": false,
|
686 |
+
"normalized": false,
|
687 |
+
"rstrip": false,
|
688 |
+
"single_word": false,
|
689 |
+
"special": true
|
690 |
+
},
|
691 |
+
"128086": {
|
692 |
+
"content": "<|reserved_special_token_78|>",
|
693 |
+
"lstrip": false,
|
694 |
+
"normalized": false,
|
695 |
+
"rstrip": false,
|
696 |
+
"single_word": false,
|
697 |
+
"special": true
|
698 |
+
},
|
699 |
+
"128087": {
|
700 |
+
"content": "<|reserved_special_token_79|>",
|
701 |
+
"lstrip": false,
|
702 |
+
"normalized": false,
|
703 |
+
"rstrip": false,
|
704 |
+
"single_word": false,
|
705 |
+
"special": true
|
706 |
+
},
|
707 |
+
"128088": {
|
708 |
+
"content": "<|reserved_special_token_80|>",
|
709 |
+
"lstrip": false,
|
710 |
+
"normalized": false,
|
711 |
+
"rstrip": false,
|
712 |
+
"single_word": false,
|
713 |
+
"special": true
|
714 |
+
},
|
715 |
+
"128089": {
|
716 |
+
"content": "<|reserved_special_token_81|>",
|
717 |
+
"lstrip": false,
|
718 |
+
"normalized": false,
|
719 |
+
"rstrip": false,
|
720 |
+
"single_word": false,
|
721 |
+
"special": true
|
722 |
+
},
|
723 |
+
"128090": {
|
724 |
+
"content": "<|reserved_special_token_82|>",
|
725 |
+
"lstrip": false,
|
726 |
+
"normalized": false,
|
727 |
+
"rstrip": false,
|
728 |
+
"single_word": false,
|
729 |
+
"special": true
|
730 |
+
},
|
731 |
+
"128091": {
|
732 |
+
"content": "<|reserved_special_token_83|>",
|
733 |
+
"lstrip": false,
|
734 |
+
"normalized": false,
|
735 |
+
"rstrip": false,
|
736 |
+
"single_word": false,
|
737 |
+
"special": true
|
738 |
+
},
|
739 |
+
"128092": {
|
740 |
+
"content": "<|reserved_special_token_84|>",
|
741 |
+
"lstrip": false,
|
742 |
+
"normalized": false,
|
743 |
+
"rstrip": false,
|
744 |
+
"single_word": false,
|
745 |
+
"special": true
|
746 |
+
},
|
747 |
+
"128093": {
|
748 |
+
"content": "<|reserved_special_token_85|>",
|
749 |
+
"lstrip": false,
|
750 |
+
"normalized": false,
|
751 |
+
"rstrip": false,
|
752 |
+
"single_word": false,
|
753 |
+
"special": true
|
754 |
+
},
|
755 |
+
"128094": {
|
756 |
+
"content": "<|reserved_special_token_86|>",
|
757 |
+
"lstrip": false,
|
758 |
+
"normalized": false,
|
759 |
+
"rstrip": false,
|
760 |
+
"single_word": false,
|
761 |
+
"special": true
|
762 |
+
},
|
763 |
+
"128095": {
|
764 |
+
"content": "<|reserved_special_token_87|>",
|
765 |
+
"lstrip": false,
|
766 |
+
"normalized": false,
|
767 |
+
"rstrip": false,
|
768 |
+
"single_word": false,
|
769 |
+
"special": true
|
770 |
+
},
|
771 |
+
"128096": {
|
772 |
+
"content": "<|reserved_special_token_88|>",
|
773 |
+
"lstrip": false,
|
774 |
+
"normalized": false,
|
775 |
+
"rstrip": false,
|
776 |
+
"single_word": false,
|
777 |
+
"special": true
|
778 |
+
},
|
779 |
+
"128097": {
|
780 |
+
"content": "<|reserved_special_token_89|>",
|
781 |
+
"lstrip": false,
|
782 |
+
"normalized": false,
|
783 |
+
"rstrip": false,
|
784 |
+
"single_word": false,
|
785 |
+
"special": true
|
786 |
+
},
|
787 |
+
"128098": {
|
788 |
+
"content": "<|reserved_special_token_90|>",
|
789 |
+
"lstrip": false,
|
790 |
+
"normalized": false,
|
791 |
+
"rstrip": false,
|
792 |
+
"single_word": false,
|
793 |
+
"special": true
|
794 |
+
},
|
795 |
+
"128099": {
|
796 |
+
"content": "<|reserved_special_token_91|>",
|
797 |
+
"lstrip": false,
|
798 |
+
"normalized": false,
|
799 |
+
"rstrip": false,
|
800 |
+
"single_word": false,
|
801 |
+
"special": true
|
802 |
+
},
|
803 |
+
"128100": {
|
804 |
+
"content": "<|reserved_special_token_92|>",
|
805 |
+
"lstrip": false,
|
806 |
+
"normalized": false,
|
807 |
+
"rstrip": false,
|
808 |
+
"single_word": false,
|
809 |
+
"special": true
|
810 |
+
},
|
811 |
+
"128101": {
|
812 |
+
"content": "<|reserved_special_token_93|>",
|
813 |
+
"lstrip": false,
|
814 |
+
"normalized": false,
|
815 |
+
"rstrip": false,
|
816 |
+
"single_word": false,
|
817 |
+
"special": true
|
818 |
+
},
|
819 |
+
"128102": {
|
820 |
+
"content": "<|reserved_special_token_94|>",
|
821 |
+
"lstrip": false,
|
822 |
+
"normalized": false,
|
823 |
+
"rstrip": false,
|
824 |
+
"single_word": false,
|
825 |
+
"special": true
|
826 |
+
},
|
827 |
+
"128103": {
|
828 |
+
"content": "<|reserved_special_token_95|>",
|
829 |
+
"lstrip": false,
|
830 |
+
"normalized": false,
|
831 |
+
"rstrip": false,
|
832 |
+
"single_word": false,
|
833 |
+
"special": true
|
834 |
+
},
|
835 |
+
"128104": {
|
836 |
+
"content": "<|reserved_special_token_96|>",
|
837 |
+
"lstrip": false,
|
838 |
+
"normalized": false,
|
839 |
+
"rstrip": false,
|
840 |
+
"single_word": false,
|
841 |
+
"special": true
|
842 |
+
},
|
843 |
+
"128105": {
|
844 |
+
"content": "<|reserved_special_token_97|>",
|
845 |
+
"lstrip": false,
|
846 |
+
"normalized": false,
|
847 |
+
"rstrip": false,
|
848 |
+
"single_word": false,
|
849 |
+
"special": true
|
850 |
+
},
|
851 |
+
"128106": {
|
852 |
+
"content": "<|reserved_special_token_98|>",
|
853 |
+
"lstrip": false,
|
854 |
+
"normalized": false,
|
855 |
+
"rstrip": false,
|
856 |
+
"single_word": false,
|
857 |
+
"special": true
|
858 |
+
},
|
859 |
+
"128107": {
|
860 |
+
"content": "<|reserved_special_token_99|>",
|
861 |
+
"lstrip": false,
|
862 |
+
"normalized": false,
|
863 |
+
"rstrip": false,
|
864 |
+
"single_word": false,
|
865 |
+
"special": true
|
866 |
+
},
|
867 |
+
"128108": {
|
868 |
+
"content": "<|reserved_special_token_100|>",
|
869 |
+
"lstrip": false,
|
870 |
+
"normalized": false,
|
871 |
+
"rstrip": false,
|
872 |
+
"single_word": false,
|
873 |
+
"special": true
|
874 |
+
},
|
875 |
+
"128109": {
|
876 |
+
"content": "<|reserved_special_token_101|>",
|
877 |
+
"lstrip": false,
|
878 |
+
"normalized": false,
|
879 |
+
"rstrip": false,
|
880 |
+
"single_word": false,
|
881 |
+
"special": true
|
882 |
+
},
|
883 |
+
"128110": {
|
884 |
+
"content": "<|reserved_special_token_102|>",
|
885 |
+
"lstrip": false,
|
886 |
+
"normalized": false,
|
887 |
+
"rstrip": false,
|
888 |
+
"single_word": false,
|
889 |
+
"special": true
|
890 |
+
},
|
891 |
+
"128111": {
|
892 |
+
"content": "<|reserved_special_token_103|>",
|
893 |
+
"lstrip": false,
