2 mil steps Lunar Lander PPO
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- lunar-lander-2e6-ppo.zip +3 -0
- lunar-lander-2e6-ppo/_stable_baselines3_version +1 -0
- lunar-lander-2e6-ppo/data +94 -0
- lunar-lander-2e6-ppo/policy.optimizer.pth +3 -0
- lunar-lander-2e6-ppo/policy.pth +3 -0
- lunar-lander-2e6-ppo/pytorch_variables.pth +3 -0
- lunar-lander-2e6-ppo/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 286.59 +/- 13.63
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9a8b027830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9a8b0278c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9a8b027950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9a8b0279e0>", "_build": "<function ActorCriticPolicy._build at 0x7f9a8b027a70>", "forward": "<function ActorCriticPolicy.forward at 0x7f9a8b027b00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9a8b027b90>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9a8b027c20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9a8b027cb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9a8b027d40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9a8b027dd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9a8b072a80>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652942416.9672205, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADP3lDzAf+U+VtgmPcWl7L7zpHI9Lj7uvQAAAAAAAAAAZrBAvNUGtj+U9Ra/H8FwPrYZQjyGScw9AAAAAAAAAAAzNIK87q9dP1RLAT0jMOO+f8ImvT4x5zwAAAAAAAAAAIAj4r1mJQA/pmhjPtbG6r5hVhE944XuPQAAAAAAAAAAANTnPCtfrz+toTI/1ar8vilZprzFxyi9AAAAAAAAAACIYo++FitjP0uzqT2EsOy+MqCmvuycCj4AAAAAAAAAAM2cgbopFDU7d9AmPvwdor4D6nI9njwtPAAAAAAAAIA/c0TZPbbKA7xV8lu+26qBvnV05bsWFow+AACAPwAAgD8Aa928BH63P1UO0r0wNHG+0lySvX4YCL4AAAAAAAAAAE2Csj0KNa8/YhSIPqBa8b5qDiM+osLVPQAAAAAAAAAAGnxsPXvflry8lYW+GYecPDdd0DzuSLK9AACAPwAAAACGHQM+Jhs2P020Jz2KZge/M3cWPmW3vb0AAAAAAAAAAE3MAj0ILO+8CJR9PICA5Tzuvdm9K53bvQAAgD8AAIA/AN+yvDPdsz+ceUu+e6IVvtkeD73ulAm+AAAAAAAAAAAzs/M6TM0pP8JtlD3wnNi+Pde5vEgj0jwAAAAAAAAAAGa7zL2bA2