|
|
''' |
|
|
If you would like to reproduce the performance of the paper, |
|
|
please refer to https://github.com/ChandlerBang/Pro-GNN |
|
|
''' |
|
|
import time |
|
|
import argparse |
|
|
import numpy as np |
|
|
import torch |
|
|
from deeprobust.graph.defense import GCN, ProGNN |
|
|
from deeprobust.graph.data import Dataset, PrePtbDataset |
|
|
from deeprobust.graph.utils import preprocess |
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser() |
|
|
parser.add_argument('--debug', action='store_true', |
|
|
default=False, help='debug mode') |
|
|
parser.add_argument('--only_gcn', action='store_true', |
|
|
default=False, help='test the performance of gcn without other components') |
|
|
parser.add_argument('--no-cuda', action='store_true', default=False, |
|
|
help='Disables CUDA training.') |
|
|
parser.add_argument('--seed', type=int, default=15, help='Random seed.') |
|
|
parser.add_argument('--lr', type=float, default=0.01, |
|
|
help='Initial learning rate.') |
|
|
parser.add_argument('--weight_decay', type=float, default=5e-4, |
|
|
help='Weight decay (L2 loss on parameters).') |
|
|
parser.add_argument('--hidden', type=int, default=16, |
|
|
help='Number of hidden units.') |
|
|
parser.add_argument('--dropout', type=float, default=0.5, |
|
|
help='Dropout rate (1 - keep probability).') |
|
|
parser.add_argument('--dataset', type=str, default='cora', |
|
|
choices=['cora', 'cora_ml', 'citeseer', 'polblogs', 'pubmed'], help='dataset') |
|
|
parser.add_argument('--attack', type=str, default='meta', |
|
|
choices=['no', 'meta', 'random', 'nettack']) |
|
|
parser.add_argument('--ptb_rate', type=float, default=0.05, help="noise ptb_rate") |
|
|
parser.add_argument('--epochs', type=int, default=400, help='Number of epochs to train.') |
|
|
parser.add_argument('--alpha', type=float, default=5e-4, help='weight of l1 norm') |
|
|
parser.add_argument('--beta', type=float, default=1.5, help='weight of nuclear norm') |
|
|
parser.add_argument('--gamma', type=float, default=1, help='weight of l2 norm') |
|
|
parser.add_argument('--lambda_', type=float, default=0, help='weight of feature smoothing') |
|
|
parser.add_argument('--phi', type=float, default=0, help='weight of symmetric loss') |
|
|
parser.add_argument('--inner_steps', type=int, default=2, help='steps for inner optimization') |
|
|
parser.add_argument('--outer_steps', type=int, default=1, help='steps for outer optimization') |
|
|
parser.add_argument('--lr_adj', type=float, default=0.01, help='lr for training adj') |
|
|
parser.add_argument('--symmetric', action='store_true', default=False, |
|
|
help='whether use symmetric matrix') |
|
|
|
|
|
args = parser.parse_args() |
|
|
args.cuda = not args.no_cuda and torch.cuda.is_available() |
|
|
device = torch.device("cuda" if args.cuda else "cpu") |
|
|
|
|
|
if args.cuda: |
|
|
torch.cuda.manual_seed(args.seed) |
|
|
if args.ptb_rate == 0: |
|
|
args.attack = "no" |
|
|
|
|
|
print(args) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data = Dataset(root='/tmp/', name=args.dataset, setting='prognn') |
|
|
adj, features, labels = data.adj, data.features, data.labels |
|
|
idx_train, idx_val, idx_test = data.idx_train, data.idx_val, data.idx_test |
|
|
|
|
|
if args.attack == 'no': |
|
|
perturbed_adj = adj |
|
|
|
|
|
if args.attack == 'random': |
|
|
from deeprobust.graph.global_attack import Random |
|
|
attacker = Random() |
|
|
n_perturbations = int(args.ptb_rate * (adj.sum()//2)) |
|
|
perturbed_adj = attacker.attack(adj, n_perturbations, type='add') |
|
|
|
|
|
if args.attack == 'meta' or args.attack == 'nettack': |
|
|
perturbed_data = PrePtbDataset(root='/tmp/', |
|
|
name=args.dataset, |
|
|
attack_method=args.attack, |
|
|
ptb_rate=args.ptb_rate) |
|
|
perturbed_adj = perturbed_data.adj |
|
|
|
|
|
|
|
|
np.random.seed(args.seed) |
|
|
torch.manual_seed(args.seed) |
|
|
|
|
|
model = GCN(nfeat=features.shape[1], |
|
|
nhid=args.hidden, |
|
|
nclass=labels.max().item() + 1, |
|
|
dropout=args.dropout, device=device) |
|
|
|
|
|
perturbed_adj, features, labels = preprocess(perturbed_adj, features, labels, preprocess_adj=False, device=device) |
|
|
|
|
|
prognn = ProGNN(model, args, device) |
|
|
prognn.fit(features, perturbed_adj, labels, idx_train, idx_val) |
|
|
prognn.test(features, labels, idx_test) |
|
|
|
|
|
|