|
894 |
+
"normalized": false,
|
895 |
+
"rstrip": false,
|
896 |
+
"single_word": false,
|
897 |
+
"special": true
|
898 |
+
},
|
899 |
+
"128112": {
|
900 |
+
"content": "<|reserved_special_token_104|>",
|
901 |
+
"lstrip": false,
|
902 |
+
"normalized": false,
|
903 |
+
"rstrip": false,
|
904 |
+
"single_word": false,
|
905 |
+
"special": true
|
906 |
+
},
|
907 |
+
"128113": {
|
908 |
+
"content": "<|reserved_special_token_105|>",
|
909 |
+
"lstrip": false,
|
910 |
+
"normalized": false,
|
911 |
+
"rstrip": false,
|
912 |
+
"single_word": false,
|
913 |
+
"special": true
|
914 |
+
},
|
915 |
+
"128114": {
|
916 |
+
"content": "<|reserved_special_token_106|>",
|
917 |
+
"lstrip": false,
|
918 |
+
"normalized": false,
|
919 |
+
"rstrip": false,
|
920 |
+
"single_word": false,
|
921 |
+
"special": true
|
922 |
+
},
|
923 |
+
"128115": {
|
924 |
+
"content": "<|reserved_special_token_107|>",
|
925 |
+
"lstrip": false,
|
926 |
+
"normalized": false,
|
927 |
+
"rstrip": false,
|
928 |
+
"single_word": false,
|
929 |
+
"special": true
|
930 |
+
},
|
931 |
+
"128116": {
|
932 |
+
"content": "<|reserved_special_token_108|>",
|
933 |
+
"lstrip": false,
|
934 |
+
"normalized": false,
|
935 |
+
"rstrip": false,
|
936 |
+
"single_word": false,
|
937 |
+
"special": true
|
938 |
+
},
|
939 |
+
"128117": {
|
940 |
+
"content": "<|reserved_special_token_109|>",
|
941 |
+
"lstrip": false,
|
942 |
+
"normalized": false,
|
943 |
+
"rstrip": false,
|
944 |
+
"single_word": false,
|
945 |
+
"special": true
|
946 |
+
},
|
947 |
+
"128118": {
|
948 |
+
"content": "<|reserved_special_token_110|>",
|
949 |
+
"lstrip": false,
|
950 |
+
"normalized": false,
|
951 |
+
"rstrip": false,
|
952 |
+
"single_word": false,
|
953 |
+
"special": true
|
954 |
+
},
|
955 |
+
"128119": {
|
956 |
+
"content": "<|reserved_special_token_111|>",
|
957 |
+
"lstrip": false,
|
958 |
+
"normalized": false,
|
959 |
+
"rstrip": false,
|
960 |
+
"single_word": false,
|
961 |
+
"special": true
|
962 |
+
},
|
963 |
+
"128120": {
|
964 |
+
"content": "<|reserved_special_token_112|>",
|
965 |
+
"lstrip": false,
|
966 |
+
"normalized": false,
|
967 |
+
"rstrip": false,
|
968 |
+
"single_word": false,
|
969 |
+
"special": true
|
970 |
+
},
|
971 |
+
"128121": {
|
972 |
+
"content": "<|reserved_special_token_113|>",
|
973 |
+
"lstrip": false,
|
974 |
+
"normalized": false,
|
975 |
+
"rstrip": false,
|
976 |
+
"single_word": false,
|
977 |
+
"special": true
|
978 |
+
},
|
979 |
+
"128122": {
|
980 |
+
"content": "<|reserved_special_token_114|>",
|
981 |
+
"lstrip": false,
|
982 |
+
"normalized": false,
|
983 |
+
"rstrip": false,
|
984 |
+
"single_word": false,
|
985 |
+
"special": true
|
986 |
+
},
|
987 |
+
"128123": {
|
988 |
+
"content": "<|reserved_special_token_115|>",
|
989 |
+
"lstrip": false,
|
990 |
+
"normalized": false,
|
991 |
+
"rstrip": false,
|
992 |
+
"single_word": false,
|
993 |
+
"special": true
|
994 |
+
},
|
995 |
+
"128124": {
|
996 |
+
"content": "<|reserved_special_token_116|>",
|
997 |
+
"lstrip": false,
|
998 |
+
"normalized": false,
|
999 |
+
"rstrip": false,
|
1000 |
+
"single_word": false,
|
1001 |
+
"special": true
|
1002 |
+
},
|
1003 |
+
"128125": {
|
1004 |
+
"content": "<|reserved_special_token_117|>",
|
1005 |
+
"lstrip": false,
|
1006 |
+
"normalized": false,
|
1007 |
+
"rstrip": false,
|
1008 |
+
"single_word": false,
|
1009 |
+
"special": true
|
1010 |
+
},
|
1011 |
+
"128126": {
|
1012 |
+
"content": "<|reserved_special_token_118|>",
|
1013 |
+
"lstrip": false,
|
1014 |
+
"normalized": false,
|
1015 |
+
"rstrip": false,
|
1016 |
+
"single_word": false,
|
1017 |
+
"special": true
|
1018 |
+
},
|
1019 |
+
"128127": {
|
1020 |
+
"content": "<|reserved_special_token_119|>",
|
1021 |
+
"lstrip": false,
|
1022 |
+
"normalized": false,
|
1023 |
+
"rstrip": false,
|
1024 |
+
"single_word": false,
|
1025 |
+
"special": true
|
1026 |
+
},
|
1027 |
+
"128128": {
|
1028 |
+
"content": "<|reserved_special_token_120|>",
|
1029 |
+
"lstrip": false,
|
1030 |
+
"normalized": false,
|
1031 |
+
"rstrip": false,
|
1032 |
+
"single_word": false,
|
1033 |
+
"special": true
|
1034 |
+
},
|
1035 |
+
"128129": {
|
1036 |
+
"content": "<|reserved_special_token_121|>",
|
1037 |
+
"lstrip": false,
|
1038 |
+
"normalized": false,
|
1039 |
+
"rstrip": false,
|
1040 |
+
"single_word": false,
|
1041 |
+
"special": true
|
1042 |
+
},
|
1043 |
+
"128130": {
|
1044 |
+
"content": "<|reserved_special_token_122|>",
|
1045 |
+
"lstrip": false,
|
1046 |
+
"normalized": false,
|
1047 |
+
"rstrip": false,
|
1048 |
+
"single_word": false,
|
1049 |
+
"special": true
|
1050 |
+
},
|
1051 |
+
"128131": {
|
1052 |
+
"content": "<|reserved_special_token_123|>",
|
1053 |
+
"lstrip": false,
|
1054 |
+
"normalized": false,
|
1055 |
+
"rstrip": false,
|
1056 |
+
"single_word": false,
|
1057 |
+
"special": true
|
1058 |
+
},
|
1059 |
+
"128132": {
|
1060 |
+
"content": "<|reserved_special_token_124|>",
|
1061 |
+
"lstrip": false,
|
1062 |
+
"normalized": false,
|
1063 |
+
"rstrip": false,
|
1064 |
+
"single_word": false,
|
1065 |
+
"special": true
|
1066 |
+
},
|
1067 |
+
"128133": {
|
1068 |
+
"content": "<|reserved_special_token_125|>",
|
1069 |
+
"lstrip": false,
|
1070 |
+
"normalized": false,
|
1071 |
+
"rstrip": false,
|
1072 |
+
"single_word": false,
|
1073 |
+
"special": true
|
1074 |
+
},
|
1075 |
+
"128134": {
|
1076 |
+
"content": "<|reserved_special_token_126|>",
|
1077 |
+
"lstrip": false,
|
1078 |
+
"normalized": false,
|
1079 |
+
"rstrip": false,
|
1080 |
+
"single_word": false,
|
1081 |
+
"special": true
|
1082 |
+
},
|
1083 |
+
"128135": {
|
1084 |
+
"content": "<|reserved_special_token_127|>",
|
1085 |
+
"lstrip": false,
|
1086 |
+
"normalized": false,
|
1087 |
+
"rstrip": false,
|
1088 |
+
"single_word": false,
|
1089 |
+
"special": true
|
1090 |
+
},
|
1091 |
+
"128136": {
|
1092 |
+
"content": "<|reserved_special_token_128|>",
|
1093 |
+
"lstrip": false,
|
1094 |
+
"normalized": false,
|
1095 |
+
"rstrip": false,
|
1096 |
+
"single_word": false,
|
1097 |
+
"special": true
|
