RadFig-classifier / inference.py
YYama0's picture
Update inference.py
3657e14 verified
"""
RadFig VQA Image Filtering Model - Inference Script
Classifies medical images as suitable/unsuitable for VQA tasks.
"""
import os
import torch
import torch.nn as nn
import timm
import cv2
import numpy as np
import pandas as pd
from PIL import Image
from torch.utils.data import Dataset, DataLoader
from albumentations import Compose, Resize, Normalize
from albumentations.pytorch import ToTensorV2
from tqdm import tqdm
class Config:
"""Configuration for inference"""
model_name = "tf_efficientnetv2_s.in21k_ft_in1k"
size = 512
batch_size = 32
num_workers = 4
target_size = 1
n_fold = 5
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class TestDataset(Dataset):
"""Dataset for inference"""
def __init__(self, image_paths, transform=None):
self.image_paths = image_paths
self.transform = transform
def __len__(self):
return len(self.image_paths)
def __getitem__(self, idx):
image_path = self.image_paths[idx]
# Load image
image = cv2.imread(image_path)
if image is None:
raise ValueError(f"Could not load image: {image_path}")
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
if self.transform:
augmented = self.transform(image=image)
image = augmented['image']
return image
def get_transforms():
"""Get inference transforms"""
return Compose([
Resize(Config.size, Config.size),
Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
),
ToTensorV2(),
])
class RadFigClassifier:
"""RadFig VQA Image Filtering Classifier"""
def __init__(self, model_dir="models"):
self.config = Config()
self.model_dir = model_dir
self.device = self.config.device
self.model = None
self.states = []
# Load model states
self._load_model_states()
def _load_model_states(self):
"""Load all fold model states"""
self.states = []
for fold in range(self.config.n_fold):
model_path = os.path.join(
self.model_dir,
f"{self.config.model_name}_fold{fold}_best_loss.pth"
)
if not os.path.exists(model_path):
raise FileNotFoundError(f"Model file not found: {model_path}")
state = torch.load(model_path, map_location=self.device)
self.states.append(state)
print(f"Loaded {len(self.states)} model states from {self.model_dir}")
def _create_model(self):
"""Create model architecture"""
model = timm.create_model(
model_name=self.config.model_name,
num_classes=self.config.target_size,
pretrained=False
)
return model.to(self.device)
def predict_batch(self, image_paths, return_probabilities=True):
"""
Predict on a batch of images
Args:
image_paths (list): List of image file paths
return_probabilities (bool): If True, return probabilities. If False, return binary predictions.
Returns:
numpy.ndarray: Predictions (probabilities or binary)
"""
# Create dataset and dataloader
dataset = TestDataset(image_paths, transform=get_transforms())
dataloader = DataLoader(
dataset,
batch_size=self.config.batch_size,
shuffle=False,
num_workers=self.config.num_workers,
pin_memory=True
)
# Create model
model = self._create_model()
all_predictions = []
# Inference loop
with torch.no_grad():
for images in tqdm(dataloader, desc="Predicting"):
images = images.to(self.device)
# Ensemble predictions across all folds
fold_predictions = []
for state in self.states:
model.load_state_dict(state['model'])
model.eval()
outputs = model(images)
probabilities = torch.sigmoid(outputs).cpu().numpy()
fold_predictions.append(probabilities)
# Average predictions across folds
avg_predictions = np.mean(fold_predictions, axis=0)
all_predictions.append(avg_predictions)
# Concatenate all predictions
predictions = np.concatenate(all_predictions, axis=0).flatten()
if return_probabilities:
return predictions
else:
return (predictions > 0.5).astype(int)
def predict_single(self, image_path, return_probability=True):
"""
Predict on a single image
Args:
image_path (str): Path to image file
return_probability (bool): If True, return probability. If False, return binary prediction.
Returns:
float or int: Prediction
"""
predictions = self.predict_batch([image_path], return_probabilities=return_probability)
return predictions[0]
def predict_directory(self, directory_path, output_csv=None, return_probabilities=True):
"""
Predict on all images in a directory
Args:
directory_path (str): Path to directory containing images
output_csv (str, optional): Path to save results as CSV
return_probabilities (bool): If True, return probabilities. If False, return binary predictions.
Returns:
pandas.DataFrame: Results with image paths and predictions
"""
# Get all image files
image_extensions = {'.jpg', '.jpeg', '.png', '.bmp', '.tiff', '.tif'}
image_paths = []
for filename in os.listdir(directory_path):
if any(filename.lower().endswith(ext) for ext in image_extensions):
image_paths.append(os.path.join(directory_path, filename))
if not image_paths:
raise ValueError(f"No image files found in {directory_path}")
print(f"Found {len(image_paths)} images in {directory_path}")
# Get predictions
predictions = self.predict_batch(image_paths, return_probabilities=return_probabilities)
# Create results dataframe
results = pd.DataFrame({
'image_path': image_paths,
'filename': [os.path.basename(path) for path in image_paths],
'prediction': predictions,
'suitable_for_vqa': predictions > 0.9 if return_probabilities else predictions.astype(bool)
})
# Sort by filename for consistency
results = results.sort_values('filename').reset_index(drop=True)
# Save to CSV if requested
if output_csv:
results.to_csv(output_csv, index=False)
print(f"Results saved to {output_csv}")
return results
def main():
"""Example usage"""
import argparse
parser = argparse.ArgumentParser(description="RadFig VQA Image Filtering Inference")
parser.add_argument("--input", required=True, help="Input image file or directory")
parser.add_argument("--models", default="models", help="Directory containing model files")
parser.add_argument("--output", help="Output CSV file (for directory input)")
parser.add_argument("--binary", action="store_true", help="Return binary predictions instead of probabilities")
args = parser.parse_args()
# Initialize classifier
classifier = RadFigClassifier(model_dir=args.models)
if os.path.isfile(args.input):
# Single image prediction
prediction = classifier.predict_single(
args.input,
return_probability=not args.binary
)
if args.binary:
result = "suitable" if prediction else "not suitable"
print(f"Image: {args.input}")
print(f"Prediction: {result} for VQA")
else:
print(f"Image: {args.input}")
print(f"Probability suitable for VQA: {prediction:.4f}")
print(f"Classification: {'suitable' if prediction > 0.9 else 'not suitable'}")
elif os.path.isdir(args.input):
# Directory prediction
results = classifier.predict_directory(
args.input,
output_csv=args.output,
return_probabilities=not args.binary
)
# Print summary
if args.binary:
suitable_count = results['suitable_for_vqa'].sum()
else:
suitable_count = (results['prediction'] > 0.9).sum()
total_count = len(results)
print(f"\nSummary:")
print(f"Total images: {total_count}")
print(f"Suitable for VQA: {suitable_count}")
print(f"Not suitable for VQA: {total_count - suitable_count}")
print(f"Percentage suitable: {suitable_count/total_count*100:.1f}%")
else:
print(f"Error: {args.input} is not a valid file or directory")
if __name__ == "__main__":
main()