Joshua Lochner
Update pipeline.py
8e622c8
raw
history blame
12.1 kB
import json
from typing import Any, Dict, List
import tensorflow as tf
from tensorflow import keras
import base64
import io
import os
import numpy as np
from PIL import Image
import youtube_transcript_api2
import json
import re
import requests
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
TextClassificationPipeline,
)
from typing import Any, Dict, List
CATEGORIES = [None, 'SPONSOR', 'SELFPROMO', 'INTERACTION']
PROFANITY_RAW = '[ __ ]' # How YouTube transcribes profanity
PROFANITY_CONVERTED = '*****' # Safer version for tokenizing
NUM_DECIMALS = 3
# https://www.fincher.org/Utilities/CountryLanguageList.shtml
# https://lingohub.com/developers/supported-locales/language-designators-with-regions
LANGUAGE_PREFERENCE_LIST = ['en-GB', 'en-US', 'en-CA', 'en-AU', 'en-NZ', 'en-ZA',
'en-IE', 'en-IN', 'en-JM', 'en-BZ', 'en-TT', 'en-PH', 'en-ZW',
'en']
def parse_transcript_json(json_data, granularity):
assert json_data['wireMagic'] == 'pb3'
assert granularity in ('word', 'chunk')
# TODO remove bracketed words?
# (kiss smacks)
# (upbeat music)
# [text goes here]
# Some manual transcripts aren't that well formatted... but do have punctuation
# https://www.youtube.com/watch?v=LR9FtWVjk2c
parsed_transcript = []
events = json_data['events']
for event_index, event in enumerate(events):
segments = event.get('segs')
if not segments:
continue
# This value is known (when phrase appears on screen)
start_ms = event['tStartMs']
total_characters = 0
new_segments = []
for seg in segments:
# Replace \n, \t, etc. with space
text = ' '.join(seg['utf8'].split())
# Remove zero-width spaces and strip trailing and leading whitespace
text = text.replace('\u200b', '').replace('\u200c', '').replace(
'\u200d', '').replace('\ufeff', '').strip()
# Alternatively,
# text = text.encode('ascii', 'ignore').decode()
# Needed for auto-generated transcripts
text = text.replace(PROFANITY_RAW, PROFANITY_CONVERTED)
if not text:
continue
offset_ms = seg.get('tOffsetMs', 0)
new_segments.append({
'text': text,
'start': round((start_ms + offset_ms)/1000, NUM_DECIMALS)
})
total_characters += len(text)
if not new_segments:
continue
if event_index < len(events) - 1:
next_start_ms = events[event_index + 1]['tStartMs']
total_event_duration_ms = min(
event.get('dDurationMs', float('inf')), next_start_ms - start_ms)
else:
total_event_duration_ms = event.get('dDurationMs', 0)
# Ensure duration is non-negative
total_event_duration_ms = max(total_event_duration_ms, 0)
avg_seconds_per_character = (
total_event_duration_ms/total_characters)/1000
num_char_count = 0
for seg_index, seg in enumerate(new_segments):
num_char_count += len(seg['text'])
# Estimate segment end
seg_end = seg['start'] + \
(num_char_count * avg_seconds_per_character)
if seg_index < len(new_segments) - 1:
# Do not allow longer than next
seg_end = min(seg_end, new_segments[seg_index+1]['start'])
seg['end'] = round(seg_end, NUM_DECIMALS)
parsed_transcript.append(seg)
final_parsed_transcript = []
for i in range(len(parsed_transcript)):
word_level = granularity == 'word'
if word_level:
split_text = parsed_transcript[i]['text'].split()
elif granularity == 'chunk':
# Split on space after punctuation
split_text = re.split(
r'(?<=[.!?,-;])\s+', parsed_transcript[i]['text'])
if len(split_text) == 1:
split_on_whitespace = parsed_transcript[i]['text'].split()
if len(split_on_whitespace) >= 8: # Too many words
# Rather split on whitespace instead of punctuation
split_text = split_on_whitespace
else:
word_level = True
else:
raise ValueError('Unknown granularity')
segment_end = parsed_transcript[i]['end']
if i < len(parsed_transcript) - 1:
segment_end = min(segment_end, parsed_transcript[i+1]['start'])
segment_duration = segment_end - parsed_transcript[i]['start']
num_chars_in_text = sum(map(len, split_text))
num_char_count = 0
current_offset = 0
for s in split_text:
num_char_count += len(s)
next_offset = (num_char_count/num_chars_in_text) * segment_duration
word_start = round(
parsed_transcript[i]['start'] + current_offset, NUM_DECIMALS)
word_end = round(
parsed_transcript[i]['start'] + next_offset, NUM_DECIMALS)
# Make the reasonable assumption that min wps is 1.5
final_parsed_transcript.append({
'text': s,
'start': word_start,
'end': min(word_end, word_start + 1.5) if word_level else word_end
})
current_offset = next_offset
return final_parsed_transcript
def list_transcripts(video_id):
try:
return youtube_transcript_api2.YouTubeTranscriptApi.list_transcripts(video_id)
except json.decoder.JSONDecodeError:
return None
WORDS_TO_REMOVE = [
'[Music]'
'[Applause]'
'[Laughter]'
]
def get_words(video_id, transcript_type='auto', fallback='manual', filter_words_to_remove=True, granularity='word'):
"""Get parsed video transcript with caching system
returns None if not processed yet and process is False
"""
raw_transcript_json = None
