custom-gpt / hf_modeling.py
Winmodel's picture
Upload GPT
ed5db8f verified
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch.nn import functional as F
import math
import inspect
import os
from hellaswag import render_example, iterate_examples
from tqdm import tqdm
from hf_configuration import ExGPTConfig
from transformers import PreTrainedModel
# ==================================================
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
# key, query, value projection for all heads
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
# output projection
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
self.c_proj.NANOGPT_SCALE_INIT = 1 # a flag
# regularization
self.n_head = config.n_head
self.n_embd = config.n_embd
# not really a 'bias', more of a mask
self.register_buffer('bias', torch.tril(torch.ones(config.block_size, config.block_size))
.view(1, 1, config.block_size, config.block_size)) # Batch, head, the table x2 รึ
def forward(self, x):
B, T, C = x.size() # batch, seq len, embed dim
qkv = self.c_attn(x) # project first, reshape later for each heads
q, k, v = qkv.split(self.n_embd, dim=2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
# begin the fk huge quadratic table
# att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
# att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
# att = F.softmax(att, dim = -1)
# y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
y = F.scaled_dot_product_attention(q, k, v, is_causal=True)
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
# output projection
out = self.c_proj(y)
return out
class MLP(nn.Module):
"change it to SwiGLU"
def __init__(self, config):
super().__init__()
self.gate = nn.Linear(config.n_embd, 4 * config.n_embd)
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
self.silu = nn.SiLU()
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
self.c_proj.NANOGPT_SCALE_INIT = 1 # a flag
def forward(self, x):
# x = self.c_fc(x)
# x = self.gelu(x)
# x = self.c_proj(x)
x = self.c_proj(self.silu(self.c_fc(x) * self.gate(x)))
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = nn.RMSNorm(config.n_embd)
self.attn = CausalSelfAttention(config)
self.ln_2 = nn.RMSNorm(config.n_embd)
self.mlp = MLP(config)
def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class GPT(PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
wpe = nn.Embedding(config.block_size, config.n_embd), # Learned positional embedding
h = nn.ModuleList(Block(config) for _ in range(config.n_layer)),
ln_f = nn.RMSNorm(config.n_embd),
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
# Weight sharing scheme
self.transformer.wte.weight = self.lm_head.weight # GPT2/transformers is all you need's style
# Worse trainging loss though. From my observation
# init params
# Apply fn recursively to every submodule (as returned by .children()) as well as self.
self.apply(self._init_weights)
def _init_weights(self, module): # iterate over each module เลยสินะ
if isinstance(module, nn.Linear):
std = 0.02
if hasattr(module, 'NANOGPT_SCALE_INIT'): # if there is the flag
std *= (2 * self.config.n_layer) ** -0.5
torch.nn.init.normal_(module.weight, mean=0.0, std=std) # typicall, std is 1/sqrt(feature)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, target=None):
# idx is of shape (B, T)
B, T = idx.size()
assert T <= self.config.block_size, f"Cannot forward a sequence of length {T}, blocksize is only {self.config.block_size}"
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
tok_emb = self.transformer.wte(idx)
# with torch.autocast(device_type=device, enabled=False):
pos_emb = self.transformer.wpe(pos)
x = tok_emb + pos_emb
# forward the block of the transformer
for block in self.transformer.h:
x = block(x)
# forward the final layernorm and the classifier
x = self.transformer.ln_f(x)
loss = None
logits = self.lm_head(x) # (B, T, vocab_size)
if target is not None:
loss = F.cross_entropy(logits.view(-1,logits.size(-1)), target.view(-1)) # view -1 to flatten B,T dim to B*T for target, and logits.view(-1,logits.size(-1)) to get logit into shape B*T, vocab
return logits, loss
# Typo แดกโลก
@classmethod
def from_pretrained(cls, model_type):
"""Loads pretrained GPT-2 model weights from huggingface"""
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
from transformers import GPT2LMHeadModel
print("loading weights from pretrained gpt: %s" % model_type)
# n_layer, n_head and n_embd are determined from model_type
config_args = {
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
}[model_type]
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
# create a from-scratch initialized minGPT model
config = GPTConfig(**config_args)
model = GPT(config)
sd = model.state_dict()
sd_keys = sd.keys()
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
# init a huggingface/transformers model
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
sd_hf = model_hf.state_dict()
# copy while ensuring all of the parameters are aligned and match in names and shapes
sd_keys_hf = sd_hf.keys()
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
# this means that we have to transpose these weights when we import them
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
for k in sd_keys_hf:
if any(k.endswith(w) for w in transposed):
# special treatment for the Conv1D weights we need to transpose
assert sd_hf[k].shape[::-1] == sd[k].shape
with torch.no_grad():
sd[k].copy_(sd_hf[k].t())
else:
# vanilla copy over the other parameters
assert sd_hf[k].shape == sd[k].shape
with torch.no_grad():
sd[k].copy_(sd_hf[k])
return model
def configure_optimizers(self, weight_decay, learning_rate, device):
# start wit all of the candidate parameters (that require grad)
param_dict = {pn: p for pn, p in self.named_parameters()}
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorm don't.