Y//mQ6u5ed3b5xtQu+PzvBOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3eo56f1UcUCUhpRSlIwBbJRL4YwBdJRHQK0KAcR15jZ1fZQoaAZoCWgPQwgBbECEuBxyQJSGlFKUaBVL/GgWR0CtCjJZGKAKdX2UKGgGaAloD0MIYf4Kmasvb0CUhpRSlGgVS8toFkdArQpUGorFwXV9lChoBmgJaA9DCIRlbOjmiHFAlIaUUpRoFUv4aBZHQK0KiETxoZh1fZQoaAZoCWgPQwj5LTpZqiByQJSGlFKUaBVL4GgWR0CtCrfZmI0qdX2UKGgGaAloD0MIk5BI23hLcUCUhpRSlGgVTUgCaBZHQK0Kzs3Q2Mt1fZQoaAZoCWgPQwhrDhDMkRlyQJSGlFKUaBVL5GgWR0CtCxLGza9LdX2UKGgGaAloD0MIEvqZeh0RcECUhpRSlGgVS+ZoFkdArQsdXeWOZXV9lChoBmgJaA9DCAaDa+4o7XJAlIaUUpRoFUvtaBZHQK0LHyMDOkd1fZQoaAZoCWgPQwjRXKeR1mZxQJSGlFKUaBVL62gWR0CtC7BSk0rLdX2UKGgGaAloD0MIH6LRHQTEcUCUhpRSlGgVS9doFkdArQvTiEQGwHV9lChoBmgJaA9DCDOLUGwF5T9AlIaUUpRoFUueaBZHQK0L2PSUkfN1fZQoaAZoCWgPQwh5rYTukpByQJSGlFKUaBVL3GgWR0CtDDq/dqL1dX2UKGgGaAloD0MIPbmmQKYCcECUhpRSlGgVS9toFkdArQxPCXQdCHV9lChoBmgJaA9DCAOWXMXiKUhAlIaUUpRoFUuKaBZHQK0M0V4X40x1fZQoaAZoCWgPQwg2WDhJM3twQJSGlFKUaBVL42gWR0CtDN2Op84QdX2UKGgGaAloD0MIjsh3KbVockCUhpRSlGgVS9VoFkdArQ1Itrbg0nV9lChoBmgJaA9DCP1NKETAtHJAlIaUUpRoFUvJaBZHQK0NbnyNGVl1fZQoaAZoCWgPQwgzVMVU+mk8QJSGlFKUaBVLmGgWR0CtDXUxmCiAdX2UKGgGaAloD0MIwQKYMrA4cUCUhpRSlGgVS81oFkdArQ2xB5X2d3V9lChoBmgJaA9DCJZa7zcav3FAlIaUUpRoFUvmaBZHQK0Nv4SHuZ11fZQoaAZoCWgPQwj3PeqvF79zQJSGlFKUaBVL1mgWR0CtDmicwxnGdX2UKGgGaAloD0MI0CueeqRJcUCUhpRSlGgVTVEBaBZHQK0OwRjjJdV1fZQoaAZoCWgPQwjXpNsS+T1yQJSGlFKUaBVLyWgWR0CtDwFRxcVydX2UKGgGaAloD0MI/rYnSKxHc0CUhpRSlGgVS+JoFkdArQ9KXpnpS3V9lChoBmgJaA9DCIS7s3ZbZW1AlIaUUpRoFUvPaBZHQK0PvKODJ2d1fZQoaAZoCWgPQwg01v7ONg1xQJSGlFKUaBVL82gWR0CtD9VqveP8dX2UKGgGaAloD0MIbLJGPYRlcUCUhpRSlGgVS85oFkdArRBMc2itaXV9lChoBmgJaA9DCA4TDVLwfnFAlIaUUpRoFUvraBZHQK0hwiJO32F1fZQoaAZoCWgPQwiAYI4ev19zQJSGlFKUaBVLz2gWR0CtIfFzMibEdX2UKGgGaAloD0MIQyCXOPKIcUCUhpRSlGgVS8JoFkdArSH8WKuSwHV9lChoBmgJaA9DCCYd5WD2XXFAlIaUUpRoFUvmaBZHQK0iLxJd0JZ1fZQoaAZoCWgPQwg+k/3z9GVzQJSGlFKUaBVL4WgWR0CtIj0c4o7WdX2UKGgGaAloD0MIpaFGIcmWcUCUhpRSlGgVS9xoFkdArSKEVi4J/3V9lChoBmgJaA9DCNhJfVnaDnFAlIaUUpRoFUvPaBZHQK0jGHqNZNh1fZQoaAZoCWgPQwiSW5NuS75pQJSGlFKUaBVNsQFoFkdArSNGLNwBHXV9lChoBmgJaA9DCOffLvv1N3JAlIaUUpRoFUvSaBZHQK0jhs0pEx91fZQoaAZoCWgPQwjzBS0koFFwQJSGlFKUaBVL22gWR0CtI/SuZCv6dX2UKGgGaAloD0MIlfPF3stYcUCUhpRSlGgVS+NoFkdArSRjDMvAXXV9lChoBmgJaA9DCHPbvkf9cHBAlIaUUpRoFUvSaBZHQK0kladtl7N1fZQoaAZoCWgPQwihD5axYYtyQJSGlFKUaBVNAgFoFkdArSVjWPLgXXV9lChoBmgJaA9DCJ9zt+vlJ3JAlIaUUpRoFUvJaBZHQK0lghcqvvB1fZQoaAZoCWgPQwgN4gM7PuxyQJSGlFKUaBVL82gWR0CtJbXXAdn1dX2UKGgGaAloD0MIrRbYY6KlcUCUhpRSlGgVS9FoFkdArSYmtSydF3V9lChoBmgJaA9DCJF++zpwKXFAlIaUUpRoFUvYaBZHQK0mObBoEjh1fZQoaAZoCWgPQwgkDtlAesJyQJSGlFKUaBVL5WgWR0CtJjk078vVdX2UKGgGaAloD0MIgQabOk+CcUCUhpRSlGgVS+VoFkdArSZDT2FnI3V9lChoBmgJaA9DCD3wMVgxsnFAlIaUUpRoFUvGaBZHQK0m67UXpGF1fZQoaAZoCWgPQwg6B8+EZiRxQJSGlFKUaBVL9GgWR0CtJwqjJuEVdX2UKGgGaAloD0MIK91dZ8MicECUhpRSlGgVS85oFkdArSdOgzxgA3V9lChoBmgJaA9DCLIPsiwYIXNAlIaUUpRoFUvnaBZHQK0nVB+nZTR1fZQoaAZoCWgPQwgzNnSzP5ZyQJSGlFKUaBVL3mgWR0CtKAq6nR9gdX2UKGgGaAloD0MI9inHZDGycECUhpRSlGgVS+doFkdArSil+iJwbXV9lChoBmgJaA9DCD1i9NxCB3NAlIaUUpRoFUvtaBZHQK0o+TJyQxN1fZQoaAZoCWgPQwi7Q4oB0ulyQJSGlFKUaBVL2WgWR0CtKW29DhLodX2UKGgGaAloD0MI5KHvbiVxcECUhpRSlGgVS8BoFkdArSmy9CeEqXV9lChoBmgJaA9DCMsSnWXWYnBAlIaUUpRoFUvZaBZHQK0pvdfsu4B1fZQoaAZoCWgPQwjAWUqWk4BzQJSGlFKUaBVL0mgWR0CtKh8AzYVZdX2UKGgGaAloD0MIVtgMcMGBb0CUhpRSlGgVS9doFkdArSpBVsDW9XV9lChoBmgJaA9DCI9xxcXRnW9AlIaUUpRoFUvbaBZHQK0qSpe/pMZ1fZQoaAZoCWgPQwgaFTjZBiNyQJSGlFKUaBVLu2gWR0CtKo7Vz6rOdX2UKGgGaAloD0MIecpquh6jbUCUhpRSlGgVS9VoFkdArSrlnM+u/3V9lChoBmgJaA9DCHMrhNUY+3BAlIaUUpRoFUvSaBZHQK0rSMXJo011fZQoaAZoCWgPQwhKDW0AduFzQJSGlFKUaBVL02gWR0CtK0j9n9NvdX2UKGgGaAloD0MIpkQSvczzcECUhpRSlGgVTUQBaBZHQK0rh1DBuXN1fZQoaAZoCWgPQwiOyk3U0rlxQJSGlFKUaBVNNANoFkdArSvmtp22X3V9lChoBmgJaA9DCHbexmbHJG9AlIaUUpRoFUvaaBZHQK0sHXRPXTV1fZQoaAZoCWgPQwiIZMix9V5yQJSGlFKUaBVLymgWR0CtLGEleF+NdX2UKGgGaAloD0MIw2SqYFRgckCUhpRSlGgVS8RoFkdArS01To+wDHV9lChoBmgJaA9DCCJUqdmDA3NAlIaUUpRoFUvUaBZHQK0tPhKlHjJ1fZQoaAZoCWgPQwit9rAXClNnQJSGlFKUaBVN6ANoFkdArS1XkNnXd3V9lChoBmgJaA9DCEc4LXjRFXFAlIaUUpRoFUvbaBZHQK0tn4dIXj51fZQoaAZoCWgPQwit+8dCNOdwQJSGlFKUaBVLv2gWR0CtLd3lr/KhdX2UKGgGaAloD0MI3Qa135quc0CUhpRSlGgVS+toFkdArS4z2alUInV9lChoBmgJaA9DCG9jsyNVA3JAlIaUUpRoFUvxaBZHQK0ucgAZKnN1fZQoaAZoCWgPQwhjZMkcy41vQJSGlFKUaBVL3GgWR0CtLqkjxCpndX2UKGgGaAloD0MIC0YldcJvckCUhpRSlGgVS85oFkdArS7De/Ho5nV9lChoBmgJaA9DCG+Cb5q+2m9AlIaUUpRoFUvSaBZHQK0u0wyIpH91fZQoaAZoCWgPQwgQJO8ciiVxQJSGlFKUaBVL2GgWR0CtLyGCiAUddX2UKGgGaAloD0MI76gxIeYMdECUhpRSlGgVS8loFkdArS8z+Haew3V9lChoBmgJaA9DCDwx68UQhnJAlIaUUpRoFUu+aBZHQK0ve1Z1V5t1fZQoaAZoCWgPQwh6AIv8OtJzQJSGlFKUaBVL8GgWR0CtL/+C9RJmdX2UKGgGaAloD0MIl+SAXQ1WcUCUhpRSlGgVTZwBaBZHQK0wDqiXY151fZQoaAZoCWgPQwjo+GhxxotwQJSGlFKUaBVLwmgWR0CtME4V6/qPdX2UKGgGaAloD0MIBHEeTmDQbkCUhpRSlGgVS9VoFkdArTC6sU7CBXV9lChoBmgJaA9DCGHe40yTn3NAlIaUUpRoFUvvaBZHQK0xE89Oh011fZQoaAZoCWgPQwibH39pkcxwQJSGlFKUaBVL4WgWR0CtMTmZ/kNndX2UKGgGaAloD0MIb72mBwVpc0CUhpRSlGgVS9FoFkdArTE5cRlH0HV9lChoBmgJaA9DCIM1zqajmG9AlIaUUpRoFUvYaBZHQK0xp7SiM5x1fZQoaAZoCWgPQwhb7swEQzBwQJSGlFKUaBVL4WgWR0CtMge2NNrTdX2UKGgGaAloD0MIE9bG2MnAc0CUhpRSlGgVS9JoFkdArTIaSPluFnV9lChoBmgJaA9DCMo329yYtnJAlIaUUpRoFU3gAWgWR0CtMj58KG+LdX2UKGgGaAloD0MI0Jm0qXrrcECUhpRSlGgVS8FoFkdArTJNsFdLQHV9lChoBmgJaA9DCOMan8k+wXJAlIaUUpRoFUvuaBZHQK0yc/PgNw11fZQoaAZoCWgPQwjcL5+s2A10QJSGlFKUaBVL8mgWR0CtMqsnRb8ndX2UKGgGaAloD0MI4IEBhE9pcECUhpRSlGgVS+1oFkdArTLkmMOwxHV9lChoBmgJaA9DCCrhCb3+/HFAlIaUUpRoFUvgaBZHQK0zCtga3ql1fZQoaAZoCWgPQwiSCI1g4xFyQJSGlFKUaBVLx2gWR0CtMzbkGRmsdX2UKGgGaAloD0MI3gAz3wFucUCUhpRSlGgVS75oFkdArTNPechC+nV9lChoBmgJaA9DCJ/HKM/8LnFAlIaUUpRoFUvTaBZHQK0zV8Kohpx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 770, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
lunar-lander-2e6-ppo.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d9964e0d9eca3ffc547093fbbf0bdb9fe46621ee24f9659343ba7409f7f02c07
|
3 |
+
size 143994
|
lunar-lander-2e6-ppo/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