try:
transcript_list = list_transcripts(video_id)
if transcript_list is not None:
if transcript_type == 'manual':
ts = transcript_list.find_manually_created_transcript(
LANGUAGE_PREFERENCE_LIST)
else:
ts = transcript_list.find_generated_transcript(
LANGUAGE_PREFERENCE_LIST)
raw_transcript = ts._http_client.get(
f'{ts._url}&fmt=json3').content
if raw_transcript:
raw_transcript_json = json.loads(raw_transcript)
except (youtube_transcript_api2.TooManyRequests, youtube_transcript_api2.YouTubeRequestFailed):
raise # Cannot recover from these errors and do not mark as empty transcript
except requests.exceptions.RequestException: # Can recover
return get_words(video_id, transcript_type, fallback, granularity)
except youtube_transcript_api2.CouldNotRetrieveTranscript: # Retrying won't solve
pass # Mark as empty transcript
except json.decoder.JSONDecodeError:
return get_words(video_id, transcript_type, fallback, granularity)
if not raw_transcript_json and fallback is not None:
return get_words(video_id, transcript_type=fallback, fallback=None, granularity=granularity)
if raw_transcript_json:
processed_transcript = parse_transcript_json(
raw_transcript_json, granularity)
if filter_words_to_remove:
processed_transcript = list(
filter(lambda x: x['text'] not in WORDS_TO_REMOVE, processed_transcript))
else:
processed_transcript = raw_transcript_json # Either None or []
return processed_transcript
def word_start(word):
return word['start']
def word_end(word):
return word.get('end', word['start'])
def extract_segment(words, start, end, map_function=None):
"""Extracts all words with time in [start, end]"""
a = max(binary_search_below(words, 0, len(words), start), 0)
b = min(binary_search_above(words, -1, len(words) - 1, end) + 1, len(words))
to_transform = map_function is not None and callable(map_function)
return [
map_function(words[i]) if to_transform else words[i] for i in range(a, b)
]
def avg(*items):
return sum(items)/len(items)
def binary_search_below(transcript, start_index, end_index, time):
if start_index >= end_index:
return end_index
middle_index = (start_index + end_index) // 2
middle = transcript[middle_index]
middle_time = avg(word_start(middle), word_end(middle))
if time <= middle_time:
return binary_search_below(transcript, start_index, middle_index, time)
else:
return binary_search_below(transcript, middle_index + 1, end_index, time)
def binary_search_above(transcript, start_index, end_index, time):
if start_index >= end_index:
return end_index
middle_index = (start_index + end_index + 1) // 2
middle = transcript[middle_index]
middle_time = avg(word_start(middle), word_end(middle))
if time >= middle_time:
return binary_search_above(transcript, middle_index, end_index, time)
else:
return binary_search_above(transcript, start_index, middle_index - 1, time)
class PreTrainedPipeline():
def __init__(self, path: str):
# load the model
self.model = keras.models.load_model(os.path.join(path, "tf_model.h5"))
def __call__(self, inputs: "Image.Image")-> List[Dict[str, Any]]:
# TEMP testing
# data = [{"video_id": "pqh4LfPeCYs", "start": 835.933, "end": 927.581, "category": "sponsor"}]
words = get_words("pqh4LfPeCYs")
segment = extract_segment(words, 835.933, 927.581)
# END TEMP
# convert img to numpy array, resize and normalize to make the prediction
img = np.array(inputs)
im = tf.image.resize(img, (128, 128))
im = tf.cast(im, tf.float32) / 255.0
pred_mask = self.model.predict(im[tf.newaxis, ...])
# take the best performing class for each pixel
# the output of argmax looks like this [[1, 2, 0], ...]
pred_mask_arg = tf.argmax(pred_mask, axis=-1)
labels = []
# convert the prediction mask into binary masks for each class
binary_masks = {}
mask_codes = {}
# when we take tf.argmax() over pred_mask, it becomes a tensor object
# the shape becomes TensorShape object, looking like this TensorShape([128])
# we need to take get shape, convert to list and take the best one
rows = pred_mask_arg[0][1].get_shape().as_list()[0]
cols = pred_mask_arg[0][2].get_shape().as_list()[0]
for cls in range(pred_mask.shape[-1]):
binary_masks[f"mask_{cls}"] = np.zeros(shape = (pred_mask.shape[1], pred_mask.shape[2])) #create masks for each class
for row in range(rows):
for col in range(cols):
if pred_mask_arg[0][row][col] == cls:
binary_masks[f"mask_{cls}"][row][col] = 1
else:
binary_masks[f"mask_{cls}"][row][col] = 0
mask = binary_masks[f"mask_{cls}"]
mask *= 255
img = Image.fromarray(mask.astype(np.int8), mode="L")
# we need to make it readable for the widget
with io.BytesIO() as out:
img.save(out, format="PNG")
png_string = out.getvalue()
mask = base64.b64encode(png_string).decode("utf-8")
mask_codes[f"mask_{cls}"] = mask
# widget needs the below format, for each class we return label and mask string
labels.append({
"label": f"LABEL_{cls}",
"mask": mask_codes[f"mask_{cls}"],
"score": 1.0,
"words": segment
})
return labels