English
XavierJiezou commited on
Commit
e09216f
·
verified ·
1 Parent(s): 9c78b3b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +90 -3
README.md CHANGED
@@ -1,3 +1,90 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+
6
+ # Cloud Adapter Models
7
+
8
+ This repository contains the code and pre-trained model weights for the paper **"Adapting Vision Foundation Models for Robust Cloud Segmentation in Remote Sensing Images"**. The models are specifically designed to perform robust cloud segmentation in remote sensing imagery by leveraging and fine-tuning vision foundation models.
9
+
10
+ ## Features
11
+
12
+ - Pre-trained model weights for cloud segmentation tasks.
13
+ - Code for fine-tuning and evaluation of the models on remote sensing datasets.
14
+ - A user-friendly **Gradio Demo** to test the models interactively.
15
+
16
+ ## Installation
17
+
18
+ To use the code in this repository, clone it locally and install the required dependencies:
19
+
20
+ ```bash
21
+ git clone https://huggingface.co/XavierJiezou/cloud-adapter-models
22
+ cd cloud-adapter-models
23
+ pip install -r requirements.txt
24
+ ```
25
+
26
+ ## Usage
27
+
28
+ ### 1. Download Pre-trained Models
29
+
30
+ The pre-trained model weights are available in the repository. Download the weights and place them in the appropriate directory.
31
+
32
+ ```bash
33
+ # Example command to download weights
34
+ wget <link_to_model_weights>
35
+ ```
36
+
37
+ ### 2. Run the Gradio Demo
38
+
39
+ To interactively test the models using Gradio:
40
+
41
+ ```bash
42
+ python demo.py
43
+ ```
44
+
45
+ This will launch a web interface where you can upload remote sensing images and view the segmentation results.
46
+
47
+ ### 3. Fine-tune the Model
48
+
49
+ You can fine-tune the models on your own datasets. Refer to the `train.py` script for instructions and configuration options.
50
+
51
+ ```bash
52
+ python train.py --config configs/config.yaml
53
+ ```
54
+
55
+ ### 4. Evaluate the Model
56
+
57
+ Evaluate the model on your test set using the `evaluate.py` script:
58
+
59
+ ```bash
60
+ python evaluate.py --weights <path_to_weights> --data <path_to_test_data>
61
+ ```
62
+
63
+ ## Gradio Demo
64
+
65
+ The Gradio demo allows users to upload remote sensing images, run cloud segmentation, and visualize the results. It can be easily modified to suit custom datasets or tasks.
66
+
67
+ ### Example Screenshot:
68
+ *Add a screenshot of the demo interface here if available.*
69
+
70
+ ## Citation
71
+
72
+ If you find this repository helpful, please consider citing the paper:
73
+
74
+ ```latex
75
+ @{cloud-adapter,
76
+ title={Adapting Vision Foundation Models for Robust Cloud Segmentation in Remote Sensing Images},
77
+ author={Xuechao Zou and Shun Zhang and Kai Li and Shiying Wang and Junliang Xing and Lei Jin and Congyan Lang and Pin Tao},
78
+ year={2024},
79
+ eprint={2411.13127},
80
+ archivePrefix={arXiv},
81
+ primaryClass={cs.CV},
82
+ url={https://arxiv.org/abs/2411.13127}
83
+ }
84
+ ```
85
+
86
+ ## Acknowledgements
87
+
88
+ This project builds upon vision foundation models and uses open-source libraries for training and evaluation. Special thanks to the research community for their contributions to remote sensing and computer vision.
89
+
90
+