|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
try: |
|
import bitsandbytes as bnb |
|
from bitsandbytes.nn.modules import Params4bit, Int8Params |
|
except ImportError: |
|
pass |
|
import torch |
|
|
|
def Params4bitCuda(self, device): |
|
self.data = self.data.cuda(device) |
|
if self.quant_state is not None: |
|
self.quant_state[0] = self.quant_state[0].cuda(device) |
|
self.quant_state[6] = self.quant_state[6].cuda(device) |
|
return self |
|
|
|
def Params4bitTo(self, *args, **kwargs): |
|
device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(*args, **kwargs) |
|
|
|
if (device is not None and device.type == "cuda" and self.data.device.type == "cpu"): |
|
return self.cuda(device) |
|
else: |
|
if self.quant_state is not None: |
|
|
|
self.quant_state[0] = self.quant_state[0].to(device) |
|
self.quant_state[6] = self.quant_state[6].to(device) |
|
new_param = Params4bit(self.to(device=device, dtype=dtype, non_blocking=non_blocking), |
|
requires_grad=self.requires_grad, quant_state=self.quant_state, |
|
blocksize=self.blocksize, compress_statistics=self.compress_statistics, |
|
quant_type=self.quant_type) |
|
|
|
return new_param |
|
|
|
class Linear4bitOnline(torch.nn.Module): |
|
def __init__(self, weight, bias, quant_type): |
|
super().__init__() |
|
self.weight = Params4bit( |
|
weight.data, requires_grad=False, compress_statistics=True, quant_type=quant_type |
|
) |
|
self.compute_dtype = None |
|
|
|
self.bias = bias |
|
|
|
def forward(self, x: torch.Tensor): |
|
|
|
if self.bias is not None and self.bias.dtype != x.dtype: |
|
self.bias.data = self.bias.data.to(x.dtype) |
|
|
|
if getattr(self.weight, "quant_state", None) is None: |
|
print( |
|
"FP4 quantization state not initialized. Please call .cuda() or .to(device) on the LinearFP4 layer first." |
|
) |
|
inp_dtype = x.dtype |
|
if self.compute_dtype is not None: |
|
x = x.to(self.compute_dtype) |
|
|
|
bias = None if self.bias is None else self.bias.to(self.compute_dtype) |
|
out = bnb.matmul_4bit( |
|
x, self.weight.t(), bias=bias, quant_state=self.weight.quant_state |
|
) |
|
|
|
out = out.to(inp_dtype) |
|
|
|
return out |
|
|
|
class Linear8bitLtOnline(torch.nn.Module): |
|
def __init__( |
|
self, |
|
weight, |
|
bias, |
|
has_fp16_weights=True, |
|
memory_efficient_backward=False, |
|
threshold=0.0, |
|
index=None, |
|
): |
|
super().__init__() |
|
assert ( |
|
not memory_efficient_backward |
|
), "memory_efficient_backward is no longer required and the argument is deprecated in 0.37.0 and will be removed in 0.39.0" |
|
self.state = bnb.MatmulLtState() |
|
self.index = index |
|
|
|
|
|
self.state.threshold = threshold |
|
self.state.has_fp16_weights = has_fp16_weights |
|
self.state.memory_efficient_backward = memory_efficient_backward |
|
if threshold > 0.0 and not has_fp16_weights: |
|
self.state.use_pool = True |
|
|
|
self.weight = Int8Params( |
|
weight.data, |
|
has_fp16_weights=has_fp16_weights, |
|
requires_grad=has_fp16_weights, |
|
) |
|
self.bias = bias |
|
|
|
def init_8bit_state(self): |
|
self.state.CB = self.weight.CB |
|
self.state.SCB = self.weight.SCB |
|
self.weight.CB = None |
|
self.weight.SCB = None |
|
|
|
def forward(self, x: torch.Tensor): |
|
self.state.is_training = self.training |
|
if self.weight.CB is not None: |
|
self.init_8bit_state() |
|
|
|
|
|
if self.bias is not None and self.bias.dtype != x.dtype: |
|
self.bias.data = self.bias.data.to(x.dtype) |
|
|
|
out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state) |
|
|
|
if not self.state.has_fp16_weights: |
|
if self.state.CB is not None and self.state.CxB is not None: |
|
|
|
|
|
del self.state.CB |
|
self.weight.data = self.state.CxB |
|
return out |
|
|
|
def quantize_online(model, bits: int): |
|
