XGBooster commited on
Commit
7db60b7
1 Parent(s): 6d94075

2 mil steps Lunar Lander PPO

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 286.59 +/- 13.63
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9a8b027830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9a8b0278c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9a8b027950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9a8b0279e0>", "_build": "<function ActorCriticPolicy._build at 0x7f9a8b027a70>", "forward": "<function ActorCriticPolicy.forward at 0x7f9a8b027b00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9a8b027b90>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9a8b027c20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9a8b027cb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9a8b027d40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9a8b027dd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9a8b072a80>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652942416.9672205, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADP3lDzAf+U+VtgmPcWl7L7zpHI9Lj7uvQAAAAAAAAAAZrBAvNUGtj+U9Ra/H8FwPrYZQjyGScw9AAAAAAAAAAAzNIK87q9dP1RLAT0jMOO+f8ImvT4x5zwAAAAAAAAAAIAj4r1mJQA/pmhjPtbG6r5hVhE944XuPQAAAAAAAAAAANTnPCtfrz+toTI/1ar8vilZprzFxyi9AAAAAAAAAACIYo++FitjP0uzqT2EsOy+MqCmvuycCj4AAAAAAAAAAM2cgbopFDU7d9AmPvwdor4D6nI9njwtPAAAAAAAAIA/c0TZPbbKA7xV8lu+26qBvnV05bsWFow+AACAPwAAgD8Aa928BH63P1UO0r0wNHG+0lySvX4YCL4AAAAAAAAAAE2Csj0KNa8/YhSIPqBa8b5qDiM+osLVPQAAAAAAAAAAGnxsPXvflry8lYW+GYecPDdd0DzuSLK9AACAPwAAAACGHQM+Jhs2P020Jz2KZge/M3cWPmW3vb0AAAAAAAAAAE3MAj0ILO+8CJR9PICA5Tzuvdm9K53bvQAAgD8AAIA/AN+yvDPdsz+ceUu+e6IVvtkeD73ulAm+AAAAAAAAAAAzs/M6TM0pP8JtlD3wnNi+Pde5vEgj0jwAAAAAAAAAAGa7zL2bA2Y//mQ6u5ed3b5xtQu+PzvBOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3eo56f1UcUCUhpRSlIwBbJRL4YwBdJRHQK0KAcR15jZ1fZQoaAZoCWgPQwgBbECEuBxyQJSGlFKUaBVL/GgWR0CtCjJZGKAKdX2UKGgGaAloD0MIYf4Kmasvb0CUhpRSlGgVS8toFkdArQpUGorFwXV9lChoBmgJaA9DCIRlbOjmiHFAlIaUUpRoFUv4aBZHQK0KiETxoZh1fZQoaAZoCWgPQwj5LTpZqiByQJSGlFKUaBVL4GgWR0CtCrfZmI0qdX2UKGgGaAloD0MIk5BI23hLcUCUhpRSlGgVTUgCaBZHQK0Kzs3Q2Mt1fZQoaAZoCWgPQwhrDhDMkRlyQJSGlFKUaBVL5GgWR0CtCxLGza9LdX2UKGgGaAloD0MIEvqZeh0RcECUhpRSlGgVS+ZoFkdArQsdXeWOZXV9lChoBmgJaA9DCAaDa+4o7XJAlIaUUpRoFUvtaBZHQK0LHyMDOkd1fZQoaAZoCWgPQwjRXKeR1mZxQJSGlFKUaBVL62gWR0CtC7BSk0rLdX2UKGgGaAloD0MIH6LRHQTEcUCUhpRSlGgVS9doFkdArQvTiEQGwHV9lChoBmgJaA9DCDOLUGwF5T9AlIaUUpRoFUueaBZHQK0L2PSUkfN1fZQoaAZoCWgPQwh5rYTukpByQJSGlFKUaBVL3GgWR0CtDDq/dqL1dX2UKGgGaAloD0MIPbmmQKYCcECUhpRSlGgVS9toFkdArQxPCXQdCHV9lChoBmgJaA9DCAOWXMXiKUhAlIaUUpRoFUuKaBZHQK0M0V4X40x1fZQoaAZoCWgPQwg2WDhJM3twQJSGlFKUaBVL42gWR0CtDN2Op84QdX2UKGgGaAloD0MIjsh3KbVockCUhpRSlGgVS9VoFkdArQ1Itrbg0nV9lChoBmgJaA9DCP1NKETAtHJAlIaUUpRoFUvJaBZHQK0NbnyNGVl1fZQoaAZoCWgPQwgzVMVU+mk8QJSGlFKUaBVLmGgWR0CtDXUxmCiAdX2UKGgGaAloD0MIwQKYMrA4cUCUhpRSlGgVS81oFkdArQ2xB5X2d3V9lChoBmgJaA9DCJZa7zcav3FAlIaUUpRoFUvmaBZHQK0Nv4SHuZ11fZQoaAZoCWgPQwj3PeqvF79zQJSGlFKUaBVL1mgWR0CtDmicwxnGdX2UKGgGaAloD0MI0CueeqRJcUCUhpRSlGgVTVEBaBZHQK0OwRjjJdV1fZQoaAZoCWgPQwjXpNsS+T1yQJSGlFKUaBVLyWgWR0CtDwFRxcVydX2UKGgGaAloD0MI/rYnSKxHc0CUhpRSlGgVS+JoFkdArQ9KXpnpS3V9lChoBmgJaA9DCIS7s3ZbZW1AlIaUUpRoFUvPaBZHQK0PvKODJ2d1fZQoaAZoCWgPQwg01v7ONg1xQJSGlFKUaBVL82gWR0CtD9VqveP8dX2UKGgGaAloD0MIbLJGPYRlcUCUhpRSlGgVS85oFkdArRBMc2itaXV9lChoBmgJaA9DCA4TDVLwfnFAlIaUUpRoFUvraBZHQK0hwiJO32F1fZQoaAZoCWgPQwiAYI4ev19zQJSGlFKUaBVLz2gWR0CtIfFzMibEdX2UKGgGaAloD0MIQyCXOPKIcUCUhpRSlGgVS8JoFkdArSH8WKuSwHV9lChoBmgJaA9DCCYd5WD2XXFAlIaUUpRoFUvmaBZHQK0iLxJd0JZ1fZQoaAZoCWgPQwg+k/3z9GVzQJSGlFKUaBVL4WgWR0CtIj0c4o7WdX2UKGgGaAloD0MIpaFGIcmWcUCUhpRSlGgVS9xoFkdArSKEVi4J/3V9lChoBmgJaA9DCNhJfVnaDnFAlIaUUpRoFUvPaBZHQK0jGHqNZNh1fZQoaAZoCWgPQwiSW5NuS75pQJSGlFKUaBVNsQFoFkdArSNGLNwBHXV9lChoBmgJaA9DCOffLvv1N3JAlIaUUpRoFUvSaBZHQK0jhs0pEx91fZQoaAZoCWgPQwjzBS0koFFwQJSGlFKUaBVL22gWR0CtI/SuZCv6dX2UKGgGaAloD0MIlfPF3stYcUCUhpRSlGgVS+NoFkdArSRjDMvAXXV9lChoBmgJaA9DCHPbvkf9cHBAlIaUUpRoFUvSaBZHQK0kladtl7N1fZQoaAZoCWgPQwihD5axYYtyQJSGlFKUaBVNAgFoFkdArSVjWPLgXXV9lChoBmgJaA9DCJ9zt+vlJ3JAlIaUUpRoFUvJaBZHQK0lghcqvvB1fZQoaAZoCWgPQwgN4gM7PuxyQJSGlFKUaBVL82gWR0CtJbXXAdn1dX2UKGgGaAloD0MIrRbYY6KlcUCUhpRSlGgVS9FoFkdArSYmtSydF3V9lChoBmgJaA9DCJF++zpwKXFAlIaUUpRoFUvYaBZHQK0mObBoEjh1fZQoaAZoCWgPQwgkDtlAesJyQJSGlFKUaBVL5WgWR0CtJjk078vVdX2UKGgGaAloD0MIgQabOk+CcUCUhpRSlGgVS+VoFkdArSZDT2FnI3V9lChoBmgJaA9DCD3wMVgxsnFAlIaUUpRoFUvGaBZHQK0m67UXpGF1fZQoaAZoCWgPQwg6B8+EZiRxQJSGlFKUaBVL9GgWR0CtJwqjJuEVdX2UKGgGaAloD0MIK91dZ8MicECUhpRSlGgVS85oFkdArSdOgzxgA3V9lChoBmgJaA9DCLIPsiwYIXNAlIaUUpRoFUvnaBZHQK0nVB+nZTR1fZQoaAZoCWgPQwgzNnSzP5ZyQJSGlFKUaBVL3mgWR0CtKAq6nR9gdX2UKGgGaAloD0MI9inHZDGycECUhpRSlGgVS+doFkdArSil+iJwbXV9lChoBmgJaA9DCD1i9NxCB3NAlIaUUpRoFUvtaBZHQK0o+TJyQxN1fZQoaAZoCWgPQwi7Q4oB0ulyQJSGlFKUaBVL2WgWR0CtKW29DhLodX2UKGgGaAloD0MI5KHvbiVxcECUhpRSlGgVS8BoFkdArSmy9CeEqXV9lChoBmgJaA9DCMsSnWXWYnBAlIaUUpRoFUvZaBZHQK0pvdfsu4B1fZQoaAZoCWgPQwjAWUqWk4BzQJSGlFKUaBVL0mgWR0CtKh8AzYVZdX2UKGgGaAloD0MIVtgMcMGBb0CUhpRSlGgVS9doFkdArSpBVsDW9XV9lChoBmgJaA9DCI9xxcXRnW9AlIaUUpRoFUvbaBZHQK0qSpe/pMZ1fZQoaAZoCWgPQwgaFTjZBiNyQJSGlFKUaBVLu2gWR0CtKo7Vz6rOdX2UKGgGaAloD0MIecpquh6jbUCUhpRSlGgVS9VoFkdArSrlnM+u/3V9lChoBmgJaA9DCHMrhNUY+3BAlIaUUpRoFUvSaBZHQK0rSMXJo011fZQoaAZoCWgPQwhKDW0AduFzQJSGlFKUaBVL02gWR0CtK0j9n9NvdX2UKGgGaAloD0MIpkQSvczzcECUhpRSlGgVTUQBaBZHQK0rh1DBuXN1fZQoaAZoCWgPQwiOyk3U0rlxQJSGlFKUaBVNNANoFkdArSvmtp22X3V9lChoBmgJaA9DCHbexmbHJG9AlIaUUpRoFUvaaBZHQK0sHXRPXTV1fZQoaAZoCWgPQwiIZMix9V5yQJSGlFKUaBVLymgWR0CtLGEleF+NdX2UKGgGaAloD0MIw2SqYFRgckCUhpRSlGgVS8RoFkdArS01To+wDHV9lChoBmgJaA9DCCJUqdmDA3NAlIaUUpRoFUvUaBZHQK0tPhKlHjJ1fZQoaAZoCWgPQwit9rAXClNnQJSGlFKUaBVN6ANoFkdArS1XkNnXd3V9lChoBmgJaA9DCEc4LXjRFXFAlIaUUpRoFUvbaBZHQK0tn4dIXj51fZQoaAZoCWgPQwit+8dCNOdwQJSGlFKUaBVLv2gWR0CtLd3lr/KhdX2UKGgGaAloD0MI3Qa135quc0CUhpRSlGgVS+toFkdArS4z2alUInV9lChoBmgJaA9DCG9jsyNVA3JAlIaUUpRoFUvxaBZHQK0ucgAZKnN1fZQoaAZoCWgPQwhjZMkcy41vQJSGlFKUaBVL3GgWR0CtLqkjxCpndX2UKGgGaAloD0MIC0YldcJvckCUhpRSlGgVS85oFkdArS7De/Ho5nV9lChoBmgJaA9DCG+Cb5q+2m9AlIaUUpRoFUvSaBZHQK0u0wyIpH91fZQoaAZoCWgPQwgQJO8ciiVxQJSGlFKUaBVL2GgWR0CtLyGCiAUddX2UKGgGaAloD0MI76gxIeYMdECUhpRSlGgVS8loFkdArS8z+Haew3V9lChoBmgJaA9DCDwx68UQhnJAlIaUUpRoFUu+aBZHQK0ve1Z1V5t1fZQoaAZoCWgPQwh6AIv8OtJzQJSGlFKUaBVL8GgWR0CtL/+C9RJmdX2UKGgGaAloD0MIl+SAXQ1WcUCUhpRSlGgVTZwBaBZHQK0wDqiXY151fZQoaAZoCWgPQwjo+GhxxotwQJSGlFKUaBVLwmgWR0CtME4V6/qPdX2UKGgGaAloD0MIBHEeTmDQbkCUhpRSlGgVS9VoFkdArTC6sU7CBXV9lChoBmgJaA9DCGHe40yTn3NAlIaUUpRoFUvvaBZHQK0xE89Oh011fZQoaAZoCWgPQwibH39pkcxwQJSGlFKUaBVL4WgWR0CtMTmZ/kNndX2UKGgGaAloD0MIb72mBwVpc0CUhpRSlGgVS9FoFkdArTE5cRlH0HV9lChoBmgJaA9DCIM1zqajmG9AlIaUUpRoFUvYaBZHQK0xp7SiM5x1fZQoaAZoCWgPQwhb7swEQzBwQJSGlFKUaBVL4WgWR0CtMge2NNrTdX2UKGgGaAloD0MIE9bG2MnAc0CUhpRSlGgVS9JoFkdArTIaSPluFnV9lChoBmgJaA9DCMo329yYtnJAlIaUUpRoFU3gAWgWR0CtMj58KG+LdX2UKGgGaAloD0MI0Jm0qXrrcECUhpRSlGgVS8FoFkdArTJNsFdLQHV9lChoBmgJaA9DCOMan8k+wXJAlIaUUpRoFUvuaBZHQK0yc/PgNw11fZQoaAZoCWgPQwjcL5+s2A10QJSGlFKUaBVL8mgWR0CtMqsnRb8ndX2UKGgGaAloD0MI4IEBhE9pcECUhpRSlGgVS+1oFkdArTLkmMOwxHV9lChoBmgJaA9DCCrhCb3+/HFAlIaUUpRoFUvgaBZHQK0zCtga3ql1fZQoaAZoCWgPQwiSCI1g4xFyQJSGlFKUaBVLx2gWR0CtMzbkGRmsdX2UKGgGaAloD0MI3gAz3wFucUCUhpRSlGgVS75oFkdArTNPechC+nV9lChoBmgJaA9DCJ/HKM/8LnFAlIaUUpRoFUvTaBZHQK0zV8Kohpx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 770, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
lunar-lander-2e6-ppo.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9964e0d9eca3ffc547093fbbf0bdb9fe46621ee24f9659343ba7409f7f02c07
3
+ size 143994
lunar-lander-2e6-ppo/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
lunar-lander-2e6-ppo/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9a8b027830>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9a8b0278c0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9a8b027950>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9a8b0279e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