End of training
Browse files
README.md
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: jonatasgrosman/wav2vec2-large-xlsr-53-english
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: wav2vec2-large-xlsr-53-english-finetuned-ravdess-v7
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# wav2vec2-large-xlsr-53-english-finetuned-ravdess-v7
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-english](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 1.2583
|
21 |
+
- Accuracy: 0.6597
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 0.0001
|
41 |
+
- train_batch_size: 4
|
42 |
+
- eval_batch_size: 4
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 2
|
45 |
+
- total_train_batch_size: 8
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- lr_scheduler_warmup_ratio: 0.1
|
49 |
+
- num_epochs: 5
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
55 |
+
| 0.9468 | 0.15 | 25 | 1.0477 | 0.5833 |
|
56 |
+
| 0.9825 | 0.31 | 50 | 1.0943 | 0.5556 |
|
57 |
+
| 0.83 | 0.46 | 75 | 1.0094 | 0.6389 |
|
58 |
+
| 0.9219 | 0.62 | 100 | 1.1035 | 0.5833 |
|
59 |
+
| 0.9044 | 0.77 | 125 | 1.2343 | 0.5833 |
|
60 |
+
| 0.9362 | 0.93 | 150 | 1.2651 | 0.5972 |
|
61 |
+
| 0.8799 | 1.08 | 175 | 1.2690 | 0.5486 |
|
62 |
+
| 0.8219 | 1.23 | 200 | 1.1401 | 0.5764 |
|
63 |
+
| 0.7739 | 1.39 | 225 | 1.2107 | 0.5417 |
|
64 |
+
| 0.87 | 1.54 | 250 | 1.1299 | 0.6319 |
|
65 |
+
| 0.6298 | 1.7 | 275 | 0.9628 | 0.6736 |
|
66 |
+
| 0.5578 | 1.85 | 300 | 1.5402 | 0.5417 |
|
67 |
+
| 0.7363 | 2.01 | 325 | 1.0680 | 0.6667 |
|
68 |
+
| 0.5354 | 2.16 | 350 | 0.9104 | 0.6736 |
|
69 |
+
| 0.4246 | 2.31 | 375 | 0.9475 | 0.6667 |
|
70 |
+
| 0.479 | 2.47 | 400 | 1.2755 | 0.6597 |
|
71 |
+
| 0.5133 | 2.62 | 425 | 0.8993 | 0.7083 |
|
72 |
+
| 0.3661 | 2.78 | 450 | 1.0620 | 0.6667 |
|
73 |
+
| 0.3664 | 2.93 | 475 | 1.0617 | 0.6875 |
|
74 |
+
| 0.4177 | 3.09 | 500 | 1.2583 | 0.6597 |
|
75 |
+
| 0.4462 | 3.24 | 525 | 0.9819 | 0.7361 |
|
76 |
+
| 0.3419 | 3.4 | 550 | 1.2685 | 0.6667 |
|
77 |
+
| 0.5142 | 3.55 | 575 | 0.9290 | 0.75 |
|
78 |
+
| 0.2887 | 3.7 | 600 | 1.0275 | 0.7153 |
|
79 |
+
| 0.2485 | 3.86 | 625 | 0.7754 | 0.7778 |
|
80 |
+
| 0.3065 | 4.01 | 650 | 1.0046 | 0.7431 |
|
81 |
+
| 0.1812 | 4.17 | 675 | 0.9867 | 0.7361 |
|
82 |
+
| 0.1541 | 4.32 | 700 | 1.1906 | 0.6875 |
|
83 |
+
| 0.2993 | 4.48 | 725 | 0.9916 | 0.75 |
|
84 |
+
| 0.2149 | 4.63 | 750 | 1.0387 | 0.7222 |
|
85 |
+
| 0.1114 | 4.78 | 775 | 0.9461 | 0.7292 |
|
86 |
+
| 0.1897 | 4.94 | 800 | 0.9165 | 0.75 |
|
87 |
+
|
88 |
+
|
89 |
+
### Framework versions
|
90 |
+
|
91 |
+
- Transformers 4.32.1
|
92 |
+
- Pytorch 2.0.1+cu118
|
93 |
+
- Datasets 2.14.4
|
94 |
+
- Tokenizers 0.13.3
|