def quant(weight, bias=None): |
|
if bits == 8: |
|
linear = Linear8bitLtOnline( |
|
weight, |
|
bias, |
|
has_fp16_weights=False, |
|
threshold=6.0, |
|
) |
|
if bias is not None: |
|
linear.bias = torch.nn.Parameter(bias) |
|
elif bits == 4: |
|
linear = Linear4bitOnline( |
|
weight, |
|
bias, |
|
quant_type="nf4", |
|
) |
|
else: |
|
raise ValueError("quantize only support 4/8 bit") |
|
return linear |
|
|
|
def auto_quant(layer): |
|
if hasattr(layer,"bias"): |
|
linear = quant(layer.weight,bias=layer.bias) |
|
else: |
|
linear = quant(layer.weight) |
|
return linear |
|
|
|
for i,layer in enumerate(model.transformer.h): |
|
layer.mlp.c_fc = auto_quant(layer.mlp.c_fc) |
|
layer.mlp.c_proj = auto_quant(layer.mlp.c_proj) |
|
|
|
layer.attn.c_attn=auto_quant(layer.attn.c_attn) |
|
layer.attn.c_proj=auto_quant(layer.attn.c_proj) |
|
|
|
return model |
|
|
|
|
|
general_weight_dict = { |
|
"transformer.wte.weight": False, |
|
"transformer.ln_f.weight": False, |
|
"transformer.ln_f.bias": False, |
|
"lm_head.weight": False, |
|
} |
|
|
|
layer_weight_dict = { |
|
"transformer.h.{i}.ln_1.weight": False, |
|
"transformer.h.{i}.ln_1.bias": False, |
|
"transformer.h.{i}.attn.c_attn.weight": True, |
|
"transformer.h.{i}.attn.c_attn.bias": False, |
|
"transformer.h.{i}.attn.c_proj.weight": True, |
|
"transformer.h.{i}.attn.c_proj.bias": False, |
|
"transformer.h.{i}.attn.rotary_emb.inv_freq": False, |
|
"transformer.h.{i}.ln_2.weight": False, |
|
"transformer.h.{i}.ln_2.bias": False, |
|
"transformer.h.{i}.mlp.c_fc.weight": True, |
|
"transformer.h.{i}.mlp.c_fc.bias": False, |
|
"transformer.h.{i}.mlp.c_proj.weight": True, |
|
"transformer.h.{i}.mlp.c_proj.bias": False, |
|
} |
|
num_dict = {str(i):i for i in range(100)} |
|
|
|
def set_value(model, name, state_dict, is_4bit): |
|
keys = name.split('.') |
|
parent = model |
|
for key in keys[:-1]: |
|
if key in num_dict: |
|
parent = parent[num_dict[key]] |
|
else: |
|
parent = getattr(parent, key) |
|
if is_4bit: |
|
weight_data = state_dict[f'{name}.data'] |
|
weight_quant_state = state_dict[f'{name}.quant_state'] |
|
assert weight_data is not None, name |
|
assert weight_quant_state is not None, name |
|
setattr(parent, keys[-1], Params4bit(weight_data, requires_grad=False, quant_state=weight_quant_state)) |
|
else: |
|
setattr(parent, keys[-1], state_dict[name]) |
|
|
|
def quantize_offline(model): |
|
for i, layer in enumerate(model.transformer.h): |
|
layer.mlp.c_fc = bnb.nn.Linear4bit( |
|
layer.mlp.c_fc.weight.shape[1], |
|
layer.mlp.c_fc.weight.shape[0], |
|
False, |
|
torch.bfloat16, |
|
compress_statistics=True, |
|
quant_type="nf4", |
|
) |
|
layer.mlp.c_proj = bnb.nn.Linear4bit( |
|
layer.mlp.c_proj.weight.shape[1], |
|
layer.mlp.c_proj.weight.shape[0], |
|
False, |
|
torch.bfloat16, |
|
compress_statistics=True, |
|
quant_type="nf4", |
|
) |
|
|
|
layer.attn.c_attn = bnb.nn.Linear4bit( |
|
layer.attn.c_attn.weight.shape[1], |
|
layer.attn.c_attn.weight.shape[0], |
|
False, |
|
torch.bfloat16, |
|
compress_statistics=True, |
|
quant_type="nf4", |
|
) |
|
layer.attn.c_proj = bnb.nn.Linear4bit( |
|
layer.attn.c_proj.weight.shape[1], |
|
layer.attn.c_proj.weight.shape[0], |
|
False, |
|
torch.bfloat16, |
|
compress_statistics=True, |
|
quant_type="nf4", |
|
) |
|
return model |
|
|
|
def load_state_dict_for_qunantied_model(model, state_dict): |
|
|
|
Params4bit.cuda = Params4bitCuda |
|
Params4bit.to = Params4bitTo |
|
|
|
for name, is_4bit in general_weight_dict.items(): |
|
set_value(model, name, state_dict, is_4bit) |
|
|
|
for layer_i in range(len(model.transformer.h)): |
|
for name, is_4bit in layer_weight_dict.items(): |
|
name = name.replace('{i}', str(layer_i)) |
|
set_value(model, name, state_dict, is_4bit) |
|
return model |