English
XavierJiezou commited on
Commit
83e48a5
·
verified ·
1 Parent(s): 13d7f04

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -43
README.md CHANGED
@@ -1,22 +1,22 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
 
 
3
  ---
4
 
5
 
6
  # Cloud Adapter Models
7
 
8
- This repository contains the code and pre-trained model weights for the paper **"Adapting Vision Foundation Models for Robust Cloud Segmentation in Remote Sensing Images"**. The models are specifically designed to perform robust cloud segmentation in remote sensing imagery by leveraging and fine-tuning vision foundation models.
9
-
10
- ## Features
11
-
12
- - Pre-trained model weights for cloud segmentation tasks.
13
- - Code for fine-tuning and evaluation of the models on remote sensing datasets.
14
- - A user-friendly **Gradio Demo** to test the models interactively.
15
 
16
  ## Installation
17
 
18
- To use the code in this repository, clone it locally and install the required dependencies:
19
-
20
  ```bash
21
  git clone https://huggingface.co/XavierJiezou/cloud-adapter-models
22
  cd cloud-adapter-models
@@ -25,46 +25,22 @@ pip install -r requirements.txt
25
 
26
  ## Usage
27
 
28
- ### 1. Download Pre-trained Models
29
-
30
- The pre-trained model weights are available in the repository. Download the weights and place them in the appropriate directory.
31
-
32
-
33
-
34
- ### 2. Run the Gradio Demo
35
-
36
- To interactively test the models using Gradio:
37
-
38
  ```bash
39
  python app.py
40
  ```
41
 
42
- #### Notes:
43
- - **GPU Requirement**: If using a GPU, ensure it has at least **16GB of VRAM** to run the model efficiently.
44
- - **CPU-Only Mode**: If you wish to run the demo on CPU, set the environment variable `CUDA_VISIBLE_DEVICES` to `-1`:
45
-
46
- ```bash
47
- CUDA_VISIBLE_DEVICES=-1 python app.py
48
- ```
49
-
50
-
51
- This will launch a web interface where you can upload remote sensing images and view the segmentation results.The Gradio demo allows users to upload remote sensing images, run cloud segmentation, and visualize the results. It can be easily modified to suit custom datasets or tasks.
52
-
53
-
54
  ## Citation
55
 
56
- If you find this repository helpful, please consider citing the paper:
57
 
58
  ```latex
59
- @{cloud-adapter,
60
- title={Adapting Vision Foundation Models for Robust Cloud Segmentation in Remote Sensing Images},
61
- author={Xuechao Zou and Shun Zhang and Kai Li and Shiying Wang and Junliang Xing and Lei Jin and Congyan Lang and Pin Tao},
62
- year={2024},
63
- eprint={2411.13127},
64
- archivePrefix={arXiv},
65
- primaryClass={cs.CV},
66
- url={https://arxiv.org/abs/2411.13127}
67
  }
68
- ```
69
-
70
-
 
1
  ---
2
  license: apache-2.0
3
+ datasets:
4
+ - XavierJiezou/cloud-adapter-datasets
5
+ language:
6
+ - en
7
+ metrics:
8
+ - mean_iou
9
+ base_model:
10
+ - facebook/dinov2-large
11
  ---
12
 
13
 
14
  # Cloud Adapter Models
15
 
16
+ This repository contains the pre-trained model weights for the [Cloud-Adapter](https://xavierjiezou.github.io/Cloud-Adapter/).
 
 
 
 
 
 
17
 
18
  ## Installation
19
 
 
 
20
  ```bash
21
  git clone https://huggingface.co/XavierJiezou/cloud-adapter-models
22
  cd cloud-adapter-models
 
25
 
26
  ## Usage
27
 
 
 
 
 
 
 
 
 
 
 
28
  ```bash
29
  python app.py
30
  ```
31
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  ## Citation
33
 
34
+ If you use our code or models in your research, please cite with:
35
 
36
  ```latex
37
+ @misc{zou2024adaptingvisionfoundationmodels,
38
+ title={Adapting Vision Foundation Models for Robust Cloud Segmentation in Remote Sensing Images},
39
+ author={Xuechao Zou and Shun Zhang and Kai Li and Shiying Wang and Junliang Xing and Lei Jin and Congyan Lang and Pin Tao},
40
+ year={2024},
41
+ eprint={2411.13127},
42
+ archivePrefix={arXiv},
43
+ primaryClass={cs.CV},
44
+ url={https://arxiv.org/abs/2411.13127},
45
  }
46
+ ```