CGSCORE / examples /graph /test_prognn.py
Yaning1001's picture
Add files using upload-large-folder tool
c91d7b1 verified
raw
history blame
4.3 kB
'''
If you would like to reproduce the performance of the paper,
please refer to https://github.com/ChandlerBang/Pro-GNN
'''
import time
import argparse
import numpy as np
import torch
from deeprobust.graph.defense import GCN, ProGNN
from deeprobust.graph.data import Dataset, PrePtbDataset
from deeprobust.graph.utils import preprocess
# Training settings
parser = argparse.ArgumentParser()
parser.add_argument('--debug', action='store_true',
default=False, help='debug mode')
parser.add_argument('--only_gcn', action='store_true',
default=False, help='test the performance of gcn without other components')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='Disables CUDA training.')
parser.add_argument('--seed', type=int, default=15, help='Random seed.')
parser.add_argument('--lr', type=float, default=0.01,
help='Initial learning rate.')
parser.add_argument('--weight_decay', type=float, default=5e-4,
help='Weight decay (L2 loss on parameters).')
parser.add_argument('--hidden', type=int, default=16,
help='Number of hidden units.')
parser.add_argument('--dropout', type=float, default=0.5,
help='Dropout rate (1 - keep probability).')
parser.add_argument('--dataset', type=str, default='cora',
choices=['cora', 'cora_ml', 'citeseer', 'polblogs', 'pubmed'], help='dataset')
parser.add_argument('--attack', type=str, default='meta',
choices=['no', 'meta', 'random', 'nettack'])
parser.add_argument('--ptb_rate', type=float, default=0.05, help="noise ptb_rate")
parser.add_argument('--epochs', type=int, default=400, help='Number of epochs to train.')
parser.add_argument('--alpha', type=float, default=5e-4, help='weight of l1 norm')
parser.add_argument('--beta', type=float, default=1.5, help='weight of nuclear norm')
parser.add_argument('--gamma', type=float, default=1, help='weight of l2 norm')
parser.add_argument('--lambda_', type=float, default=0, help='weight of feature smoothing')
parser.add_argument('--phi', type=float, default=0, help='weight of symmetric loss')
parser.add_argument('--inner_steps', type=int, default=2, help='steps for inner optimization')
parser.add_argument('--outer_steps', type=int, default=1, help='steps for outer optimization')
parser.add_argument('--lr_adj', type=float, default=0.01, help='lr for training adj')
parser.add_argument('--symmetric', action='store_true', default=False,
help='whether use symmetric matrix')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device("cuda" if args.cuda else "cpu")
if args.cuda:
torch.cuda.manual_seed(args.seed)
if args.ptb_rate == 0:
args.attack = "no"
print(args)
# Here the random seed is to split the train/val/test data,
# we need to set the random seed to be the same as that when you generate the perturbed graph
# data = Dataset(root='/tmp/', name=args.dataset, setting='nettack', seed=15)
# Or we can just use setting='prognn' to get the splits
data = Dataset(root='/tmp/', name=args.dataset, setting='prognn')
adj, features, labels = data.adj, data.features, data.labels
idx_train, idx_val, idx_test = data.idx_train, data.idx_val, data.idx_test
if args.attack == 'no':
perturbed_adj = adj
if args.attack == 'random':
from deeprobust.graph.global_attack import Random
attacker = Random()
n_perturbations = int(args.ptb_rate * (adj.sum()//2))
perturbed_adj = attacker.attack(adj, n_perturbations, type='add')
if args.attack == 'meta' or args.attack == 'nettack':
perturbed_data = PrePtbDataset(root='/tmp/',
name=args.dataset,
attack_method=args.attack,
ptb_rate=args.ptb_rate)
perturbed_adj = perturbed_data.adj
np.random.seed(args.seed)
torch.manual_seed(args.seed)
model = GCN(nfeat=features.shape[1],
nhid=args.hidden,
nclass=labels.max().item() + 1,
dropout=args.dropout, device=device)
perturbed_adj, features, labels = preprocess(perturbed_adj, features, labels, preprocess_adj=False, device=device)
prognn = ProGNN(model, args, device)
prognn.fit(features, perturbed_adj, labels, idx_train, idx_val)
prognn.test(features, labels, idx_test)