|
from dataclasses import dataclass |
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
import math |
|
import inspect |
|
import os |
|
from hellaswag import render_example, iterate_examples |
|
from tqdm import tqdm |
|
from hf_configuration import ExGPTConfig |
|
from transformers import PreTrainedModel |
|
|
|
|
|
|
|
class CausalSelfAttention(nn.Module): |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
assert config.n_embd % config.n_head == 0 |
|
|
|
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd) |
|
|
|
self.c_proj = nn.Linear(config.n_embd, config.n_embd) |
|
self.c_proj.NANOGPT_SCALE_INIT = 1 |
|
|
|
self.n_head = config.n_head |
|
self.n_embd = config.n_embd |
|
|
|
self.register_buffer('bias', torch.tril(torch.ones(config.block_size, config.block_size)) |
|
.view(1, 1, config.block_size, config.block_size)) |
|
|
|
def forward(self, x): |
|
B, T, C = x.size() |
|
qkv = self.c_attn(x) |
|
q, k, v = qkv.split(self.n_embd, dim=2) |
|
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
y = F.scaled_dot_product_attention(q, k, v, is_causal=True) |
|
|
|
y = y.transpose(1, 2).contiguous().view(B, T, C) |
|
|
|
out = self.c_proj(y) |
|
return out |
|
|
|
class MLP(nn.Module): |
|
"change it to SwiGLU" |
|
def __init__(self, config): |
|
super().__init__() |
|
self.gate = nn.Linear(config.n_embd, 4 * config.n_embd) |
|
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd) |
|
self.silu = nn.SiLU() |
|
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd) |
|
self.c_proj.NANOGPT_SCALE_INIT = 1 |
|
|
|
def forward(self, x): |
|
|
|
|
|
|
|
x = self.c_proj(self.silu(self.c_fc(x) * self.gate(x))) |
|
return x |
|
|
|
class Block(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.ln_1 = nn.RMSNorm(config.n_embd) |
|
self.attn = CausalSelfAttention(config) |
|
self.ln_2 = nn.RMSNorm(config.n_embd) |
|
self.mlp = MLP(config) |
|
|
|
def forward(self, x): |
|
x = x + self.attn(self.ln_1(x)) |
|
x = x + self.mlp(self.ln_2(x)) |
|
return x |
|
|
|
class GPT(PreTrainedModel): |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.transformer = nn.ModuleDict(dict( |
|
wte = nn.Embedding(config.vocab_size, config.n_embd), |
|
wpe = nn.Embedding(config.block_size, config.n_embd), |
|
h = nn.ModuleList(Block(config) for _ in range(config.n_layer)), |
|
ln_f = nn.RMSNorm(config.n_embd), |
|
)) |
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) |
|
|
|
|
|
self.transformer.wte.weight = self.lm_head.weight |
|
|
|
|
|
|
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, module): |
|
if isinstance(module, nn.Linear): |
|
std = 0.02 |
|
if hasattr(module, 'NANOGPT_SCALE_INIT'): |
|
std *= (2 * self.config.n_layer) ** -0.5 |
|
torch.nn.init.normal_(module.weight, mean=0.0, std=std) |
|
if module.bias is not None: |
|
torch.nn.init.zeros_(module.bias) |
|
elif isinstance(module, nn.Embedding): |
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) |
|
|
|
def forward(self, idx, target=None): |
|
|
|
B, T = idx.size() |
|
assert T <= self.config.block_size, f"Cannot forward a sequence of length {T}, blocksize is only {self.config.block_size}" |
|
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) |
|
tok_emb = self.transformer.wte(idx) |
|
|
|
|
|
pos_emb = self.transformer.wpe(pos) |
|
x = tok_emb + pos_emb |
|
|
|
for block in self.transformer.h: |
|
x = block(x) |
|
|
|
x = self.transformer.ln_f(x) |
|
loss = None |
|
logits = self.lm_head(x) |
|
if target is not None: |
|
loss = F.cross_entropy(logits.view(-1,logits.size(-1)), target.view(-1)) |
|
return logits, loss |
|
|
|
|
|
@classmethod |
|
def from_pretrained(cls, model_type): |
|
"""Loads pretrained GPT-2 model weights from huggingface""" |
|
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'} |
|
from transformers import GPT2LMHeadModel |
|
print("loading weights from pretrained gpt: %s" % model_type) |
|
|
|
|
|
config_args = { |
|
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), |
|
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), |
|
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), |
|
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), |
|
}[model_type] |
|
config_args['vocab_size'] = 50257 |
|
config_args['block_size'] = 1024 |
|
|
|
config = GPTConfig(**config_args) |