1098 |
+
},
|
1099 |
+
"128137": {
|
1100 |
+
"content": "<|reserved_special_token_129|>",
|
1101 |
+
"lstrip": false,
|
1102 |
+
"normalized": false,
|
1103 |
+
"rstrip": false,
|
1104 |
+
"single_word": false,
|
1105 |
+
"special": true
|
1106 |
+
},
|
1107 |
+
"128138": {
|
1108 |
+
"content": "<|reserved_special_token_130|>",
|
1109 |
+
"lstrip": false,
|
1110 |
+
"normalized": false,
|
1111 |
+
"rstrip": false,
|
1112 |
+
"single_word": false,
|
1113 |
+
"special": true
|
1114 |
+
},
|
1115 |
+
"128139": {
|
1116 |
+
"content": "<|reserved_special_token_131|>",
|
1117 |
+
"lstrip": false,
|
1118 |
+
"normalized": false,
|
1119 |
+
"rstrip": false,
|
1120 |
+
"single_word": false,
|
1121 |
+
"special": true
|
1122 |
+
},
|
1123 |
+
"128140": {
|
1124 |
+
"content": "<|reserved_special_token_132|>",
|
1125 |
+
"lstrip": false,
|
1126 |
+
"normalized": false,
|
1127 |
+
"rstrip": false,
|
1128 |
+
"single_word": false,
|
1129 |
+
"special": true
|
1130 |
+
},
|
1131 |
+
"128141": {
|
1132 |
+
"content": "<|reserved_special_token_133|>",
|
1133 |
+
"lstrip": false,
|
1134 |
+
"normalized": false,
|
1135 |
+
"rstrip": false,
|
1136 |
+
"single_word": false,
|
1137 |
+
"special": true
|
1138 |
+
},
|
1139 |
+
"128142": {
|
1140 |
+
"content": "<|reserved_special_token_134|>",
|
1141 |
+
"lstrip": false,
|
1142 |
+
"normalized": false,
|
1143 |
+
"rstrip": false,
|
1144 |
+
"single_word": false,
|
1145 |
+
"special": true
|
1146 |
+
},
|
1147 |
+
"128143": {
|
1148 |
+
"content": "<|reserved_special_token_135|>",
|
1149 |
+
"lstrip": false,
|
1150 |
+
"normalized": false,
|
1151 |
+
"rstrip": false,
|
1152 |
+
"single_word": false,
|
1153 |
+
"special": true
|
1154 |
+
},
|
1155 |
+
"128144": {
|
1156 |
+
"content": "<|reserved_special_token_136|>",
|
1157 |
+
"lstrip": false,
|
1158 |
+
"normalized": false,
|
1159 |
+
"rstrip": false,
|
1160 |
+
"single_word": false,
|
1161 |
+
"special": true
|
1162 |
+
},
|
1163 |
+
"128145": {
|
1164 |
+
"content": "<|reserved_special_token_137|>",
|
1165 |
+
"lstrip": false,
|
1166 |
+
"normalized": false,
|
1167 |
+
"rstrip": false,
|
1168 |
+
"single_word": false,
|
1169 |
+
"special": true
|
1170 |
+
},
|
1171 |
+
"128146": {
|
1172 |
+
"content": "<|reserved_special_token_138|>",
|
1173 |
+
"lstrip": false,
|
1174 |
+
"normalized": false,
|
1175 |
+
"rstrip": false,
|
1176 |
+
"single_word": false,
|
1177 |
+
"special": true
|
1178 |
+
},
|
1179 |
+
"128147": {
|
1180 |
+
"content": "<|reserved_special_token_139|>",
|
1181 |
+
"lstrip": false,
|
1182 |
+
"normalized": false,
|
1183 |
+
"rstrip": false,
|
1184 |
+
"single_word": false,
|
1185 |
+
"special": true
|
1186 |
+
},
|
1187 |
+
"128148": {
|
1188 |
+
"content": "<|reserved_special_token_140|>",
|
1189 |
+
"lstrip": false,
|
1190 |
+
"normalized": false,
|
1191 |
+
"rstrip": false,
|
1192 |
+
"single_word": false,
|
1193 |
+
"special": true
|
1194 |
+
},
|
1195 |
+
"128149": {
|
1196 |
+
"content": "<|reserved_special_token_141|>",
|
1197 |
+
"lstrip": false,
|
1198 |
+
"normalized": false,
|
1199 |
+
"rstrip": false,
|
1200 |
+
"single_word": false,
|
1201 |
+
"special": true
|
1202 |
+
},
|
1203 |
+
"128150": {
|
1204 |
+
"content": "<|reserved_special_token_142|>",
|
1205 |
+
"lstrip": false,
|
1206 |
+
"normalized": false,
|
1207 |
+
"rstrip": false,
|
1208 |
+
"single_word": false,
|
1209 |
+
"special": true
|
1210 |
+
},
|
1211 |
+
"128151": {
|
1212 |
+
"content": "<|reserved_special_token_143|>",
|
1213 |
+
"lstrip": false,
|
1214 |
+
"normalized": false,
|
1215 |
+
"rstrip": false,
|
1216 |
+
"single_word": false,
|
1217 |
+
"special": true
|
1218 |
+
},
|
1219 |
+
"128152": {
|
1220 |
+
"content": "<|reserved_special_token_144|>",
|
1221 |
+
"lstrip": false,
|
1222 |
+
"normalized": false,
|
1223 |
+
"rstrip": false,
|
1224 |
+
"single_word": false,
|
1225 |
+
"special": true
|
1226 |
+
},
|
1227 |
+
"128153": {
|
1228 |
+
"content": "<|reserved_special_token_145|>",
|
1229 |
+
"lstrip": false,
|
1230 |
+
"normalized": false,
|
1231 |
+
"rstrip": false,
|
1232 |
+
"single_word": false,
|
1233 |
+
"special": true
|
1234 |
+
},
|
1235 |
+
"128154": {
|
1236 |
+
"content": "<|reserved_special_token_146|>",
|
1237 |
+
"lstrip": false,
|
1238 |
+
"normalized": false,
|
1239 |
+
"rstrip": false,
|
1240 |
+
"single_word": false,
|
1241 |
+
"special": true
|
1242 |
+
},
|
1243 |
+
"128155": {
|
1244 |
+
"content": "<|reserved_special_token_147|>",
|
1245 |
+
"lstrip": false,
|
1246 |
+
"normalized": false,
|
1247 |
+
"rstrip": false,
|
1248 |
+
"single_word": false,
|
1249 |
+
"special": true
|
1250 |
+
},
|
1251 |
+
"128156": {
|
1252 |
+
"content": "<|reserved_special_token_148|>",
|
1253 |
+
"lstrip": false,
|
1254 |
+
"normalized": false,
|
1255 |
+
"rstrip": false,
|
1256 |
+
"single_word": false,
|
1257 |
+
"special": true
|
1258 |
+
},
|
1259 |
+
"128157": {
|
1260 |
+
"content": "<|reserved_special_token_149|>",
|
1261 |
+
"lstrip": false,
|
1262 |
+
"normalized": false,
|
1263 |
+
"rstrip": false,
|
1264 |
+
"single_word": false,
|
1265 |
+
"special": true
|
1266 |
+
},
|
1267 |
+
"128158": {
|
1268 |
+
"content": "<|reserved_special_token_150|>",
|
1269 |
+
"lstrip": false,
|
1270 |
+
"normalized": false,
|
1271 |
+
"rstrip": false,
|
1272 |
+
"single_word": false,
|
1273 |
+
"special": true
|
1274 |
+
},
|
1275 |
+
"128159": {
|
1276 |
+
"content": "<|reserved_special_token_151|>",
|
1277 |
+
"lstrip": false,
|
1278 |
+
"normalized": false,
|
1279 |
+
"rstrip": false,
|
1280 |
+
"single_word": false,
|
1281 |
+
"special": true
|
1282 |
+
},
|
1283 |
+
"128160": {
|
1284 |
+
"content": "<|reserved_special_token_152|>",
|
1285 |
+
"lstrip": false,
|
1286 |
+
"normalized": false,
|
1287 |
+
"rstrip": false,
|
1288 |
+
"single_word": false,
|
1289 |
+
"special": true
|
1290 |
+
},
|
1291 |
+
"128161": {
|
1292 |
+
"content": "<|reserved_special_token_153|>",
|
1293 |
+
"lstrip": false,
|
1294 |
+
"normalized": false,
|
1295 |
+
"rstrip": false,
|
1296 |
+
"single_word": false,
|
1297 |
+
"special": true
|
1298 |
+
},
|
1299 |
+