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
optim_groups = [
{'params': decay_params, 'weight_decay': weight_decay},
{'params': nodecay_params, 'weight_decay': 0.0}
]
num_decay_params = sum(p.numel() for p in decay_params)
num_nodecay_params = sum(p.numel() for p in nodecay_params)
print(f"num decayed parameter tensor: {len(decay_params)}, with {num_decay_params:,} paramters")
print(f"num non-decayed parameter tensor: {len(nodecay_params)}, with {num_nodecay_params:,} paramters")
# Create AdamW optimizer and use fused version if it is available
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
use_fused = fused_available and 'cuda' in device
print(f"using fused AdamW: {use_fused}")
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=(0.9, 0.95), eps=1e-8, fused=use_fused)
return optimizer
# ===============================================================================================
num_return_sequences = 5
max_length = 30
# =================================================================================================
import tiktoken
import numpy as np
def load_tokens(filename):
npt = np.load(filename)
ptt = torch.tensor(npt, dtype=torch.long)
return ptt
class DataLoaderLite:
def __init__(self, B, T, process_rank, num_processes, split):
self.B = B
self.T = T
self.process_rank = process_rank
self.num_processes = num_processes
assert split in {'train', 'val'}
# get the shard filename
data_root = "edu_fineweb10B"
shards = os.listdir(data_root)
shards = [s for s in shards if split in s]
shards = sorted(shards)
shards = [os.path.join(data_root, s) for s in shards]
self.shards = shards
assert len(shards) > 0, f"no shards found in the split {split}"
if master_process:
print(f"found {len(shards)} shards for split {split}")
# state
# self.current_position = 0
# We wanna stride out dall the processes
# self.current_shard = 0
# self.tokens = load_tokens(self.shards[self.current_shard])
# self.current_position = self.B * self.T * self.process_rank
self.reset() # reset take care of the trouble
def reset(self):
# state, init at shard zero
self.current_shard = 0
self.tokens = load_tokens(self.shards[self.current_shard])
self.current_position = self.B * self.T * self.process_rank
def next_batch(self):
B, T = self.B, self.T
buf = self.tokens[self.current_position:self.current_position+B*T+1]
x = (buf[:-1]).view(B, T) # input
y = (buf[1:]).view(B, T) # target
# advance the position in the tensor
# self.current_position += B*T
self.current_position += B * T * self.num_processes
if self.current_position + (B * T * self.num_processes + 1) > len(self.tokens): # When we run out of token in a chard, we advance to the next shard
self.current_shard = (self.current_shard + 1) % len(self.shards)
self.tokens = load_tokens(self.shards[self.current_shard])
self.current_position = B * T * self.process_rank
return x, y
# -----------------------------------------------------------------------------
# helper function for HellaSwag eval
# takes tokens, mask, and logits, returns the index of the completion with the lowest loss
def get_most_likely_row(tokens, mask, logits):
# evaluate the autoregressive loss at all positions
shift_logits = (logits[..., :-1, :]).contiguous()
shift_tokens = (tokens[..., 1:]).contiguous()
flat_shift_logits = shift_logits.view(-1, shift_logits.size(-1))
flat_shift_tokens = shift_tokens.view(-1)
shift_losses = F.cross_entropy(flat_shift_logits, flat_shift_tokens, reduction='none')
shift_losses = shift_losses.view(tokens.size(0), -1)
# now get the average loss just for the completion region (where mask == 1), in each row
shift_mask = (mask[..., 1:]).contiguous() # we must shift mask, so we start at the last prompt token
masked_shift_losses = shift_losses * shift_mask
# sum and divide by the number of 1s in the mask
sum_loss = masked_shift_losses.sum(dim=1)
avg_loss = sum_loss / shift_mask.sum(dim=1)
# now we have a loss for each of the 4 completions
# the one with the lowest loss should be the most likely
pred_norm = avg_loss.argmin().item()
return pred_norm