|
model = GPT(config) |
|
sd = model.state_dict() |
|
sd_keys = sd.keys() |
|
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] |
|
|
|
|
|
model_hf = GPT2LMHeadModel.from_pretrained(model_type) |
|
sd_hf = model_hf.state_dict() |
|
|
|
|
|
sd_keys_hf = sd_hf.keys() |
|
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] |
|
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] |
|
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight'] |
|
|
|
|
|
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}" |
|
for k in sd_keys_hf: |
|
if any(k.endswith(w) for w in transposed): |
|
|
|
assert sd_hf[k].shape[::-1] == sd[k].shape |
|
with torch.no_grad(): |
|
sd[k].copy_(sd_hf[k].t()) |
|
else: |
|
|
|
assert sd_hf[k].shape == sd[k].shape |
|
with torch.no_grad(): |
|
sd[k].copy_(sd_hf[k]) |
|
|
|
return model |
|
|
|
def configure_optimizers(self, weight_decay, learning_rate, device): |
|
|
|
param_dict = {pn: p for pn, p in self.named_parameters()} |
|
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad} |
|
|
|
|
|
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2] |
|
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2] |
|
optim_groups = [ |
|
{'params': decay_params, 'weight_decay': weight_decay}, |
|
{'params': nodecay_params, 'weight_decay': 0.0} |
|
] |
|
num_decay_params = sum(p.numel() for p in decay_params) |
|
num_nodecay_params = sum(p.numel() for p in nodecay_params) |
|
print(f"num decayed parameter tensor: {len(decay_params)}, with {num_decay_params:,} paramters") |
|
print(f"num non-decayed parameter tensor: {len(nodecay_params)}, with {num_nodecay_params:,} paramters") |
|
|
|
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters |
|
use_fused = fused_available and 'cuda' in device |
|
print(f"using fused AdamW: {use_fused}") |
|
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=(0.9, 0.95), eps=1e-8, fused=use_fused) |
|
return optimizer |
|
|
|
|
|
num_return_sequences = 5 |
|
max_length = 30 |
|
|
|
|
|
import tiktoken |
|
import numpy as np |
|
|
|
def load_tokens(filename): |
|
npt = np.load(filename) |
|
ptt = torch.tensor(npt, dtype=torch.long) |
|
return ptt |
|
|
|
class DataLoaderLite: |
|
def __init__(self, B, T, process_rank, num_processes, split): |
|
self.B = B |
|
self.T = T |
|
self.process_rank = process_rank |
|
self.num_processes = num_processes |
|
assert split in {'train', 'val'} |
|
|
|
|
|
data_root = "edu_fineweb10B" |
|
shards = os.listdir(data_root) |
|
shards = [s for s in shards if split in s] |
|
shards = sorted(shards) |
|
shards = [os.path.join(data_root, s) for s in shards] |
|
self.shards = shards |
|
assert len(shards) > 0, f"no shards found in the split {split}" |
|
if master_process: |
|
print(f"found {len(shards)} shards for split {split}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.reset() |
|
|
|
def reset(self): |
|
|
|
self.current_shard = 0 |
|
self.tokens = load_tokens(self.shards[self.current_shard]) |
|
self.current_position = self.B * self.T * self.process_rank |
|
|
|
def next_batch(self): |
|
B, T = self.B, self.T |
|
buf = self.tokens[self.current_position:self.current_position+B*T+1] |
|
x = (buf[:-1]).view(B, T) |
|
y = (buf[1:]).view(B, T) |
|
|
|
|
|
|
|
self.current_position += B * T * self.num_processes |
|
if self.current_position + (B * T * self.num_processes + 1) > len(self.tokens): |
|
self.current_shard = (self.current_shard + 1) % len(self.shards) |
|
self.tokens = load_tokens(self.shards[self.current_shard]) |
|
self.current_position = B * T * self.process_rank |
|
return x, y |
|
|
|
|
|
|
|
|
|
|
|
def get_most_likely_row(tokens, mask, logits): |
|
|
|
shift_logits = (logits[..., :-1, :]).contiguous() |
|
shift_tokens = (tokens[..., 1:]).contiguous() |
|
flat_shift_logits = shift_logits.view(-1, shift_logits.size(-1)) |
|
flat_shift_tokens = shift_tokens.view(-1) |
|
shift_losses = F.cross_entropy(flat_shift_logits, flat_shift_tokens, reduction='none') |
|
shift_losses = shift_losses.view(tokens.size(0), -1) |
|
|
|
shift_mask = (mask[..., 1:]).contiguous() |
|
masked_shift_losses = shift_losses * shift_mask |
|
|
|
sum_loss = masked_shift_losses.sum(dim=1) |
|
avg_loss = sum_loss / shift_mask.sum(dim=1) |
|
|
|
|
|
pred_norm = avg_loss.argmin().item() |
|
return pred_norm |