"128162": {
|
1300 |
+
"content": "<|reserved_special_token_154|>",
|
1301 |
+
"lstrip": false,
|
1302 |
+
"normalized": false,
|
1303 |
+
"rstrip": false,
|
1304 |
+
"single_word": false,
|
1305 |
+
"special": true
|
1306 |
+
},
|
1307 |
+
"128163": {
|
1308 |
+
"content": "<|reserved_special_token_155|>",
|
1309 |
+
"lstrip": false,
|
1310 |
+
"normalized": false,
|
1311 |
+
"rstrip": false,
|
1312 |
+
"single_word": false,
|
1313 |
+
"special": true
|
1314 |
+
},
|
1315 |
+
"128164": {
|
1316 |
+
"content": "<|reserved_special_token_156|>",
|
1317 |
+
"lstrip": false,
|
1318 |
+
"normalized": false,
|
1319 |
+
"rstrip": false,
|
1320 |
+
"single_word": false,
|
1321 |
+
"special": true
|
1322 |
+
},
|
1323 |
+
"128165": {
|
1324 |
+
"content": "<|reserved_special_token_157|>",
|
1325 |
+
"lstrip": false,
|
1326 |
+
"normalized": false,
|
1327 |
+
"rstrip": false,
|
1328 |
+
"single_word": false,
|
1329 |
+
"special": true
|
1330 |
+
},
|
1331 |
+
"128166": {
|
1332 |
+
"content": "<|reserved_special_token_158|>",
|
1333 |
+
"lstrip": false,
|
1334 |
+
"normalized": false,
|
1335 |
+
"rstrip": false,
|
1336 |
+
"single_word": false,
|
1337 |
+
"special": true
|
1338 |
+
},
|
1339 |
+
"128167": {
|
1340 |
+
"content": "<|reserved_special_token_159|>",
|
1341 |
+
"lstrip": false,
|
1342 |
+
"normalized": false,
|
1343 |
+
"rstrip": false,
|
1344 |
+
"single_word": false,
|
1345 |
+
"special": true
|
1346 |
+
},
|
1347 |
+
"128168": {
|
1348 |
+
"content": "<|reserved_special_token_160|>",
|
1349 |
+
"lstrip": false,
|
1350 |
+
"normalized": false,
|
1351 |
+
"rstrip": false,
|
1352 |
+
"single_word": false,
|
1353 |
+
"special": true
|
1354 |
+
},
|
1355 |
+
"128169": {
|
1356 |
+
"content": "<|reserved_special_token_161|>",
|
1357 |
+
"lstrip": false,
|
1358 |
+
"normalized": false,
|
1359 |
+
"rstrip": false,
|
1360 |
+
"single_word": false,
|
1361 |
+
"special": true
|
1362 |
+
},
|
1363 |
+
"128170": {
|
1364 |
+
"content": "<|reserved_special_token_162|>",
|
1365 |
+
"lstrip": false,
|
1366 |
+
"normalized": false,
|
1367 |
+
"rstrip": false,
|
1368 |
+
"single_word": false,
|
1369 |
+
"special": true
|
1370 |
+
},
|
1371 |
+
"128171": {
|
1372 |
+
"content": "<|reserved_special_token_163|>",
|
1373 |
+
"lstrip": false,
|
1374 |
+
"normalized": false,
|
1375 |
+
"rstrip": false,
|
1376 |
+
"single_word": false,
|
1377 |
+
"special": true
|
1378 |
+
},
|
1379 |
+
"128172": {
|
1380 |
+
"content": "<|reserved_special_token_164|>",
|
1381 |
+
"lstrip": false,
|
1382 |
+
"normalized": false,
|
1383 |
+
"rstrip": false,
|
1384 |
+
"single_word": false,
|
1385 |
+
"special": true
|
1386 |
+
},
|
1387 |
+
"128173": {
|
1388 |
+
"content": "<|reserved_special_token_165|>",
|
1389 |
+
"lstrip": false,
|
1390 |
+
"normalized": false,
|
1391 |
+
"rstrip": false,
|
1392 |
+
"single_word": false,
|
1393 |
+
"special": true
|
1394 |
+
},
|
1395 |
+
"128174": {
|
1396 |
+
"content": "<|reserved_special_token_166|>",
|
1397 |
+
"lstrip": false,
|
1398 |
+
"normalized": false,
|
1399 |
+
"rstrip": false,
|
1400 |
+
"single_word": false,
|
1401 |
+
"special": true
|
1402 |
+
},
|
1403 |
+
"128175": {
|
1404 |
+
"content": "<|reserved_special_token_167|>",
|
1405 |
+
"lstrip": false,
|
1406 |
+
"normalized": false,
|
1407 |
+
"rstrip": false,
|
1408 |
+
"single_word": false,
|
1409 |
+
"special": true
|
1410 |
+
},
|
1411 |
+
"128176": {
|
1412 |
+
"content": "<|reserved_special_token_168|>",
|
1413 |
+
"lstrip": false,
|
1414 |
+
"normalized": false,
|
1415 |
+
"rstrip": false,
|
1416 |
+
"single_word": false,
|
1417 |
+
"special": true
|
1418 |
+
},
|
1419 |
+
"128177": {
|
1420 |
+
"content": "<|reserved_special_token_169|>",
|
1421 |
+
"lstrip": false,
|
1422 |
+
"normalized": false,
|
1423 |
+
"rstrip": false,
|
1424 |
+
"single_word": false,
|
1425 |
+
"special": true
|
1426 |
+
},
|
1427 |
+
"128178": {
|
1428 |
+
"content": "<|reserved_special_token_170|>",
|
1429 |
+
"lstrip": false,
|
1430 |
+
"normalized": false,
|
1431 |
+
"rstrip": false,
|
1432 |
+
"single_word": false,
|
1433 |
+
"special": true
|
1434 |
+
},
|
1435 |
+
"128179": {
|
1436 |
+
"content": "<|reserved_special_token_171|>",
|
1437 |
+
"lstrip": false,
|
1438 |
+
"normalized": false,
|
1439 |
+
"rstrip": false,
|
1440 |
+
"single_word": false,
|
1441 |
+
"special": true
|
1442 |
+
},
|
1443 |
+
"128180": {
|
1444 |
+
"content": "<|reserved_special_token_172|>",
|
1445 |
+
"lstrip": false,
|
1446 |
+
"normalized": false,
|
1447 |
+
"rstrip": false,
|
1448 |
+
"single_word": false,
|
1449 |
+
"special": true
|
1450 |
+
},
|
1451 |
+
"128181": {
|
1452 |
+
"content": "<|reserved_special_token_173|>",
|
1453 |
+
"lstrip": false,
|
1454 |
+
"normalized": false,
|
1455 |
+
"rstrip": false,
|
1456 |
+
"single_word": false,
|
1457 |
+
"special": true
|
1458 |
+
},
|
1459 |
+
"128182": {
|
1460 |
+
"content": "<|reserved_special_token_174|>",
|
1461 |
+
"lstrip": false,
|
1462 |
+
"normalized": false,
|
1463 |
+
"rstrip": false,
|
1464 |
+
"single_word": false,
|
1465 |
+
"special": true
|
1466 |
+
},
|
1467 |
+
"128183": {
|
1468 |
+
"content": "<|reserved_special_token_175|>",
|
1469 |
+
"lstrip": false,
|
1470 |
+
"normalized": false,
|
1471 |
+
"rstrip": false,
|
1472 |
+
"single_word": false,
|
1473 |
+
"special": true
|
1474 |
+
},
|
1475 |
+
"128184": {
|
1476 |
+
"content": "<|reserved_special_token_176|>",
|
1477 |
+
"lstrip": false,
|
1478 |
+
"normalized": false,
|
1479 |
+
"rstrip": false,
|
1480 |
+
"single_word": false,
|
1481 |
+
"special": true
|
1482 |
+
},
|
1483 |
+
"128185": {
|
1484 |
+
"content": "<|reserved_special_token_177|>",
|
1485 |
+
"lstrip": false,
|
1486 |
+
"normalized": false,
|
1487 |
+
"rstrip": false,
|
1488 |
+
"single_word": false,
|
1489 |
+
"special": true
|
1490 |
+
},
|
1491 |
+
"128186": {
|
1492 |
+
"content": "<|reserved_special_token_178|>",
|
1493 |
+
"lstrip": false,
|
1494 |
+
"normalized": false,
|
1495 |
+
"rstrip": false,
|
1496 |
+
"single_word": false,
|
1497 |
+
"special": true
|
1498 |
+
},
|
1499 |
+
"128187": {
|
1500 |
