first try ppo lunarlander
Browse files- .gitattributes +1 -0
- README.md +36 -0
- config.json +1 -0
- lunar_ppo_v2.zip +3 -0
- lunar_ppo_v2/_stable_baselines3_version +1 -0
- lunar_ppo_v2/data +94 -0
- lunar_ppo_v2/policy.optimizer.pth +3 -0
- lunar_ppo_v2/policy.pth +3 -0
- lunar_ppo_v2/pytorch_variables.pth +3 -0
- lunar_ppo_v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 259.44 +/- 19.25
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff2ab9fe0e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff2ab9fe170>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff2ab9fe200>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff2ab9fe290>", "_build": "<function ActorCriticPolicy._build at 0x7ff2ab9fe320>", "forward": "<function ActorCriticPolicy.forward at 0x7ff2ab9fe3b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff2ab9fe440>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff2ab9fe4d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff2ab9fe560>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff2ab9fe5f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff2ab9fe680>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff2aba4a7b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1653641303.7050593, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAATazXvXnqrz60koi7uguIvkyqe72zL4c7AAAAAAAAAABNGxy9ZVN6P7r2qr3XjQq/hoo9vWZ+ZzsAAAAAAAAAACqoYb5hZyU/3thLPR9olL7s5dm9khnfPAAAAAAAAAAA5gl+PRedlD/YMWM+FPoDv4GFnD1B4II9AAAAAAAAAABAe+W96hQOP3r+l73Q4qq+plaXvThKdj0AAAAAAAAAAGbkNL04DbO7vfS3vG7uITw2zSk9sksNvQAAgD8AAIA/M3t8uzX+sj67B+28ki+kvsLPBbwsA6m8AAAAAAAAAABmqJW81HdxPmKjoL1dUGq+CArcvGyxpL0AAAAAAAAAADP+oz1UHME/7oILP+tiDD6ew0499FkpPgAAAAAAAAAAzdq2PEVWqzwKdAE+Bf9vvrzMPD06l8i8AAAAAAAAAAAae7i9P1gnP/8Lojvly7K++2xmvc3CYr0AAAAAAAAAACZmrT1ptrY/1hMSP1B49r0yQHM9W+dQPgAAAAAAAAAAdVmfvuc4LT9K0tI702ayvicvEL6ivV09AAAAAAAAAADm2VO9qJOfvIKxXDxfK5w8+wkOvr7gdD0AAIA/AACAP2bL1r3B2Uw/DnIHPQBg5r7PwPm84g/HPQAAAAAAAAAATZrBvRALZz+2NgS+gLTCvlqSy73mJ7M8AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVWxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIayxhbQyQcECUhpRSlIwBbJRNGAGMAXSUR0CcKIHQQcxTdX2UKGgGaAloD0MIvHg/bj97b0CUhpRSlGgVTQQBaBZHQJwqJVzZHut1fZQoaAZoCWgPQwjnqKPj6mhvQJSGlFKUaBVNDAFoFkdAnCqY2CNCJHV9lChoBmgJaA9DCPuuCP73CHBAlIaUUpRoFUvpaBZHQJwrGcf/3nJ1fZQoaAZoCWgPQwhklGdezitxQJSGlFKUaBVNFQFoFkdAnCtVme18cHV9lChoBmgJaA9DCKzj+KHSeENAlIaUUpRoFUu+aBZHQJwrVAIIF/x1fZQoaAZoCWgPQwhXWkbqPX9FQJSGlFKUaBVLv2gWR0CcK6KwpvxZdX2UKGgGaAloD0MI1/hM9o+pcECUhpRSlGgVTV4BaBZHQJwr0HB1s+F1fZQoaAZoCWgPQwjBNuLJ7ndxQJSGlFKUaBVL+mgWR0CcK/jT8YQ8dX2UKGgGaAloD0MIN8R4zWtocECUhpRSlGgVTQABaBZHQJwsYxtYSxt1fZQoaAZoCWgPQwjWi6Gc6EpxQJSGlFKUaBVL62gWR0CcLJrrgOz6dX2UKGgGaAloD0MIog3ABgSDcECUhpRSlGgVTQoBaBZHQJwsvGIbfgt1fZQoaAZoCWgPQwjMDBtlvWJxQJSGlFKUaBVNBwFoFkdAnC1Fu76HkHV9lChoBmgJaA9DCIGSAgsg2nJAlIaUUpRoFU0aAWgWR0CcLW8WsRxtdX2UKGgGaAloD0MIk+F4PkOpcECUhpRSlGgVTSIBaBZHQJwtmm/Firl1fZQoaAZoCWgPQwipv15hQd5wQJSGlFKUaBVL/mgWR0CcLdFs54nndX2UKGgGaAloD0MI+tLbn4vobkCUhpRSlGgVS+9oFkdAnC6783uNP3V9lChoBmgJaA9DCDMzMzOzuW1AlIaUUpRoFUv+aBZHQJwwouQIUrV1fZQoaAZoCWgPQwi0If/MIDxBQJSGlFKUaBVLtmgWR0CcMSLlFMIvdX2UKGgGaAloD0MI2NZP/5mucUCUhpRSlGgVS/FoFkdAnDFRLGrCFnV9lChoBmgJaA9DCPyohv2eDnBAlIaUUpRoFU0KAWgWR0CcMWz9S/CZdX2UKGgGaAloD0MI/Ul87gQ/cUCUhpRSlGgVTQkBaBZHQJwyDFbVz6t1fZQoaAZoCWgPQwjtKqT85ClyQJSGlFKUaBVL/GgWR0CcMlaGpMpPdX2UKGgGaAloD0MINBKhEWwbbkCUhpRSlGgVTRkBaBZHQJwyXuogmqp1fZQoaAZoCWgPQwjDSgUVlUlwQJSGlFKUaBVL/2gWR0CcMtzS1E3LdX2UKGgGaAloD0MI4gLQKN2Ac0CUhpRSlGgVTRUBaBZHQJwy3U8V58l1fZQoaAZoCWgPQwgt0sQ7gDtxQJSGlFKUaBVNMQFoFkdAnDN6a1Cw8nV9lChoBmgJaA9DCChGlsyxGm9AlIaUUpRoFUv/aBZHQJw0DP5YYBN1fZQoaAZoCWgPQwhA3NWryFNzQJSGlFKUaBVL9WgWR0CcNEIFeOXFdX2UKGgGaAloD0MIqvQTzu6GcECUhpRSlGgVTTQBaBZHQJw1Rs1sLv11fZQoaAZoCWgPQwjgZBu4A1k/QJSGlFKUaBVLlmgWR0CcNm2Jzkp7dX2UKGgGaAloD0MInS6LiY1QcUCUhpRSlGgVTRwBaBZHQJw2ldkauOl1fZQoaAZoCWgPQwg+PEuQES9RQJSGlFKUaBVLxWgWR0CcNvFnqVyFdX2UKGgGaAloD0MIEEHV6NUBc0CUhpRSlGgVTWEBaBZHQJw2/VUdaMd1fZQoaAZoCWgPQwhTIoleRlE+QJSGlFKUaBVL02gWR0CcN/LOiWVvdX2UKGgGaAloD0MIJCpUN9dFckCUhpRSlGgVTQUBaBZHQJw4CF23azx1fZQoaAZoCWgPQwjxRXu8EFdxQJSGlFKUaBVNBAFoFkdAnDieP3i71HV9lChoBmgJaA9DCNZSQNp/c3BAlIaUUpRoFU0dAWgWR0CcOSgeA/cGdX2UKGgGaAloD0MI7/54r9oPcECUhpRSlGgVTQgBaBZHQJw5v3ta6jF1fZQoaAZoCWgPQwhBgXfy6SRxQJSGlFKUaBVNDAFoFkdAnGclpPAO8XV9lChoBmgJaA9DCGqHvyZrtm5AlIaUUpRoFU0PAWgWR0CcZz3Sro4ddX2UKGgGaAloD0MIYRkbulnPb0CUhpRSlGgVS95oFkdAnGdVh1DBuXV9lChoBmgJaA9DCHxETInkEnFAlIaUUpRoFU0zAWgWR0CcaaHoX9BKdX2UKGgGaAloD0MIpMNDGD/rbkCUhpRSlGgVTQQBaBZHQJxpol2NedF1fZQoaAZoCWgPQwj44/bLJ2RQQJSGlFKUaBVL1mgWR0CcaZyhBZ6ldX2UKGgGaAloD0MIrHR3nQ3mUkCUhpRSlGgVS+1oFkdAnGq3Rb8m8nV9lChoBmgJaA9DCMxgjEiU+nBAlIaUUpRoFU10AWgWR0Ccav+8oQWfdX2UKGgGaAloD0MI5YBdTV7rckCUhpRSlGgVTRoBaBZHQJxrj/S6UaB1fZQoaAZoCWgPQwjnNAu0uzhwQJSGlFKUaBVNGAFoFkdAnGwLUsnRcHV9lChoBmgJaA9DCGNGeHsQ3W9AlIaUUpRoFUv+aBZHQJxsV2ll9Sd1fZQoaAZoCWgPQwhSnKOOjiZvQJSGlFKUaBVNCQFoFkdAnGyVpCa7VnV9lChoBmgJaA9DCJ6Y9WKowG9AlIaUUpRoFUvxaBZHQJxsmNrCWNZ1fZQoaAZoCWgPQwjjN4WVyoFwQJSGlFKUaBVL72gWR0Ccbl8nuy/sdX2UKGgGaAloD0MI1ESfj3JPcUCUhpRSlGgVTRABaBZHQJxujMibDuV1fZQoaAZoCWgPQwiSI52BEUJxQJSGlFKUaBVNCgFoFkdAnG8eRgZ0jnV9lChoBmgJaA9DCOV7RiI0GHJAlIaUUpRoFU0lAWgWR0Ccb+YxcmjTdX2UKGgGaAloD0MIYytoWmIqckCUhpRSlGgVTQYBaBZHQJxxhaaCtih1fZQoaAZoCWgPQwh1dcdim+hLQJSGlFKUaBVLs2gWR0CccblMAWBSdX2UKGgGaAloD0MIYYkHlA1fckCUhpRSlGgVTQwBaBZHQJxxtiNKh+R1fZQoaAZoCWgPQwh1rFJ6Zh10QJSGlFKUaBVNGQFoFkdAnHIg4GUwBnV9lChoBmgJaA9DCEcE4+BS7W9AlIaUUpRoFUv4aBZHQJxycAq/dqN1fZQoaAZoCWgPQwjymld1Vv5wQJSGlFKUaBVNBwFoFkdAnHKfr0J4S3V9lChoBmgJaA9DCFVtN8E3DnFAlIaUUpRoFU0AAWgWR0CcczVARkEtdX2UKGgGaAloD0MIHGDmO7jlckCUhpRSlGgVTQcBaBZHQJxz5c8kleF1fZQoaAZoCWgPQwjU1R2LbS5uQJSGlFKUaBVNDgFoFkdAnHSv2PDHfnV9lChoBmgJaA9DCIT0FDnEKXBAlIaUUpRoFU0dAWgWR0CcdSYfnwG4dX2UKGgGaAloD0MIk1fnGJDZWUCUhpRSlGgVTegDaBZHQJx1xnVXmvJ1fZQoaAZoCWgPQwiPp+UH7i1yQJSGlFKUaBVL82gWR0CcddiH6/IsdX2UKGgGaAloD0MIRdjw9AoAcUCUhpRSlGgVS/ZoFkdAnHYLbL2YfHV9lChoBmgJaA9DCCS05VxKD3BAlIaUUpRoFUv9aBZHQJx3agwoLG91fZQoaAZoCWgPQwjLEMe6uA1wQJSGlFKUaBVNGAFoFkdAnHeApWmxdXV9lChoBmgJaA9DCPFkNzP6Z1NAlIaUUpRoFUvIaBZHQJx35WilBQh1fZQoaAZoCWgPQwhfs1w2OiRyQJSGlFKUaBVNCAFoFkdAnHlB8UmD2HV9lChoBmgJaA9DCDSD+MAOJ3NAlIaUUpRoFU0LAWgWR0CceYef7JnydX2UKGgGaAloD0MIXWqEfqZDcUCUhpRSlGgVS+FoFkdAnHnODBdld3V9lChoBmgJaA9DCC9tOCwNRG9AlIaUUpRoFUv+aBZHQJx6DHfdhy91fZQoaAZoCWgPQwjCvTJvFR5wQJSGlFKUaBVNBAFoFkdAnHoIao/A03V9lChoBmgJaA9DCHmwxW4fQ29AlIaUUpRoFU0wAWgWR0CceqN70Fr3dX2UKGgGaAloD0MIfnTqyiencECUhpRSlGgVS/toFkdAnHs0E1VHWnV9lChoBmgJaA9DCD9W8NsQ83FAlIaUUpRoFUvjaBZHQJx7r9VFQVN1fZQoaAZoCWgPQwgSaoZUUWtuQJSGlFKUaBVNBwFoFkdAnHxHN9ph4XV9lChoBmgJaA9DCNyCpbrAlnJAlIaUUpRoFUvmaBZHQJx8bAaef7J1fZQoaAZoCWgPQwjle0YiNARvQJSGlFKUaBVL7GgWR0CcfIaS9ugpdX2UKGgGaAloD0MIsJC5MqgucECUhpRSlGgVS/poFkdAnH03YL9deXV9lChoBmgJaA9DCIyC4PFtaXBAlIaUUpRoFU0BAWgWR0Ccfu1og3cYdX2UKGgGaAloD0MIeQWiJ2XSSkCUhpRSlGgVS8RoFkdAnH9D/IbOvHV9lChoBmgJaA9DCLOWAtJ+wG1AlIaUUpRoFU0OAWgWR0Ccf/FRHf/FdX2UKGgGaAloD0MI53Pudj3McECUhpRSlGgVTQgBaBZHQJyBR9gF5fN1fZQoaAZoCWgPQwh2btqMU1FwQJSGlFKUaBVNAwFoFkdAnIICTlkpZ3V9lChoBmgJaA9DCFLzVfKxoG5AlIaUUpRoFU0ZAWgWR0CcgoFUQ04zdX2UKGgGaAloD0MIYeC59/AQckCUhpRSlGgVTXkBaBZHQJyDMIC2c8V1fZQoaAZoCWgPQwgtQxzrYuJyQJSGlFKUaBVNEQFoFkdAnINCt/4Ir3V9lChoBmgJaA9DCEW6n1MQSG1AlIaUUpRoFUvsaBZHQJyDSXIEKVp1fZQoaAZoCWgPQwhf61IjNEpzQJSGlFKUaBVNJQFoFkdAnIM8mfGuLnV9lChoBmgJaA9DCFPKayW0HnFAlIaUUpRoFU0MAWgWR0Ccg7sCT2WZdX2UKGgGaAloD0MI4c6FkV5DWECUhpRSlGgVTegDaBZHQJyEKPXCj1x1fZQoaAZoCWgPQwg8E5ok1jNxQJSGlFKUaBVNCQFoFkdAnISsKgIyCXV9lChoBmgJaA9DCCl1yThGjW9AlIaUUpRoFU0QAWgWR0CchQFrEcbSdX2UKGgGaAloD0MIE30+yggccUCUhpRSlGgVTQEBaBZHQJyFUqmTC+F1fZQoaAZoCWgPQwjfUWNCzDpuQJSGlFKUaBVNGQFoFkdAnIVSsKb8WXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
lunar_ppo_v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:216d73bb8a20a5c8078177400266d6a21f8a73cd8efc270b81f599da20203560
|
3 |
+
size 144173
|
lunar_ppo_v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
