Willy030125 commited on
Commit
0652321
1 Parent(s): 3f8335c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -1
README.md CHANGED
@@ -5,4 +5,76 @@ language:
5
  library_name: adapter-transformers
6
  tags:
7
  - text-generation-inference
8
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  library_name: adapter-transformers
6
  tags:
7
  - text-generation-inference
8
+ ---
9
+ # finetune-indoMMLU-Merak-7B-v3
10
+ Based on Merak-7B-v4 Mistral: https://huggingface.co/Ichsan2895/Merak-7B-v4<br>
11
+ Dataset used on Fine Tuning: https://github.com/fajri91/IndoMMLU
12
+ <br>
13
+
14
+ Some training params used:
15
+ ```python
16
+ lora r=64
17
+ lora_alpha=16
18
+ lora_dropout=0.05
19
+
20
+ learning_rate = 2e-4
21
+ lr_scheduler = "constant"
22
+ optimizer = "paged_adamw_32bit"
23
+ max_seq_length = 1280
24
+ ```
25
+
26
+ Inference:
27
+ ```python
28
+ import torch
29
+ from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM, BitsAndBytesConfig, LlamaTokenizer
30
+ from peft import PeftModel, PeftConfig
31
+
32
+ model_name = "Ichsan2895/Merak-7B-v4"
33
+ adapter_name = "Willy030125/finetune-indoMMLU-Merak-7B-v3"
34
+
35
+ bnb_config = transformers.BitsAndBytesConfig(
36
+ load_in_4bit=True,
37
+ bnb_4bit_use_double_quant=True,
38
+ bnb_4bit_quant_type="nf4",
39
+ bnb_4bit_compute_dtype=torch.bfloat16
40
+ )
41
+
42
+ model = AutoModelForCausalLM.from_pretrained(
43
+ model_name,
44
+ quantization_config=bnb_config,
45
+ device_map="auto",
46
+ trust_remote_code=True
47
+ )
48
+
49
+ model = PeftModel.from_pretrained(model_name, adapter_name)
50
+ tokenizer = LlamaTokenizer.from_pretrained(model_name)
51
+
52
+ def generate_response(question: str) -> str:
53
+ chat = [
54
+ {"role": "system", "content": "Anda adalah Merak, sebuah model kecerdasan buatan yang dilatih oleh Muhammad Ichsan. Mohon jawab pertanyaan berikut dengan benar, faktual, dan ramah."},
55
+ {"role": "user", "content": question},
56
+ ]
57
+
58
+ prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
59
+ inputs = tokenizer(prompt, return_tensors="pt", return_attention_mask=True)
60
+
61
+ with torch.no_grad():
62
+ outputs = model.generate(input_ids=inputs["input_ids"].to("cuda"),
63
+ attention_mask=inputs.attention_mask,
64
+ eos_token_id=tokenizer.eos_token_id,
65
+ pad_token_id=tokenizer.eos_token_id,
66
+ max_new_tokens=1024)
67
+ response = tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0]
68
+
69
+ assistant_start = f'''{question} \n assistant\n '''
70
+ response_start = response.find(assistant_start)
71
+ return response[response_start + len(assistant_start) :].strip()
72
+
73
+ prompt = """Hewan pemakan tumbuhan dinamakan ...
74
+ A. Omnivora
75
+ B. Karnivora
76
+ C. Pengurai
77
+ D. Herbivora"""
78
+
79
+ print(generate_response(prompt))
80
+ ```