+
"content": "<|reserved_special_token_179|>",
|
1501 |
+
"lstrip": false,
|
1502 |
+
"normalized": false,
|
1503 |
+
"rstrip": false,
|
1504 |
+
"single_word": false,
|
1505 |
+
"special": true
|
1506 |
+
},
|
1507 |
+
"128188": {
|
1508 |
+
"content": "<|reserved_special_token_180|>",
|
1509 |
+
"lstrip": false,
|
1510 |
+
"normalized": false,
|
1511 |
+
"rstrip": false,
|
1512 |
+
"single_word": false,
|
1513 |
+
"special": true
|
1514 |
+
},
|
1515 |
+
"128189": {
|
1516 |
+
"content": "<|reserved_special_token_181|>",
|
1517 |
+
"lstrip": false,
|
1518 |
+
"normalized": false,
|
1519 |
+
"rstrip": false,
|
1520 |
+
"single_word": false,
|
1521 |
+
"special": true
|
1522 |
+
},
|
1523 |
+
"128190": {
|
1524 |
+
"content": "<|reserved_special_token_182|>",
|
1525 |
+
"lstrip": false,
|
1526 |
+
"normalized": false,
|
1527 |
+
"rstrip": false,
|
1528 |
+
"single_word": false,
|
1529 |
+
"special": true
|
1530 |
+
},
|
1531 |
+
"128191": {
|
1532 |
+
"content": "<|reserved_special_token_183|>",
|
1533 |
+
"lstrip": false,
|
1534 |
+
"normalized": false,
|
1535 |
+
"rstrip": false,
|
1536 |
+
"single_word": false,
|
1537 |
+
"special": true
|
1538 |
+
},
|
1539 |
+
"128192": {
|
1540 |
+
"content": "<|reserved_special_token_184|>",
|
1541 |
+
"lstrip": false,
|
1542 |
+
"normalized": false,
|
1543 |
+
"rstrip": false,
|
1544 |
+
"single_word": false,
|
1545 |
+
"special": true
|
1546 |
+
},
|
1547 |
+
"128193": {
|
1548 |
+
"content": "<|reserved_special_token_185|>",
|
1549 |
+
"lstrip": false,
|
1550 |
+
"normalized": false,
|
1551 |
+
"rstrip": false,
|
1552 |
+
"single_word": false,
|
1553 |
+
"special": true
|
1554 |
+
},
|
1555 |
+
"128194": {
|
1556 |
+
"content": "<|reserved_special_token_186|>",
|
1557 |
+
"lstrip": false,
|
1558 |
+
"normalized": false,
|
1559 |
+
"rstrip": false,
|
1560 |
+
"single_word": false,
|
1561 |
+
"special": true
|
1562 |
+
},
|
1563 |
+
"128195": {
|
1564 |
+
"content": "<|reserved_special_token_187|>",
|
1565 |
+
"lstrip": false,
|
1566 |
+
"normalized": false,
|
1567 |
+
"rstrip": false,
|
1568 |
+
"single_word": false,
|
1569 |
+
"special": true
|
1570 |
+
},
|
1571 |
+
"128196": {
|
1572 |
+
"content": "<|reserved_special_token_188|>",
|
1573 |
+
"lstrip": false,
|
1574 |
+
"normalized": false,
|
1575 |
+
"rstrip": false,
|
1576 |
+
"single_word": false,
|
1577 |
+
"special": true
|
1578 |
+
},
|
1579 |
+
"128197": {
|
1580 |
+
"content": "<|reserved_special_token_189|>",
|
1581 |
+
"lstrip": false,
|
1582 |
+
"normalized": false,
|
1583 |
+
"rstrip": false,
|
1584 |
+
"single_word": false,
|
1585 |
+
"special": true
|
1586 |
+
},
|
1587 |
+
"128198": {
|
1588 |
+
"content": "<|reserved_special_token_190|>",
|
1589 |
+
"lstrip": false,
|
1590 |
+
"normalized": false,
|
1591 |
+
"rstrip": false,
|
1592 |
+
"single_word": false,
|
1593 |
+
"special": true
|
1594 |
+
},
|
1595 |
+
"128199": {
|
1596 |
+
"content": "<|reserved_special_token_191|>",
|
1597 |
+
"lstrip": false,
|
1598 |
+
"normalized": false,
|
1599 |
+
"rstrip": false,
|
1600 |
+
"single_word": false,
|
1601 |
+
"special": true
|
1602 |
+
},
|
1603 |
+
"128200": {
|
1604 |
+
"content": "<|reserved_special_token_192|>",
|
1605 |
+
"lstrip": false,
|
1606 |
+
"normalized": false,
|
1607 |
+
"rstrip": false,
|
1608 |
+
"single_word": false,
|
1609 |
+
"special": true
|
1610 |
+
},
|
1611 |
+
"128201": {
|
1612 |
+
"content": "<|reserved_special_token_193|>",
|
1613 |
+
"lstrip": false,
|
1614 |
+
"normalized": false,
|
1615 |
+
"rstrip": false,
|
1616 |
+
"single_word": false,
|
1617 |
+
"special": true
|
1618 |
+
},
|
1619 |
+
"128202": {
|
1620 |
+
"content": "<|reserved_special_token_194|>",
|
1621 |
+
"lstrip": false,
|
1622 |
+
"normalized": false,
|
1623 |
+
"rstrip": false,
|
1624 |
+
"single_word": false,
|
1625 |
+
"special": true
|
1626 |
+
},
|
1627 |
+
"128203": {
|
1628 |
+
"content": "<|reserved_special_token_195|>",
|
1629 |
+
"lstrip": false,
|
1630 |
+
"normalized": false,
|
1631 |
+
"rstrip": false,
|
1632 |
+
"single_word": false,
|
1633 |
+
"special": true
|
1634 |
+
},
|
1635 |
+
"128204": {
|
1636 |
+
"content": "<|reserved_special_token_196|>",
|
1637 |
+
"lstrip": false,
|
1638 |
+
"normalized": false,
|
1639 |
+
"rstrip": false,
|
1640 |
+
"single_word": false,
|
1641 |
+
"special": true
|
1642 |
+
},
|
1643 |
+
"128205": {
|
1644 |
+
"content": "<|reserved_special_token_197|>",
|
1645 |
+
"lstrip": false,
|
1646 |
+
"normalized": false,
|
1647 |
+
"rstrip": false,
|
1648 |
+
"single_word": false,
|
1649 |
+
"special": true
|
1650 |
+
},
|
1651 |
+
"128206": {
|
1652 |
+
"content": "<|reserved_special_token_198|>",
|
1653 |
+
"lstrip": false,
|
1654 |
+
"normalized": false,
|
1655 |
+
"rstrip": false,
|
1656 |
+
"single_word": false,
|
1657 |
+
"special": true
|
1658 |
+
},
|
1659 |
+
"128207": {
|
1660 |
+
"content": "<|reserved_special_token_199|>",
|
1661 |
+
"lstrip": false,
|
1662 |
+
"normalized": false,
|
1663 |
+
"rstrip": false,
|
1664 |
+
"single_word": false,
|
1665 |
+
"special": true
|
1666 |
+
},
|
1667 |
+
"128208": {
|
1668 |
+
"content": "<|reserved_special_token_200|>",
|
1669 |
+
"lstrip": false,
|
1670 |
+
"normalized": false,
|
1671 |
+
"rstrip": false,
|
1672 |
+
"single_word": false,
|
1673 |
+
"special": true
|
1674 |
+
},
|
1675 |
+
"128209": {
|
1676 |
+
"content": "<|reserved_special_token_201|>",
|
1677 |
+
"lstrip": false,
|
1678 |
+
"normalized": false,
|
1679 |
+
"rstrip": false,
|
1680 |
+
"single_word": false,
|
1681 |
+
"special": true
|
1682 |
+
},
|
1683 |
+
"128210": {
|
1684 |
+
"content": "<|reserved_special_token_202|>",
|
1685 |
+
"lstrip": false,
|
1686 |
+
"normalized": false,
|
1687 |
+
"rstrip": false,
|
1688 |
+
"single_word": false,
|
1689 |
+
"special": true
|
1690 |
+
},
|
1691 |
+
"128211": {
|
1692 |
+
"content": "<|reserved_special_token_203|>",
|
1693 |
+
"lstrip": false,
|
1694 |
+
"normalized": false,
|
1695 |
+
"rstrip": false,
|
1696 |
+
"single_word": false,
|
1697 |
+
"special": true
|
1698 |
+
},
|
1699 |
+
"128212": {
|
1700 |
+