lunar-lander-2e6-ppo/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9a8b027830>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9a8b0278c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9a8b027950>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9a8b0279e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f9a8b027a70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f9a8b027b00>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9a8b027b90>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f9a8b027c20>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9a8b027cb0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9a8b027d40>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9a8b027dd0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f9a8b072a80>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 2015232,
|
46 |
+
"_total_timesteps": 2000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652942416.9672205,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADP3lDzAf+U+VtgmPcWl7L7zpHI9Lj7uvQAAAAAAAAAAZrBAvNUGtj+U9Ra/H8FwPrYZQjyGScw9AAAAAAAAAAAzNIK87q9dP1RLAT0jMOO+f8ImvT4x5zwAAAAAAAAAAIAj4r1mJQA/pmhjPtbG6r5hVhE944XuPQAAAAAAAAAAANTnPCtfrz+toTI/1ar8vilZprzFxyi9AAAAAAAAAACIYo++FitjP0uzqT2EsOy+MqCmvuycCj4AAAAAAAAAAM2cgbopFDU7d9AmPvwdor4D6nI9njwtPAAAAAAAAIA/c0TZPbbKA7xV8lu+26qBvnV05bsWFow+AACAPwAAgD8Aa928BH63P1UO0r0wNHG+0lySvX4YCL4AAAAAAAAAAE2Csj0KNa8/YhSIPqBa8b5qDiM+osLVPQAAAAAAAAAAGnxsPXvflry8lYW+GYecPDdd0DzuSLK9AACAPwAAAACGHQM+Jhs2P020Jz2KZge/M3cWPmW3vb0AAAAAAAAAAE3MAj0ILO+8CJR9PICA5Tzuvdm9K53bvQAAgD8AAIA/AN+yvDPdsz+ceUu+e6IVvtkeD73ulAm+AAAAAAAAAAAzs/M6TM0pP8JtlD3wnNi+Pde5vEgj0jwAAAAAAAAAAGa7zL2bA2Y//mQ6u5ed3b5xtQu+PzvBOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.007616000000000067,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVJhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3eo56f1UcUCUhpRSlIwBbJRL4YwBdJRHQK0KAcR15jZ1fZQoaAZoCWgPQwgBbECEuBxyQJSGlFKUaBVL/GgWR0CtCjJZGKAKdX2UKGgGaAloD0MIYf4Kmasvb0CUhpRSlGgVS8toFkdArQpUGorFwXV9lChoBmgJaA9DCIRlbOjmiHFAlIaUUpRoFUv4aBZHQK0KiETxoZh1fZQoaAZoCWgPQwj5LTpZqiByQJSGlFKUaBVL4GgWR0CtCrfZmI0qdX2UKGgGaAloD0MIk5BI23hLcUCUhpRSlGgVTUgCaBZHQK0Kzs3Q2Mt1fZQoaAZoCWgPQwhrDhDMkRlyQJSGlFKUaBVL5GgWR0CtCxLGza9LdX2UKGgGaAloD0MIEvqZeh0RcECUhpRSlGgVS+ZoFkdArQsdXeWOZXV9lChoBmgJaA9DCAaDa+4o7XJAlIaUUpRoFUvtaBZHQK0LHyMDOkd1fZQoaAZoCWgPQwjRXKeR1mZxQJSGlFKUaBVL62gWR0CtC7BSk0rLdX2UKGgGaAloD0MIH6LRHQTEcUCUhpRSlGgVS9doFkdArQvTiEQGwHV9lChoBmgJaA9DCDOLUGwF5T9AlIaUUpRoFUueaBZHQK0L2PSUkfN1fZQoaAZoCWgPQwh5rYTukpByQJSGlFKUaBVL3GgWR0CtDDq/dqL1dX2UKGgGaAloD0MIPbmmQKYCcECUhpRSlGgVS9toFkdArQxPCXQdCHV9lChoBmgJaA9DCAOWXMXiKUhAlIaUUpRoFUuKaBZHQK0M0V4X40x1fZQoaAZoCWgPQwg2WDhJM3twQJSGlFKUaBVL42gWR0CtDN2Op84QdX2UKGgGaAloD0MIjsh3KbVockCUhpRSlGgVS9VoFkdArQ1Itrbg0nV9lChoBmgJaA9DCP1NKETAtHJAlIaUUpRoFUvJaBZHQK0NbnyNGVl1fZQoaAZoCWgPQwgzVMVU+mk8QJSGlFKUaBVLmGgWR0CtDXUxmCiAdX2UKGgGaAloD0MIwQKYMrA4cUCUhpRSlGgVS81oFkdArQ2xB5X2d3V9lChoBmgJaA9DCJZa7zcav3FAlIaUUpRoFUvmaBZHQK0Nv4SHuZ11fZQoaAZoCWgPQwj3PeqvF79zQJSGlFKUaBVL1mgWR0CtDmicwxnGdX2UKGgGaAloD0MI0CueeqRJcUCUhpRSlGgVTVEBaBZHQK0OwRjjJdV1fZQoaAZoCWgPQwjXpNsS+T1yQJSGlFKUaBVLyWgWR0CtDwFRxcVydX2UKGgGaAloD0MI/rYnSKxHc0CUhpRSlGgVS+JoFkdArQ9KXpnpS3V9lChoBmgJaA9DCIS7s3ZbZW1AlIaUUpRoFUvPaBZHQK0PvKODJ2d1fZQoaAZoCWgPQwg01v7ONg1xQJSGlFKUaBVL82gWR0CtD9VqveP8dX2UKGgGaAloD0MIbLJGPYRlcUCUhpRSlGgVS85oFkdArRBMc2itaXV9lChoBmgJaA9DCA4TDVLwfnFAlIaUUpRoFUvraBZHQK0hwiJO32F1fZQoaAZoCWgPQwiAYI4ev19zQJSGlFKUaBVLz2gWR0CtIfFzMibEdX2UKGgGaAloD0MIQyCXOPKIcUCUhpRSlGgVS8JoFkdArSH8WKuSwHV9lChoBmgJaA9DCCYd5WD2XXFAlIaUUpRoFUvmaBZHQK0iLxJd0JZ1fZQoaAZoCWgPQwg+k/3z9GVzQJSGlFKUaBVL4WgWR0CtIj0c4o7WdX2UKGgGaAloD0MIpaFGIcmWcUCUhpRSlGgVS9xoFkdArSKEVi4J/3V9lChoBmgJaA9DCNhJfVnaDnFAlIaUUpRoFUvPaBZHQK0jGHqNZNh1fZQoaAZoCWgPQwiSW5NuS75pQJSGlFKUaBVNsQFoFkdArSNGLNwBHXV9lChoBmgJaA9DCOffLvv1N3JAlIaUUpRoFUvSaBZHQK0jhs0pEx91fZQoaAZoCWgPQwjzBS0koFFwQJSGlFKUaBVL22gWR0CtI/SuZCv6dX2UKGgGaAloD0MIlfPF3stYcUCUhpRSlGgVS+NoFkdArSRjDMvAXXV9lChoBmgJaA9DCHPbvkf9cHBAlIaUUpRoFUvSaBZHQK0kladtl7N1fZQoaAZoCWgPQwihD5axYYtyQJSGlFKUaBVNAgFoFkdArSVjWPLgXXV9lChoBmgJaA9DCJ9zt+vlJ3JAlIaUUpRoFUvJaBZHQK0lghcqvvB1fZQoaAZoCWgPQwgN4gM7PuxyQJSGlFKUaBVL82gWR0CtJbXXAdn1dX2UKGgGaAloD0MIrRbYY6KlcUCUhpRSlGgVS9FoFkdArSYmtSydF3V9lChoBmgJaA9DCJF++zpwKXFAlIaUUpRoFUvYaBZHQK0mObBoEjh1fZQoaAZoCWgPQwgkDtlAesJyQJSGlFKUaBVL5WgWR0CtJjk078vVdX2UKGgGaAloD0MIgQabOk+CcUCUhpRSlGgVS+VoFkdArSZDT2FnI3V9lChoBmgJaA9DCD3wMVgxsnFAlIaUUpRoFUvGaBZHQK0m67UXpGF1fZQoaAZoCWgPQwg6B8+EZiRxQJSGlFKUaBVL9GgWR0CtJwqjJuEVdX2UKGgGaAloD0MIK91dZ8MicECUhpRSlGgVS85oFkdArSdOgzxgA3V9lChoBmgJaA9DCLIPsiwYIXNAlIaUUpRoFUvnaBZHQK0nVB+nZTR1fZQoaAZoCWgPQwgzNnSzP5ZyQJSGlFKUaBVL3mgWR0CtKAq6nR9gdX2UKGgGaAloD0MI9inHZDGycECUhpRSlGgVS+doFkdArSil+iJwbXV9lChoBmgJaA9DCD1i9NxCB3NAlIaUUpRoFUvtaBZHQK0o+TJyQxN1fZQoaAZoCWgPQwi7Q4oB0ulyQJSGlFKUaBVL2WgWR0CtKW29DhLodX2UKGgGaAloD0MI5KHvbiVxcECUhpRSlGgVS8BoFkdArSmy9CeEqXV9lChoBmgJaA9DCMsSnWXWYnBAlIaUUpRoFUvZaBZHQK0pvdfsu4B1fZQoaAZoCWgPQwjAWUqWk4BzQJSGlFKUaBVL0mgWR0CtKh8AzYVZdX2UKGgGaAloD0MIVtgMcMGBb0CUhpRSlGgVS9doFkdArSpBVsDW9XV9lChoBmgJaA9DCI9xxcXRnW9AlIaUUpRoFUvbaBZHQK0qSpe/pMZ1fZQoaAZoCWgPQwgaFTjZBiNyQJSGlFKUaBVLu2gWR0CtKo7Vz6rOdX2UKGgGaAloD0MIecpquh6jbUCUhpRSlGgVS9VoFkdArSrlnM+u/3V9lChoBmgJaA9DCHMrhNUY+3BAlIaUUpRoFUvSaBZHQK0rSMXJo011fZQoaAZoCWgPQwhKDW0AduFzQJSGlFKUaBVL02gWR0CtK0j9n9NvdX2UKGgGaAloD0MIpkQSvczzcECUhpRSlGgVTUQBaBZHQK0rh1DBuXN1fZQoaAZoCWgPQwiOyk3U0rlxQJSGlFKUaBVNNANoFkdArSvmtp22X3V9lChoBmgJaA9DCHbexmbHJG9AlIaUUpRoFUvaaBZHQK0sHXRPXTV1fZQoaAZoCWgPQwiIZMix9V5yQJSGlFKUaBVLymgWR0CtLGEleF+NdX2UKGgGaAloD0MIw2SqYFRgckCUhpRSlGgVS8RoFkdArS01To+wDHV9lChoBmgJaA9DCCJUqdmDA3NAlIaUUpRoFUvUaBZHQK0tPhKlHjJ1fZQoaAZoCWgPQwit9rAXClNnQJSGlFKUaBVN6ANoFkdArS1XkNnXd3V9lChoBmgJaA9DCEc4LXjRFXFAlIaUUpRoFUvbaBZHQK0tn4dIXj51fZQoaAZoCWgPQwit+8dCNOdwQJSGlFKUaBVLv2gWR0CtLd3lr/KhdX2UKGgGaAloD0MI3Qa135quc0CUhpRSlGgVS+toFkdArS4z2alUInV9lChoBmgJaA9DCG9jsyNVA3JAlIaUUpRoFUvxaBZHQK0ucgAZKnN1fZQoaAZoCWgPQwhjZMkcy41vQJSGlFKUaBVL3GgWR0CtLqkjxCpndX2UKGgGaAloD0MIC0YldcJvckCUhpRSlGgVS85oFkdArS7De/Ho5nV9lChoBmgJaA9DCG+Cb5q+2m9AlIaUUpRoFUvSaBZHQK0u0wyIpH91fZQoaAZoCWgPQwgQJO8ciiVxQJSGlFKUaBVL2GgWR0CtLyGCiAUddX2UKGgGaAloD0MI76gxIeYMdECUhpRSlGgVS8loFkdArS8z+