f9a8b027a70>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f9a8b027b00>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9a8b027b90>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f9a8b027c20>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9a8b027cb0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9a8b027d40>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9a8b027dd0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f9a8b072a80>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 2015232,
46
+ "_total_timesteps": 2000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1652942416.9672205,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADP3lDzAf+U+VtgmPcWl7L7zpHI9Lj7uvQAAAAAAAAAAZrBAvNUGtj+U9Ra/H8FwPrYZQjyGScw9AAAAAAAAAAAzNIK87q9dP1RLAT0jMOO+f8ImvT4x5zwAAAAAAAAAAIAj4r1mJQA/pmhjPtbG6r5hVhE944XuPQAAAAAAAAAAANTnPCtfrz+toTI/1ar8vilZprzFxyi9AAAAAAAAAACIYo++FitjP0uzqT2EsOy+MqCmvuycCj4AAAAAAAAAAM2cgbopFDU7d9AmPvwdor4D6nI9njwtPAAAAAAAAIA/c0TZPbbKA7xV8lu+26qBvnV05bsWFow+AACAPwAAgD8Aa928BH63P1UO0r0wNHG+0lySvX4YCL4AAAAAAAAAAE2Csj0KNa8/YhSIPqBa8b5qDiM+osLVPQAAAAAAAAAAGnxsPXvflry8lYW+GYecPDdd0DzuSLK9AACAPwAAAACGHQM+Jhs2P020Jz2KZge/M3cWPmW3vb0AAAAAAAAAAE3MAj0ILO+8CJR9PICA5Tzuvdm9K53bvQAAgD8AAIA/AN+yvDPdsz+ceUu+e6IVvtkeD73ulAm+AAAAAAAAAAAzs/M6TM0pP8JtlD3wnNi+Pde5vEgj0jwAAAAAAAAAAGa7zL2bA2Y//mQ6u5ed3b5xtQu+PzvBOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.007616000000000067,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVJhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3eo56f1UcUCUhpRSlIwBbJRL4YwBdJRHQK0KAcR15jZ1fZQoaAZoCWgPQwgBbECEuBxyQJSGlFKUaBVL/GgWR0CtCjJZGKAKdX2UKGgGaAloD0MIYf4Kmasvb0CUhpRSlGgVS8toFkdArQpUGorFwXV9lChoBmgJaA9DCIRlbOjmiHFAlIaUUpRoFUv4aBZHQK0KiETxoZh1fZQoaAZoCWgPQwj5LTpZqiByQJSGlFKUaBVL4GgWR0CtCrfZmI0qdX2UKGgGaAloD0MIk5BI23hLcUCUhpRSlGgVTUgCaBZHQK0Kzs3Q2Mt1fZQoaAZoCWgPQwhrDhDMkRlyQJSGlFKUaBVL5GgWR0CtCxLGza9LdX2UKGgGaAloD0MIEvqZeh0RcECUhpRSlGgVS+ZoFkdArQsdXeWOZXV9lChoBmgJaA9DCAaDa+4o7XJAlIaUUpRoFUvtaBZHQK0LHyMDOkd1fZQoaAZoCWgPQwjRXKeR1mZxQJSGlFKUaBVL62gWR0CtC7BSk0rLdX2UKGgGaAloD0MIH6LRHQTEcUCUhpRSlGgVS9doFkdArQvTiEQGwHV9lChoBmgJaA9DCDOLUGwF5T9AlIaUUpRoFUueaBZHQK0L2PSUkfN1fZQoaAZoCWgPQwh5rYTukpByQJSGlFKUaBVL3GgWR0CtDDq/dqL1dX2UKGgGaAloD0MIPbmmQKYCcECUhpRSlGgVS9toFkdArQxPCXQdCHV9lChoBmgJaA9DCAOWXMXiKUhAlIaUUpRoFUuKaBZHQK0M0V4X40x1fZQoaAZoCWgPQwg2WDhJM3twQJSGlFKUaBVL42gWR0CtDN2Op84QdX2UKGgGaAloD0MIjsh3KbVockCUhpRSlGgVS9VoFkdArQ1Itrbg0nV9lChoBmgJaA9DCP1NKETAtHJAlIaUUpRoFUvJaBZHQK0NbnyNGVl1fZQoaAZoCWgPQwgzVMVU+mk8QJSGlFKUaBVLmGgWR0CtDXUxmCiAdX2UKGgGaAloD0MIwQKYMrA4cUCUhpRSlGgVS81oFkdArQ2xB5X2d3V9lChoBmgJaA9DCJZa7zcav3FAlIaUUpRoFUvmaBZHQK0Nv4SHuZ11fZQoaAZoCWgPQwj3PeqvF79zQJSGlFKUaBVL1mgWR0CtDmicwxnGdX2UKGgGaAloD0MI0CueeqRJcUCUhpRSlGgVTVEBaBZHQK0OwRjjJdV1fZQoaAZoCWgPQwjXpNsS+T1yQJSGlFKUaBVLyWgWR0CtDwFRxcVydX2UKGgGaAloD0MI/rYnSKxHc0CUhpRSlGgVS+JoFkdArQ9KXpnpS3V9lChoBmgJaA9DCIS7s3ZbZW1AlIaUUpRoFUvPaBZHQK0PvKODJ2d1fZQoaAZoCWgPQwg01v7ONg1xQJSGlFKUaBVL82gWR0CtD9VqveP8dX2UKGgGaAloD0MIbLJGPYRlcUCUhpRSlGgVS85oFkdArRBMc2itaXV9lChoBmgJaA9DCA4TDVLwfnFAlIaUUpRoFUvraBZHQK0hwiJO32F1fZQoaAZoCWgPQwiAYI4ev19zQJSGlFKUaBVLz2gWR0CtIfFzMibEdX2UKGgGaAloD0MIQyCXOPKIcUCUhpRSlGgVS8JoFkdArSH8WKuSwHV9lChoBmgJaA9DCCYd5WD2XXFAlIaUUpRoFUvmaBZHQK0iLxJd0JZ1fZQoaAZoCWgPQwg+k/3z9GVzQJSGlFKUaBVL4WgWR0CtIj0c4o7WdX2UKGgGaAloD0MIpaFGIcmWcUCUhpRSlGgVS9xoFkdArSKEVi4J/3V9lChoBmgJaA9DCNhJfVnaDnFAlIaUUpRoFUvPaBZHQK0jGHqNZNh1fZQoaAZoCWgPQwiSW5NuS75pQJSGlFKUaBVNsQFoFkdArSNGLNwBHXV9lChoBmgJaA9DCOffLvv1N3JAlIaUUpRoFUvSaBZHQK0jhs0pEx91fZQoaAZoCWgPQwjzBS0koFFwQJSGlFKUaBVL22gWR0CtI/SuZCv6dX2UKGgGaAloD0MIlfPF3stYcUCUhpRSlGgVS+NoFkdArSRjDMvAXXV9lChoBmgJaA9DCHPbvkf9cHBAlIaUUpRoFUvSaBZHQK0kladtl7N1fZQoaAZoCWgPQwihD5axYYtyQJSGlFKUaBVNAgFoFkdArSVjWPLgXXV9lChoBmgJaA9DCJ9zt+vlJ3JAlIaUUpRoFUvJaBZHQK0lghcqvvB1fZQoaAZoCWgPQwgN4gM7PuxyQJSGlFKUaBVL82gWR0CtJbXXAdn1dX2UKGgGaAloD0MIrRbYY6KlcUCUhpRSlGgVS9FoFkdArSYmtSydF3V9lChoBmgJaA9DCJF++zpwKXFAlIaUUpRoFUvYaBZHQK0mObBoEjh1fZQoaAZoCWgPQwgkDtlAesJyQJSGlFKUaBVL5WgWR0CtJjk078vVdX2UKGgGaAloD0MIgQabOk+CcUCUhpRSlGgVS+VoFkdArSZDT2FnI3V9lChoBmgJaA9DCD3wMVgxsnFAlIaUUpRoFUvGaBZHQK0m67UXpGF1fZQoaAZoCWgPQwg6B8+EZiRxQJSGlFKUaBVL9GgWR0CtJwqjJuEVdX2UKGgGaAloD0MIK91dZ8MicECUhpRSlGgVS85oFkdArSdOgzxgA3V9lChoBmgJaA9DCLIPsiwYIXNAlIaUUpRoFUvnaBZHQK0nVB+nZTR1fZQoaAZoCWgPQwgzNnSzP5ZyQJSGlFKUaBVL3mgWR0CtKAq6nR9gdX2UKGgGaAloD0MI9inHZDGycECUhpRSlGgVS+doFkdArSil+iJwbXV9lChoBmgJaA9DCD1i9NxCB3NAlIaUUpRoFUvtaBZHQK0o+TJyQxN1fZQoaAZoCWgPQwi7Q4oB0ulyQJSGlFKUaBVL2WgWR0CtKW29DhLodX2UKGgGaAloD0MI5KHvbiVxcECUhpRSlGgVS8BoFkdArSmy9CeEqXV9lChoBmgJaA9DCMsSnWXWYnBAlIaUUpRoFUvZaBZHQK0pvdfsu4B1fZQoaAZoCWgPQwjAWUqWk4BzQJSGlFKUaBVL0mgWR0CtKh8AzYVZdX2UKGgGaAloD0MIVtgMcMGBb0CUhpRSlGgVS9doFkdArSpBVsDW9XV9lChoBmgJaA9DCI9xxcXRnW9AlIaUUpRoFUvbaBZHQK0qSpe/pMZ1fZQoaAZoCWgPQwgaFTjZBiNyQJSGlFKUaBVLu2gWR0CtKo7Vz6rOdX2UKGgGaAloD0MIecpquh6jbUCUhpRSlGgVS9VoFkdArSrlnM+u/3V9lChoBmgJaA9DCHMrhNUY+3BAlIaUUpRoFUvSaBZHQK0rSMXJo011fZQoaAZoCWgPQwhKDW0AduFzQJSGlFKUaBVL02gWR0CtK0j9n9NvdX2UKGgGaAloD0MIpkQSvczzcECUhpRSlGgVTUQBaBZHQK0rh1DBuXN1fZQoaAZoCWgPQwiOyk3U0rlxQJSGlFKUaBVNNANoFkdArSvmtp22X3V9lChoBmgJaA9DCHbexmbHJG9AlIaUUpRoFUvaaBZHQK0sHXRPXTV1fZQoaAZoCWgPQwiIZMix9V5yQJSGlFKUaBVLymgWR0CtLGEleF+NdX2UKGgGaAloD0MIw2SqYFRgckCUhpRSlGgVS8RoFkdArS01To+wDHV9lChoBmgJaA9DCCJUqdmDA3NAlIaUUpRoFUvUaBZHQK0tPhKlHjJ1fZQoaAZoCWgPQwit9rAXClNnQJSGlFKUaBVN6ANoFkdArS1XkNnXd3V9lChoBmgJaA9DCEc4LXjRFXFAlIaUUpRoFUvbaBZHQK0tn4dIXj51fZQoaAZoCWgPQwit+8dCNOdwQJSGlFKUaBVLv2gWR0CtLd3lr/KhdX2UKGgGaAloD0MI3Qa135quc0CUhpRSlGgVS+toFkdArS4z2alUInV9lChoBmgJaA9DCG9jsyNVA3JAlIaUUpRoFUvxaBZHQK0ucgAZKnN1fZQoaAZoCWgPQwhjZMkcy41vQJSGlFKUaBVL3GgWR0CtLqkjxCpndX2UKGgGaAloD0MIC0YldcJvckCUhpRSlGgVS85oFkdArS7De/Ho5nV9lChoBmgJaA9DCG+Cb5q+2m9AlIaUUpRoFUvSaBZHQK0u0wyIpH91fZQoaAZoCWgPQwgQJO8ciiVxQJSGlFKUaBVL2GgWR0CtLyGCiAUddX2UKGgGaAloD0MI76gxIeYMdECUhpRSlGgVS8loFkdArS8z+Haew3V9lChoBmgJaA9DCDwx68UQhnJAlIaUUpRoFUu+aBZHQK0ve1Z1V5t1fZQoaAZoCWgPQwh6AIv8OtJzQJSGlFKUaBVL8GgWR0CtL/+C9RJmdX2UKGgGaAloD0MIl+SAXQ1WcUCUhpRSlGgVTZwBaBZHQK0wDqiXY151fZQoaAZoCWgPQwjo+GhxxotwQJSGlFKUaBVLwmgWR0CtME4V6/qPdX2UKGgGaAloD0MIBHEeTmDQbkCUhpRSlGgVS9VoFkdArTC6sU7CBXV9lChoBmgJaA9DCGHe40yTn3NAlIaUUpRoFUvvaBZHQK0xE89Oh011fZQoaAZoCWgPQwibH39pkcxwQJSGlFKUaBVL4WgWR0CtMTmZ/kNndX2UKGgGaAloD0MIb72mBwVpc0CUhpRSlGgVS9FoFkdArTE5cRlH0HV9lChoBmgJaA9DCIM1zqajmG9AlIaUUpRoFUvYaBZHQK0xp7SiM5x1fZQoaAZoCWgPQwhb7swEQzBwQJSGlFKUaBVL4WgWR0CtMge2NNrTdX2UKGgGaAloD0MIE9bG2MnAc0CUhpRSlGgVS9JoFkdArTIaSPluFnV9lChoBmgJaA9DCMo329yYtnJAlIaUUpRoFU3gAWgWR0CtMj58KG+LdX2UKGgGaAloD0MI0Jm0qXrrcECUhpRSlGgVS8FoFkdArTJNsFdLQHV9lChoBmgJaA9DCOMan8k+wXJAlIaUUpRoFUvuaBZHQK0yc/PgNw11fZQoaAZoCWgPQwjcL5+s2A10QJSGlFKUaBVL8mgWR0CtMqsnRb8ndX2UKGgGaAloD0MI4IEBhE9pcECUhpRSlGgVS+1oFkdArTLkmMOwxHV9lChoBmgJaA9DCCrhCb3+/HFAlIaUUpRoFUvgaBZHQK0zCtga3ql1fZQoaAZoCWgPQwiSCI1g4xFyQJSGlFKUaBVLx2gWR0CtMzbkGRmsdX2UKGgGaAloD0MI3gAz3wFucUCUhpRSlGgVS75oFkdArTNPechC+nV9lChoBmgJaA9DCJ/HKM/8LnFAlIaUUpRoFUvTaBZHQK0zV8Kohpx1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 770,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 5,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
lunar-lander-2e6-ppo/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6875b7c0b9636c0e0a5e313d07b7026237ec8c564906006e3a2c972f9c8a5745
3
+ size 84893
lunar-lander-2e6-ppo/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc1001d12ef40cb9e828e42c28a13608904c6cf8bc8cbf3baaa408a2db0f6fcf
3
+ size 43201
lunar-lander-2e6-ppo/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
lunar-lander-2e6-ppo/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:761c2068c3a0ba739fbdac1012f9f6bcf76a284f9ab40968d3a08627b4de159a
3
+ size 235666
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 286.58629520497254, "std_reward": 13.626143102430186, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-19T07:29:32.379328"}