"content": "<|reserved_special_token_204|>",
|
1701 |
+
"lstrip": false,
|
1702 |
+
"normalized": false,
|
1703 |
+
"rstrip": false,
|
1704 |
+
"single_word": false,
|
1705 |
+
"special": true
|
1706 |
+
},
|
1707 |
+
"128213": {
|
1708 |
+
"content": "<|reserved_special_token_205|>",
|
1709 |
+
"lstrip": false,
|
1710 |
+
"normalized": false,
|
1711 |
+
"rstrip": false,
|
1712 |
+
"single_word": false,
|
1713 |
+
"special": true
|
1714 |
+
},
|
1715 |
+
"128214": {
|
1716 |
+
"content": "<|reserved_special_token_206|>",
|
1717 |
+
"lstrip": false,
|
1718 |
+
"normalized": false,
|
1719 |
+
"rstrip": false,
|
1720 |
+
"single_word": false,
|
1721 |
+
"special": true
|
1722 |
+
},
|
1723 |
+
"128215": {
|
1724 |
+
"content": "<|reserved_special_token_207|>",
|
1725 |
+
"lstrip": false,
|
1726 |
+
"normalized": false,
|
1727 |
+
"rstrip": false,
|
1728 |
+
"single_word": false,
|
1729 |
+
"special": true
|
1730 |
+
},
|
1731 |
+
"128216": {
|
1732 |
+
"content": "<|reserved_special_token_208|>",
|
1733 |
+
"lstrip": false,
|
1734 |
+
"normalized": false,
|
1735 |
+
"rstrip": false,
|
1736 |
+
"single_word": false,
|
1737 |
+
"special": true
|
1738 |
+
},
|
1739 |
+
"128217": {
|
1740 |
+
"content": "<|reserved_special_token_209|>",
|
1741 |
+
"lstrip": false,
|
1742 |
+
"normalized": false,
|
1743 |
+
"rstrip": false,
|
1744 |
+
"single_word": false,
|
1745 |
+
"special": true
|
1746 |
+
},
|
1747 |
+
"128218": {
|
1748 |
+
"content": "<|reserved_special_token_210|>",
|
1749 |
+
"lstrip": false,
|
1750 |
+
"normalized": false,
|
1751 |
+
"rstrip": false,
|
1752 |
+
"single_word": false,
|
1753 |
+
"special": true
|
1754 |
+
},
|
1755 |
+
"128219": {
|
1756 |
+
"content": "<|reserved_special_token_211|>",
|
1757 |
+
"lstrip": false,
|
1758 |
+
"normalized": false,
|
1759 |
+
"rstrip": false,
|
1760 |
+
"single_word": false,
|
1761 |
+
"special": true
|
1762 |
+
},
|
1763 |
+
"128220": {
|
1764 |
+
"content": "<|reserved_special_token_212|>",
|
1765 |
+
"lstrip": false,
|
1766 |
+
"normalized": false,
|
1767 |
+
"rstrip": false,
|
1768 |
+
"single_word": false,
|
1769 |
+
"special": true
|
1770 |
+
},
|
1771 |
+
"128221": {
|
1772 |
+
"content": "<|reserved_special_token_213|>",
|
1773 |
+
"lstrip": false,
|
1774 |
+
"normalized": false,
|
1775 |
+
"rstrip": false,
|
1776 |
+
"single_word": false,
|
1777 |
+
"special": true
|
1778 |
+
},
|
1779 |
+
"128222": {
|
1780 |
+
"content": "<|reserved_special_token_214|>",
|
1781 |
+
"lstrip": false,
|
1782 |
+
"normalized": false,
|
1783 |
+
"rstrip": false,
|
1784 |
+
"single_word": false,
|
1785 |
+
"special": true
|
1786 |
+
},
|
1787 |
+
"128223": {
|
1788 |
+
"content": "<|reserved_special_token_215|>",
|
1789 |
+
"lstrip": false,
|
1790 |
+
"normalized": false,
|
1791 |
+
"rstrip": false,
|
1792 |
+
"single_word": false,
|
1793 |
+
"special": true
|
1794 |
+
},
|
1795 |
+
"128224": {
|
1796 |
+
"content": "<|reserved_special_token_216|>",
|
1797 |
+
"lstrip": false,
|
1798 |
+
"normalized": false,
|
1799 |
+
"rstrip": false,
|
1800 |
+
"single_word": false,
|
1801 |
+
"special": true
|
1802 |
+
},
|
1803 |
+
"128225": {
|
1804 |
+
"content": "<|reserved_special_token_217|>",
|
1805 |
+
"lstrip": false,
|
1806 |
+
"normalized": false,
|
1807 |
+
"rstrip": false,
|
1808 |
+
"single_word": false,
|
1809 |
+
"special": true
|
1810 |
+
},
|
1811 |
+
"128226": {
|
1812 |
+
"content": "<|reserved_special_token_218|>",
|
1813 |
+
"lstrip": false,
|
1814 |
+
"normalized": false,
|
1815 |
+
"rstrip": false,
|
1816 |
+
"single_word": false,
|
1817 |
+
"special": true
|
1818 |
+
},
|
1819 |
+
"128227": {
|
1820 |
+
"content": "<|reserved_special_token_219|>",
|
1821 |
+
"lstrip": false,
|
1822 |
+
"normalized": false,
|
1823 |
+
"rstrip": false,
|
1824 |
+
"single_word": false,
|
1825 |
+
"special": true
|
1826 |
+
},
|
1827 |
+
"128228": {
|
1828 |
+
"content": "<|reserved_special_token_220|>",
|
1829 |
+
"lstrip": false,
|
1830 |
+
"normalized": false,
|
1831 |
+
"rstrip": false,
|
1832 |
+
"single_word": false,
|
1833 |
+
"special": true
|
1834 |
+
},
|
1835 |
+
"128229": {
|
1836 |
+
"content": "<|reserved_special_token_221|>",
|
1837 |
+
"lstrip": false,
|
1838 |
+
"normalized": false,
|
1839 |
+
"rstrip": false,
|
1840 |
+
"single_word": false,
|
1841 |
+
"special": true
|
1842 |
+
},
|
1843 |
+
"128230": {
|
1844 |
+
"content": "<|reserved_special_token_222|>",
|
1845 |
+
"lstrip": false,
|
1846 |
+
"normalized": false,
|
1847 |
+
"rstrip": false,
|
1848 |
+
"single_word": false,
|
1849 |
+
"special": true
|
1850 |
+
},
|
1851 |
+
"128231": {
|
1852 |
+
"content": "<|reserved_special_token_223|>",
|
1853 |
+
"lstrip": false,
|
1854 |
+
"normalized": false,
|
1855 |
+
"rstrip": false,
|
1856 |
+
"single_word": false,
|
1857 |
+
"special": true
|
1858 |
+
},
|
1859 |
+
"128232": {
|
1860 |
+
"content": "<|reserved_special_token_224|>",
|
1861 |
+
"lstrip": false,
|
1862 |
+
"normalized": false,
|
1863 |
+
"rstrip": false,
|
1864 |
+
"single_word": false,
|
1865 |
+
"special": true
|
1866 |
+
},
|
1867 |
+
"128233": {
|
1868 |
+
"content": "<|reserved_special_token_225|>",
|
1869 |
+
"lstrip": false,
|
1870 |
+
"normalized": false,
|
1871 |
+
"rstrip": false,
|
1872 |
+
"single_word": false,
|
1873 |
+
"special": true
|
1874 |
+
},
|
1875 |
+
"128234": {
|
1876 |
+
"content": "<|reserved_special_token_226|>",
|
1877 |
+
"lstrip": false,
|
1878 |
+
"normalized": false,
|
1879 |
+
"rstrip": false,
|
1880 |
+
"single_word": false,
|
1881 |
+
"special": true
|
1882 |
+
},
|
1883 |
+
"128235": {
|
1884 |
+
"content": "<|reserved_special_token_227|>",
|
1885 |
+
"lstrip": false,
|
1886 |
+
"normalized": false,
|
1887 |
+
"rstrip": false,
|
1888 |
+
"single_word": false,
|
1889 |
+
"special": true
|
1890 |
+
},
|
1891 |
+
"128236": {
|
1892 |
+
"content": "<|reserved_special_token_228|>",
|
1893 |
+
"lstrip": false,
|
1894 |
+
"normalized": false,
|
1895 |
+
"rstrip": false,
|
1896 |
+
"single_word": false,
|
1897 |
+
"special": true
|
1898 |
+
},
|
1899 |
+
"128237": {
|
1900 |
+
"content": "<|reserved_special_token_229|>",
|
1901 |
+
"lstrip": false,
|
1902 |
+
"normalized": false,
|
1903 |
+
"rstrip": false,
|
1904 |
+
"single_word": false,
|
1905 |
+
"special": true
|
1906 |
+
},
|
1907 |
+
"128238": {
|
1908 |
+
"content": "<|reserved_special_token_230|>",
|
1909 |
+
"lstrip": false,
|
1910 |
+
"normalized": false,
|
1911 |
+
"rstrip": false,
|
1912 |
+
"single_word": false,
|
1913 |
+
"special": true
|
1914 |
+
},
|
1915 |
+
"128239": {
|
1916 |
+
"content": "<|reserved_special_token_231|>",
|
1917 |
+
"lstrip": false,
|
1918 |
+
"normalized": false,
|
1919 |
+
"rstrip": false,
|
1920 |
+
"single_word": false,
|
1921 |
+
"special": true
|
1922 |
+
},
|
1923 |
+
"128240": {
|
1924 |
+
"content": "<|reserved_special_token_232|>",
|
1925 |
+
"lstrip": false,
|
1926 |
+
"normalized": false,
|
1927 |
+
"rstrip": false,
|
1928 |
+
"single_word": false,
|
1929 |
+
"special": true
|
1930 |
+
},
|
1931 |
+
"128241": {
|
1932 |
+
"content": "<|reserved_special_token_233|>",
|
1933 |
+
"lstrip": false,
|
1934 |
+
"normalized": false,
|
1935 |
+
"rstrip": false,
|
1936 |
+
"single_word": false,
|
1937 |
+
"special": true
|
1938 |
+
},
|
1939 |
+
"128242": {
|
1940 |
+
"content": "<|reserved_special_token_234|>",
|
1941 |
+
"lstrip": false,
|
1942 |
+
"normalized": false,
|
1943 |
+
"rstrip": false,
|
1944 |
+
"single_word": false,
|
1945 |
+
"special": true
|
1946 |
+
},
|
1947 |
+
"128243": {
|
1948 |
+
"content": "<|reserved_special_token_235|>",
|
1949 |
+
"lstrip": false,
|
1950 |
+
"normalized": false,
|
1951 |
+
"rstrip": false,
|
1952 |
+
"single_word": false,
|
1953 |
+
"special": true
|
1954 |
+
},
|
1955 |
+
"128244": {
|
1956 |
+
"content": "<|reserved_special_token_236|>",
|
1957 |
+
"lstrip": false,
|
1958 |
+
"normalized": false,
|
1959 |
+
"rstrip": false,
|
1960 |
+
"single_word": false,
|
1961 |
+
"special": true
|
1962 |
+
},
|
1963 |
+
"128245": {
|
1964 |
+
"content": "<|reserved_special_token_237|>",
|
1965 |
+
"lstrip": false,
|
1966 |
+
"normalized": false,
|
1967 |
+
"rstrip": false,
|
1968 |
+
"single_word": false,
|
1969 |
+
"special": true
|
1970 |
+
},
|
1971 |
+
"128246": {
|
1972 |
+
"content": "<|reserved_special_token_238|>",
|
1973 |
+
"lstrip": false,
|
1974 |
+
"normalized": false,
|
1975 |
+
"rstrip": false,
|
1976 |
+
"single_word": false,
|
1977 |
+
"special": true
|
1978 |
+
},
|
1979 |
+
"128247": {
|
1980 |
+
"content": "<|reserved_special_token_239|>",
|
1981 |
+
"lstrip": false,
|
1982 |
+
"normalized": false,
|
1983 |
+
"rstrip": false,
|
1984 |
+
"single_word": false,
|
1985 |
+
"special": true
|
1986 |
+
},
|
1987 |
+
"128248": {
|
1988 |
+
"content": "<|reserved_special_token_240|>",
|
1989 |
+
"lstrip": false,
|
1990 |
+
"normalized": false,
|
1991 |
+
"rstrip": false,
|
1992 |
+
"single_word": false,
|
1993 |
+
"special": true
|
1994 |
+
},
|
1995 |
+
"128249": {
|
1996 |
+
"content": "<|reserved_special_token_241|>",
|
1997 |
+
"lstrip": false,
|
1998 |
+
"normalized": false,
|
1999 |
+
"rstrip": false,
|
2000 |
+
"single_word": false,
|
2001 |
+
"special": true
|
2002 |
+
},
|
2003 |
+
"128250": {
|
2004 |
+
"content": "<|reserved_special_token_242|>",
|
2005 |
+
"lstrip": false,
|
2006 |
+
"normalized": false,
|
2007 |
+
"rstrip": false,
|
2008 |
+
"single_word": false,
|
2009 |
+
"special": true
|
2010 |
+
},
|
2011 |
+
"128251": {
|
2012 |
+
"content": "<|reserved_special_token_243|>",
|
2013 |
+
"lstrip": false,
|
2014 |
+
"normalized": false,
|
2015 |
+
"rstrip": false,
|
2016 |
+
"single_word": false,
|
2017 |
+
"special": true
|
2018 |
+
},
|
2019 |
+
"128252": {
|
2020 |
+
"content": "<|reserved_special_token_244|>",
|
2021 |
+
"lstrip": false,
|
2022 |
+
"normalized": false,
|
2023 |
+
"rstrip": false,
|
2024 |
+
"single_word": false,
|
2025 |
+
"special": true
|
2026 |
+
},
|
2027 |
+
"128253": {
|
2028 |
+
"content": "<|reserved_special_token_245|>",
|
2029 |
+
"lstrip": false,
|
2030 |
+
"normalized": false,
|
2031 |
+
"rstrip": false,
|
2032 |
+
"single_word": false,
|
2033 |
+
"special": true
|
2034 |
+
},
|
2035 |
+
"128254": {
|
2036 |
+
"content": "<|reserved_special_token_246|>",
|
2037 |
+
"lstrip": false,
|
2038 |
+
"normalized": false,
|
2039 |
+
"rstrip": false,
|
2040 |
+
"single_word": false,
|
2041 |
+
"special": true
|
2042 |
+
},
|
2043 |
+
"128255": {
|
2044 |
+
"content": "<|reserved_special_token_247|>",
|
2045 |
+
"lstrip": false,
|
2046 |
+
"normalized": false,
|
2047 |
+
"rstrip": false,
|
2048 |
+
"single_word": false,
|
2049 |
+
"special": true
|
2050 |
+
},
|
2051 |
+
"128256": {
|
2052 |
+
"content": "[PAD]",
|
2053 |
+
"lstrip": false,
|
2054 |
+
"normalized": false,
|
2055 |
+
"rstrip": false,
|
2056 |
+
"single_word": false,
|
2057 |
+
"special": true
|
2058 |
+
},
|
2059 |
+
"128257": {
|
2060 |
+
"content": "🅁",
|
2061 |
+
"lstrip": true,
|
2062 |
+
"normalized": true,
|
2063 |
+
"rstrip": false,
|
2064 |
+
"single_word": false,
|
2065 |
+
"special": false
|
2066 |
+
}
|
2067 |
+
},
|
2068 |
+
"bos_token": "<|begin_of_text|>",
|
2069 |
+
"clean_up_tokenization_spaces": true,
|
2070 |
+
"eos_token": "<|end_of_text|>",
|
2071 |
+
"model_input_names": [
|
2072 |
+
"input_ids",
|
2073 |
+
"attention_mask"
|
2074 |
+
],
|
2075 |
+
"model_max_length": 131072,
|
2076 |
+
"pad_token": "[PAD]",
|
2077 |
+
"tokenizer_class": "PreTrainedTokenizerFast"
|
2078 |
+
}
|
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1500/trainer_state.json
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 7.18562874251497,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 1500,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.718562874251497,
|
13 |
+
"grad_norm": 0.661852240562439,
|
14 |
+
"learning_rate": 4.6899038461538465e-05,
|
15 |
+
"loss": 2.1718,
|
16 |
+
"step": 150
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 1.437125748502994,
|
20 |
+
"grad_norm": 0.7592059373855591,
|
21 |
+
"learning_rate": 4.329326923076924e-05,
|
22 |
+
"loss": 1.5828,
|
23 |
+
"step": 300
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 2.155688622754491,
|
27 |
+