lunar_ppo_v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff2ab9fe0e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff2ab9fe170>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff2ab9fe200>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff2ab9fe290>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ff2ab9fe320>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ff2ab9fe3b0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff2ab9fe440>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ff2ab9fe4d0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff2ab9fe560>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff2ab9fe5f0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff2ab9fe680>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7ff2aba4a7b0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1653641303.7050593,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAATazXvXnqrz60koi7uguIvkyqe72zL4c7AAAAAAAAAABNGxy9ZVN6P7r2qr3XjQq/hoo9vWZ+ZzsAAAAAAAAAACqoYb5hZyU/3thLPR9olL7s5dm9khnfPAAAAAAAAAAA5gl+PRedlD/YMWM+FPoDv4GFnD1B4II9AAAAAAAAAABAe+W96hQOP3r+l73Q4qq+plaXvThKdj0AAAAAAAAAAGbkNL04DbO7vfS3vG7uITw2zSk9sksNvQAAgD8AAIA/M3t8uzX+sj67B+28ki+kvsLPBbwsA6m8AAAAAAAAAABmqJW81HdxPmKjoL1dUGq+CArcvGyxpL0AAAAAAAAAADP+oz1UHME/7oILP+tiDD6ew0499FkpPgAAAAAAAAAAzdq2PEVWqzwKdAE+Bf9vvrzMPD06l8i8AAAAAAAAAAAae7i9P1gnP/8Lojvly7K++2xmvc3CYr0AAAAAAAAAACZmrT1ptrY/1hMSP1B49r0yQHM9W+dQPgAAAAAAAAAAdVmfvuc4LT9K0tI702ayvicvEL6ivV09AAAAAAAAAADm2VO9qJOfvIKxXDxfK5w8+wkOvr7gdD0AAIA/AACAP2bL1r3B2Uw/DnIHPQBg5r7PwPm84g/HPQAAAAAAAAAATZrBvRALZz+2NgS+gLTCvlqSy73mJ7M8AAAAAAAAAACUdJRiLg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gASVWxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIayxhbQyQcECUhpRSlIwBbJRNGAGMAXSUR0CcKIHQQcxTdX2UKGgGaAloD0MIvHg/bj97b0CUhpRSlGgVTQQBaBZHQJwqJVzZHut1fZQoaAZoCWgPQwjnqKPj6mhvQJSGlFKUaBVNDAFoFkdAnCqY2CNCJHV9lChoBmgJaA9DCPuuCP73CHBAlIaUUpRoFUvpaBZHQJwrGcf/3nJ1fZQoaAZoCWgPQwhklGdezitxQJSGlFKUaBVNFQFoFkdAnCtVme18cHV9lChoBmgJaA9DCKzj+KHSeENAlIaUUpRoFUu+aBZHQJwrVAIIF/x1fZQoaAZoCWgPQwhXWkbqPX9FQJSGlFKUaBVLv2gWR0CcK6KwpvxZdX2UKGgGaAloD0MI1/hM9o+pcECUhpRSlGgVTV4BaBZHQJwr0HB1s+F1fZQoaAZoCWgPQwjBNuLJ7ndxQJSGlFKUaBVL+mgWR0CcK/jT8YQ8dX2UKGgGaAloD0MIN8R4zWtocECUhpRSlGgVTQABaBZHQJwsYxtYSxt1fZQoaAZoCWgPQwjWi6Gc6EpxQJSGlFKUaBVL62gWR0CcLJrrgOz6dX2UKGgGaAloD0MIog3ABgSDcECUhpRSlGgVTQoBaBZHQJwsvGIbfgt1fZQoaAZoCWgPQwjMDBtlvWJxQJSGlFKUaBVNBwFoFkdAnC1Fu76HkHV9lChoBmgJaA9DCIGSAgsg2nJAlIaUUpRoFU0aAWgWR0CcLW8WsRxtdX2UKGgGaAloD0MIk+F4PkOpcECUhpRSlGgVTSIBaBZHQJwtmm/Firl1fZQoaAZoCWgPQwipv15hQd5wQJSGlFKUaBVL/mgWR0CcLdFs54nndX2UKGgGaAloD0MI+tLbn4vobkCUhpRSlGgVS+9oFkdAnC6783uNP3V9lChoBmgJaA9DCDMzMzOzuW1AlIaUUpRoFUv+aBZHQJwwouQIUrV1fZQoaAZoCWgPQwi0If/MIDxBQJSGlFKUaBVLtmgWR0CcMSLlFMIvdX2UKGgGaAloD0MI2NZP/5mucUCUhpRSlGgVS/FoFkdAnDFRLGrCFnV9lChoBmgJaA9DCPyohv2eDnBAlIaUUpRoFU0KAWgWR0CcMWz9S/CZdX2UKGgGaAloD0MI/Ul87gQ/cUCUhpRSlGgVTQkBaBZHQJwyDFbVz6t1fZQoaAZoCWgPQwjtKqT85ClyQJSGlFKUaBVL/GgWR0CcMlaGpMpPdX2UKGgGaAloD0MINBKhEWwbbkCUhpRSlGgVTRkBaBZHQJwyXuogmqp1fZQoaAZoCWgPQwjDSgUVlUlwQJSGlFKUaBVL/2gWR0CcMtzS1E3LdX2UKGgGaAloD0MI4gLQKN2Ac0CUhpRSlGgVTRUBaBZHQJwy3U8V58l1fZQoaAZoCWgPQwgt0sQ7gDtxQJSGlFKUaBVNMQFoFkdAnDN6a1Cw8nV9lChoBmgJaA9DCChGlsyxGm9AlIaUUpRoFUv/aBZHQJw0DP5YYBN1fZQoaAZoCWgPQwhA3NWryFNzQJSGlFKUaBVL9WgWR0CcNEIFeOXFdX2UKGgGaAloD0MIqvQTzu6GcECUhpRSlGgVTTQBaBZHQJw1Rs1sLv11fZQoaAZoCWgPQwjgZBu4A1k/QJSGlFKUaBVLlmgWR0CcNm2Jzkp7dX2UKGgGaAloD0MInS6LiY1QcUCUhpRSlGgVTRwBaBZHQJw2ldkauOl1fZQoaAZoCWgPQwg+PEuQES9RQJSGlFKUaBVLxWgWR0CcNvFnqVyFdX2UKGgGaAloD0MIEEHV6NUBc0CUhpRSlGgVTWEBaBZHQJw2/VUdaMd1fZQoaAZoCWgPQwhTIoleRlE+QJSGlFKUaBVL02gWR0CcN/LOiWVvdX2UKGgGaAloD0MIJCpUN9dFckCUhpRSlGgVTQUBaBZHQJw4CF23azx1fZQoaAZoCWgPQwjxRXu8EFdxQJSGlFKUaBVNBAFoFkdAnDieP3i71HV9lChoBmgJaA9DCNZSQNp/c3BAlIaUUpRoFU0dAWgWR0CcOSgeA/cGdX2UKGgGaAloD0MI7/54r9oPcECUhpRSlGgVTQgBaBZHQJw5v3ta6jF1fZQoaAZoCWgPQwhBgXfy6SRxQJSGlFKUaBVNDAFoFkdAnGclpPAO8XV9lChoBmgJaA9DCGqHvyZrtm5AlIaUUpRoFU0PAWgWR0CcZz3Sro4ddX2UKGgGaAloD0MIYRkbulnPb0CUhpRSlGgVS95oFkdAnGdVh1DBuXV9lChoBmgJaA9DCHxETInkEnFAlIaUUpRoFU0zAWgWR0CcaaHoX9BKdX2UKGgGaAloD0MIpMNDGD/rbkCUhpRSlGgVTQQBaBZHQJxpol2NedF1fZQoaAZoCWgPQwj44/bLJ2RQQJSGlFKUaBVL1mgWR0CcaZyhBZ6ldX2UKGgGaAloD0MIrHR3nQ3mUkCUhpRSlGgVS+1oFkdAnGq3Rb8m8nV9lChoBmgJaA9DCMxgjEiU+nBAlIaUUpRoFU10AWgWR0Ccav+8oQWfdX2UKGgGaAloD0MI5YBdTV7rckCUhpRSlGgVTRoBaBZHQJxrj/S6UaB1fZQoaAZoCWgPQwjnNAu0uzhwQJSGlFKUaBVNGAFoFkdAnGwLUsnRcHV9lChoBmgJaA9DCGNGeHsQ3W9AlIaUUpRoFUv+aBZHQJxsV2ll9Sd1fZQoaAZoCWgPQwhSnKOOjiZvQJSGlFKUaBVNCQFoFkdAnGyVpCa7VnV9lChoBmgJaA9DCJ6Y9WKowG9AlIaUUpRoFUvxaBZHQJxsmNrCWNZ1fZQoaAZoCWgPQwjjN4WVyoFwQJSGlFKUaBVL72gWR0Ccbl8nuy/sdX2UKGgGaAloD0MI1ESfj3JPcUCUhpRSlGgVTRABaBZHQJxujMibDuV1fZQoaAZoCWgPQwiSI52BEUJxQJSGlFKUaBVNCgFoFkdAnG8eRgZ0jnV9lChoBmgJaA9DCOV7RiI0GHJAlIaUUpRoFU0lAWgWR0Ccb+YxcmjTdX2UKGgGaAloD0MIYytoWmIqckCUhpRSlGgVTQYBaBZHQJxxhaaCtih1fZQoaAZoCWgPQwh1dcdim+hLQJSGlFKUaBVLs2gWR0CccblMAWBSdX2UKGgGaAloD0MIYYkHlA1fckCUhpRSlGgVTQwBaBZHQJxxtiNKh+R1fZQoaAZoCWgPQwh1rFJ6Zh10QJSGlFKUaBVNGQFoFkdAnHIg4GUwBnV9lChoBmgJaA9DCEcE4+BS7W9AlIaUUpRoFUv4aBZHQJxycAq/dqN1fZQoaAZoCWgPQwjymld1Vv5wQJSGlFKUaBVNBwFoFkdAnHKfr0J4S3V9lChoBmgJaA9DCFVtN8E3DnFAlIaUUpRoFU0AAWgWR0CcczVARkEtdX2UKGgGaAloD0MIHGDmO7jlckCUhpRSlGgVTQcBaBZHQJxz5c8kleF1fZQoaAZoCWgPQwjU1R2LbS5uQJSGlFKUaBVNDgFoFkdAnHSv2PDHfnV9lChoBmgJaA9DCIT0FDnEKXBAlIaUUpRoFU0dAWgWR0CcdSYfnwG4dX2UKGgGaAloD0MIk1fnGJDZWUCUhpRSlGgVTegDaBZHQJx1xnVXmvJ1fZQoaAZoCWgPQwiPp+UH7i1yQJSGlFKUaBVL82gWR0CcddiH6/IsdX2UKGgGaAloD0MIRdjw9AoAcUCUhpRSlGgVS/ZoFkdAnHYLbL2YfHV9lChoBmgJaA9DCCS05VxKD3BAlIaUUpRoFUv9aBZHQJx3agwoLG91fZQoaAZoCWgPQwjLEMe6uA1wQJSGlFKUaBVNGAFoFkdAnHeApWmxdXV9lChoBmgJaA9DCPFkNzP6Z1NAlIaUUpRoFUvIaBZHQJx35WilBQh1fZQoaAZoCWgPQwhfs1w2OiRyQJSGlFKUaBVNCAFoFkdAnHlB8UmD2HV9lChoBmgJaA9DCDSD+MAOJ3NAlIaUUpRoFU0LAWgWR0CceYef7JnydX2UKGgGaAloD0MIXWqEfqZDcUCUhpRSlGgVS+FoFkdAnHnODBdld3V9lChoBmgJaA9DCC9tOCwNRG9AlIaUUpRoFUv+aBZHQJx6DHfdhy91fZQoaAZoCWgPQwjCvTJvFR5wQJSGlFKUaBVNBAFoFkdAnHoIao/A03V9lChoBmgJaA9DCHmwxW4fQ29AlIaUUpRoFU0wAWgWR0CceqN70Fr3dX2UKGgGaAloD0MIfnTqyiencECUhpRSlGgVS/toFkdAnHs0E1VHWnV9lChoBmgJaA9DCD9W8NsQ83FAlIaUUpRoFUvjaBZHQJx7r9VFQVN1fZQoaAZoCWgPQwgSaoZUUWtuQJSGlFKUaBVNBwFoFkdAnHxHN9ph4XV9lChoBmgJaA9DCNyCpbrAlnJAlIaUUpRoFUvmaBZHQJx8bAaef7J1fZQoaAZoCWgPQwjle0YiNARvQJSGlFKUaBVL7GgWR0CcfIaS9ugpdX2UKGgGaAloD0MIsJC5MqgucECUhpRSlGgVS/poFkdAnH03YL9deXV9lChoBmgJaA9DCIyC4PFtaXBAlIaUUpRoFU0BAWgWR0Ccfu1og3cYdX2UKGgGaAloD0MIeQWiJ2XSSkCUhpRSlGgVS8RoFkdAnH9D/IbOvHV9lChoBmgJaA9DCLOWAtJ+wG1AlIaUUpRoFU0OAWgWR0Ccf/FRHf/FdX2UKGgGaAloD0MI53Pudj3McECUhpRSlGgVTQgBaBZHQJyBR9gF5fN1fZQoaAZoCWgPQwh2btqMU1FwQJSGlFKUaBVNAwFoFkdAnIICTlkpZ3V9lChoBmgJaA9DCFLzVfKxoG5AlIaUUpRoFU0ZAWgWR0CcgoFUQ04zdX2UKGgGaAloD0MIYeC59/AQckCUhpRSlGgVTXkBaBZHQJyDMIC2c8V1fZQoaAZoCWgPQwgtQxzrYuJyQJSGlFKUaBVNEQFoFkdAnINCt/4Ir3V9lChoBmgJaA9DCEW6n1MQSG1AlIaUUpRoFUvsaBZHQJyDSXIEKVp1fZQoaAZoCWgPQwhf61IjNEpzQJSGlFKUaBVNJQFoFkdAnIM8mfGuLnV9lChoBmgJaA9DCFPKayW0HnFAlIaUUpRoFU0MAWgWR0Ccg7sCT2WZdX2UKGgGaAloD0MI4c6FkV5DWECUhpRSlGgVTegDaBZHQJyEKPXCj1x1fZQoaAZoCWgPQwg8E5ok1jNxQJSGlFKUaBVNCQFoFkdAnISsKgIyCXV9lChoBmgJaA9DCCl1yThGjW9AlIaUUpRoFU0QAWgWR0CchQFrEcbSdX2UKGgGaAloD0MIE30+yggccUCUhpRSlGgVTQEBaBZHQJyFUqmTC+F1fZQoaAZoCWgPQwjfUWNCzDpuQJSGlFKUaBVNGQFoFkdAnIVSsKb8WXVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 310,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
lunar_ppo_v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:85dfbb56572ad669ab0162f6ed20595356835ff0e0c482f79a58232ec0eb7b3b
|
3 |
+
size 84893
|
lunar_ppo_v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:469a06a31f503261a5cc96c7abb4354ddc7c19c67369687deb0cbadfb4771ef3
|
3 |
+
size 43201
|
lunar_ppo_v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
lunar_ppo_v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb08bc46c94857bc39fa9bbb7244eefe4c4a907481b12053ffd8e94759d9081e
|
3 |
+
size 225964
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 259.4363759788955, "std_reward": 19.2536120497674, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-27T09:00:35.914608"}
|