Haew3V9lChoBmgJaA9DCDwx68UQhnJAlIaUUpRoFUu+aBZHQK0ve1Z1V5t1fZQoaAZoCWgPQwh6AIv8OtJzQJSGlFKUaBVL8GgWR0CtL/+C9RJmdX2UKGgGaAloD0MIl+SAXQ1WcUCUhpRSlGgVTZwBaBZHQK0wDqiXY151fZQoaAZoCWgPQwjo+GhxxotwQJSGlFKUaBVLwmgWR0CtME4V6/qPdX2UKGgGaAloD0MIBHEeTmDQbkCUhpRSlGgVS9VoFkdArTC6sU7CBXV9lChoBmgJaA9DCGHe40yTn3NAlIaUUpRoFUvvaBZHQK0xE89Oh011fZQoaAZoCWgPQwibH39pkcxwQJSGlFKUaBVL4WgWR0CtMTmZ/kNndX2UKGgGaAloD0MIb72mBwVpc0CUhpRSlGgVS9FoFkdArTE5cRlH0HV9lChoBmgJaA9DCIM1zqajmG9AlIaUUpRoFUvYaBZHQK0xp7SiM5x1fZQoaAZoCWgPQwhb7swEQzBwQJSGlFKUaBVL4WgWR0CtMge2NNrTdX2UKGgGaAloD0MIE9bG2MnAc0CUhpRSlGgVS9JoFkdArTIaSPluFnV9lChoBmgJaA9DCMo329yYtnJAlIaUUpRoFU3gAWgWR0CtMj58KG+LdX2UKGgGaAloD0MI0Jm0qXrrcECUhpRSlGgVS8FoFkdArTJNsFdLQHV9lChoBmgJaA9DCOMan8k+wXJAlIaUUpRoFUvuaBZHQK0yc/PgNw11fZQoaAZoCWgPQwjcL5+s2A10QJSGlFKUaBVL8mgWR0CtMqsnRb8ndX2UKGgGaAloD0MI4IEBhE9pcECUhpRSlGgVS+1oFkdArTLkmMOwxHV9lChoBmgJaA9DCCrhCb3+/HFAlIaUUpRoFUvgaBZHQK0zCtga3ql1fZQoaAZoCWgPQwiSCI1g4xFyQJSGlFKUaBVLx2gWR0CtMzbkGRmsdX2UKGgGaAloD0MI3gAz3wFucUCUhpRSlGgVS75oFkdArTNPechC+nV9lChoBmgJaA9DCJ/HKM/8LnFAlIaUUpRoFUvTaBZHQK0zV8Kohpx1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 770,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 5,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
lunar-lander-2e6-ppo/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6875b7c0b9636c0e0a5e313d07b7026237ec8c564906006e3a2c972f9c8a5745
|
3 |
+
size 84893
|
lunar-lander-2e6-ppo/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc1001d12ef40cb9e828e42c28a13608904c6cf8bc8cbf3baaa408a2db0f6fcf
|
3 |
+
size 43201
|
lunar-lander-2e6-ppo/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
lunar-lander-2e6-ppo/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:761c2068c3a0ba739fbdac1012f9f6bcf76a284f9ab40968d3a08627b4de159a
|
3 |
+
size 235666
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 286.58629520497254, "std_reward": 13.626143102430186, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-19T07:29:32.379328"}
|