update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: X-Wang/pruned-mt5-small
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- bleu
|
7 |
+
model-index:
|
8 |
+
- name: pruned-mt5-small
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# pruned-mt5-small
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [X-Wang/pruned-mt5-small](https://huggingface.co/X-Wang/pruned-mt5-small) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 2.4431
|
20 |
+
- Bleu: 11.4084
|
21 |
+
- Gen Len: 16.1053
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 0.0005
|
41 |
+
- train_batch_size: 12
|
42 |
+
- eval_batch_size: 12
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 2
|
45 |
+
- total_train_batch_size: 24
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: cosine
|
48 |
+
- lr_scheduler_warmup_ratio: 0.01
|
49 |
+
- num_epochs: 2
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|
54 |
+
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
|
55 |
+
| 3.3446 | 0.07 | 2000 | 2.9103 | 10.3957 | 16.0567 |
|
56 |
+
| 2.8425 | 0.14 | 4000 | 2.8570 | 10.5695 | 16.1895 |
|
57 |
+
| 3.186 | 0.21 | 6000 | 2.8137 | 10.5958 | 16.1523 |
|
58 |
+
| 2.788 | 0.28 | 8000 | 2.7593 | 10.7553 | 16.0138 |
|
59 |
+
| 2.9075 | 0.35 | 10000 | 2.7266 | 10.9199 | 16.2016 |
|
60 |
+
| 3.0579 | 0.42 | 12000 | 2.7030 | 10.6 | 16.0496 |
|
61 |
+
| 2.3618 | 0.49 | 14000 | 2.6547 | 10.8026 | 16.0412 |
|
62 |
+
| 3.079 | 0.56 | 16000 | 2.6441 | 10.7945 | 16.1148 |
|
63 |
+
| 2.7597 | 0.63 | 18000 | 2.6244 | 10.5877 | 16.0507 |
|
64 |
+
| 2.8533 | 0.7 | 20000 | 2.6049 | 10.9986 | 16.1145 |
|
65 |
+
| 2.843 | 0.77 | 22000 | 2.5836 | 10.9173 | 16.0826 |
|
66 |
+
| 2.8268 | 0.84 | 24000 | 2.5685 | 10.8136 | 16.0516 |
|
67 |
+
| 2.7021 | 0.91 | 26000 | 2.5509 | 11.326 | 16.0554 |
|
68 |
+
| 3.338 | 0.98 | 28000 | 2.5289 | 11.1485 | 16.0333 |
|
69 |
+
| 2.7374 | 1.05 | 30000 | 2.5220 | 11.0166 | 16.0998 |
|
70 |
+
| 2.7996 | 1.12 | 32000 | 2.5077 | 11.1316 | 16.131 |
|
71 |
+
| 2.6897 | 1.19 | 34000 | 2.4994 | 11.0811 | 16.1139 |
|
72 |
+
| 2.4107 | 1.26 | 36000 | 2.4877 | 11.2641 | 16.142 |
|
73 |
+
| 2.7695 | 1.33 | 38000 | 2.4756 | 11.2135 | 16.0977 |
|
74 |
+
| 3.3271 | 1.41 | 40000 | 2.4658 | 11.3328 | 16.0953 |
|
75 |
+
| 2.2641 | 1.48 | 42000 | 2.4612 | 11.3065 | 16.0549 |
|
76 |
+
| 2.6594 | 1.55 | 44000 | 2.4556 | 11.2684 | 16.1371 |
|
77 |
+
| 2.7322 | 1.62 | 46000 | 2.4520 | 11.3739 | 16.1058 |
|
78 |
+
| 2.6824 | 1.69 | 48000 | 2.4462 | 11.3335 | 16.1043 |
|
79 |
+
| 2.3369 | 1.76 | 50000 | 2.4455 | 11.3851 | 16.1239 |
|
80 |
+
| 2.9537 | 1.83 | 52000 | 2.4430 | 11.4026 | 16.0858 |
|
81 |
+
| 2.3928 | 1.9 | 54000 | 2.4433 | 11.301 | 16.1129 |
|
82 |
+
| 2.4714 | 1.97 | 56000 | 2.4431 | 11.4084 | 16.1053 |
|
83 |
+
|
84 |
+
|
85 |
+
### Framework versions
|
86 |
+
|
87 |
+
- Transformers 4.31.0
|
88 |
+
- Pytorch 2.0.0
|
89 |
+
- Datasets 2.13.1
|
90 |
+
- Tokenizers 0.13.3
|