"grad_norm": 0.6453707218170166,
|
28 |
+
"learning_rate": 3.96875e-05,
|
29 |
+
"loss": 1.478,
|
30 |
+
"step": 450
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 2.874251497005988,
|
34 |
+
"grad_norm": 0.6175025105476379,
|
35 |
+
"learning_rate": 3.608173076923077e-05,
|
36 |
+
"loss": 1.4098,
|
37 |
+
"step": 600
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 3.592814371257485,
|
41 |
+
"grad_norm": 0.7075008749961853,
|
42 |
+
"learning_rate": 3.247596153846154e-05,
|
43 |
+
"loss": 1.3483,
|
44 |
+
"step": 750
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 4.311377245508982,
|
48 |
+
"grad_norm": 0.8413554430007935,
|
49 |
+
"learning_rate": 2.8870192307692306e-05,
|
50 |
+
"loss": 1.3009,
|
51 |
+
"step": 900
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 5.029940119760479,
|
55 |
+
"grad_norm": 0.9734054207801819,
|
56 |
+
"learning_rate": 2.5264423076923078e-05,
|
57 |
+
"loss": 1.2617,
|
58 |
+
"step": 1050
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 5.748502994011976,
|
62 |
+
"grad_norm": 0.8429175019264221,
|
63 |
+
"learning_rate": 2.1658653846153847e-05,
|
64 |
+
"loss": 1.1814,
|
65 |
+
"step": 1200
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 6.467065868263473,
|
69 |
+
"grad_norm": 0.9255201816558838,
|
70 |
+
"learning_rate": 1.8052884615384616e-05,
|
71 |
+
"loss": 1.1207,
|
72 |
+
"step": 1350
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 7.18562874251497,
|
76 |
+
"grad_norm": 1.2465689182281494,
|
77 |
+
"learning_rate": 1.4447115384615385e-05,
|
78 |
+
"loss": 1.0608,
|
79 |
+
"step": 1500
|
80 |
+
}
|
81 |
+
],
|
82 |
+
"logging_steps": 150,
|
83 |
+
"max_steps": 2080,
|
84 |
+
"num_input_tokens_seen": 0,
|
85 |
+
"num_train_epochs": 10,
|
86 |
+
"save_steps": 150,
|
87 |
+
"stateful_callbacks": {
|
88 |
+
"TrainerControl": {
|
89 |
+
"args": {
|
90 |
+
"should_epoch_stop": false,
|
91 |
+
"should_evaluate": false,
|
92 |
+
"should_log": false,
|
93 |
+
"should_save": true,
|
94 |
+
"should_training_stop": false
|
95 |
+
},
|
96 |
+
"attributes": {}
|
97 |
+
}
|
98 |
+
},
|
99 |
+
"total_flos": 2.1821163744893338e+18,
|
100 |
+
"train_batch_size": 3,
|
101 |
+
"trial_name": null,
|
102 |
+
"trial_params": null
|
103 |
+
}
|
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1500/zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1650/config.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "meta-llama/Llama-3.2-3B",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 128000,
|
9 |
+
"eos_token_id": 128001,
|
10 |
+
"head_dim": 128,
|
11 |
+
"hidden_act": "silu",
|
12 |
+
"hidden_size": 3072,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 8192,
|
15 |
+
"max_position_embeddings": 131072,
|
16 |
+
"mlp_bias": false,
|
17 |
+
"model_type": "llama",
|
18 |
+
"num_attention_heads": 24,
|
19 |
+
"num_hidden_layers": 28,
|
20 |
+
"num_key_value_heads": 8,
|
21 |
+
"pretraining_tp": 1,
|
22 |
+
"rms_norm_eps": 1e-05,
|
23 |
+
"rope_scaling": {
|
24 |
+
"factor": 32.0,
|
25 |
+
"high_freq_factor": 4.0,
|
26 |
+
"low_freq_factor": 1.0,
|
27 |
+
"original_max_position_embeddings": 8192,
|
28 |
+
"rope_type": "llama3"
|
29 |
+
},
|
30 |
+
"rope_theta": 500000.0,
|
31 |
+
"tie_word_embeddings": true,
|
32 |
+
"torch_dtype": "float16",
|
33 |
+
"transformers_version": "4.45.1",
|
34 |
+
"use_cache": true,
|
35 |
+
"vocab_size": 128256
|
36 |
+
}
|
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1650/generation_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 128000,
|
4 |
+
"do_sample": true,
|
5 |
+
"eos_token_id": 128001,
|
6 |
+
"temperature": 0.6,
|
7 |
+
"top_p": 0.9,
|
8 |
+
"transformers_version": "4.45.1"
|
9 |
+
}
|
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1650/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step1650
|
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1650/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c146f631f86bf0f652d7a36cc3ef8abae906fa1b54abb7af60635fac7919c55
|
3 |
+
size 20599
|
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1650/rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:595fa5c22607d6ab832d0b14385e9e6b9bfeb5d4c181d0acb849edd1df3e66a1
|
3 |
+
size 20599
|
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1650/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe730d7c46d9e44b7cee973c364bc4ff93710ee1b6faa309a35e497360023b72
|
3 |
+
size 627
|
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1650/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d396f0642c83730ebff54eaafc7dfb38092d5d41fd28ce6ebbd56ec539612e4b
|
3 |
+
size 6011
|
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1650/zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1800/config.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "meta-llama/Llama-3.2-3B",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 128000,
|
9 |
+
"eos_token_id": 128001,
|
10 |
+
"head_dim": 128,
|
11 |
+
"hidden_act": "silu",
|
12 |
+
"hidden_size": 3072,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 8192,
|
15 |
+
"max_position_embeddings": 131072,
|
16 |
+
"mlp_bias": false,
|
17 |
+
"model_type": "llama",
|
18 |
+
"num_attention_heads": 24,
|
19 |
+
"num_hidden_layers": 28,
|
20 |
+
"num_key_value_heads": 8,
|
21 |
+
"pretraining_tp": 1,
|
22 |
+
"rms_norm_eps": 1e-05,
|
23 |
+
"rope_scaling": {
|
24 |
+
"factor": 32.0,
|
25 |
+
"high_freq_factor": 4.0,
|
26 |
+
"low_freq_factor": 1.0,
|
27 |
+
"original_max_position_embeddings": 8192,
|
28 |
+
"rope_type": "llama3"
|
29 |
+
},
|
30 |
+
"rope_theta": 500000.0,
|
31 |
+
"tie_word_embeddings": true,
|
32 |
+
"torch_dtype": "float16",
|
33 |
+
"transformers_version": "4.45.1",
|
34 |
+
"use_cache": true,
|
35 |
+
"vocab_size": 128256
|
36 |
+
}
|
train/checkpoints/Llama-3.2-3B/babylm_reverse_full_10M_seed0/runs/checkpoint-1800/generation_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 128000,
|
4 |
+
"do_sample": true,
|
5 |
+
"eos_token_id": 128001,
|
6 |
+
"temperature": 0.6,
|
7 |
+
"top_p": 0.9,
|
8 |
+
"transformers_version": "4.45.1"
|
9 |
+
}
|