|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch Swin Transformer model.""" |
|
|
|
|
|
import collections.abc |
|
import math |
|
import warnings |
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_outputs import BackboneOutput, SemanticSegmenterOutput |
|
from transformers.utils.backbone_utils import BackboneMixin |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.pytorch_utils import find_pruneable_heads_and_indices, meshgrid, prune_linear_layer |
|
from transformers.utils import ( |
|
ModelOutput, |
|
add_code_sample_docstrings, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from .configuration_swin import SwinConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
_CONFIG_FOR_DOC = "SwinConfig" |
|
|
|
|
|
_CHECKPOINT_FOR_DOC = "microsoft/swin-tiny-patch4-window7-224" |
|
_EXPECTED_OUTPUT_SHAPE = [1, 49, 768] |
|
|
|
|
|
_IMAGE_CLASS_CHECKPOINT = "microsoft/swin-tiny-patch4-window7-224" |
|
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" |
|
|
|
|
|
SWIN_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"microsoft/swin-tiny-patch4-window7-224", |
|
|
|
] |
|
|
|
|
|
|
|
|
|
@dataclass |
|
class SwinEncoderOutput(ModelOutput): |
|
""" |
|
Swin encoder's outputs, with potential hidden states and attentions. |
|
|
|
Args: |
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
Sequence of hidden-states at the output of the last layer of the model. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of |
|
shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of |
|
shape `(batch_size, hidden_size, height, width)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to |
|
include the spatial dimensions. |
|
""" |
|
|
|
last_hidden_state: torch.FloatTensor = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
@dataclass |
|
class SwinModelOutput(ModelOutput): |
|
""" |
|
Swin model's outputs that also contains a pooling of the last hidden states. |
|
|
|
Args: |
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
Sequence of hidden-states at the output of the last layer of the model. |
|
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*, returned when `add_pooling_layer=True` is passed): |
|
Average pooling of the last layer hidden-state. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of |
|
shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of |
|
shape `(batch_size, hidden_size, height, width)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to |
|
include the spatial dimensions. |
|
""" |
|
|
|
last_hidden_state: torch.FloatTensor = None |
|
pooler_output: Optional[torch.FloatTensor] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
@dataclass |
|
class SwinMaskedImageModelingOutput(ModelOutput): |
|
""" |
|
Swin masked image model outputs. |
|
|
|
Args: |
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `bool_masked_pos` is provided): |
|
Masked image modeling (MLM) loss. |
|
reconstruction (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): |
|
Reconstructed pixel values. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of |
|
shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of |
|
shape `(batch_size, hidden_size, height, width)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to |
|
include the spatial dimensions. |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
reconstruction: torch.FloatTensor = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
@property |
|
def logits(self): |
|
warnings.warn( |
|
"logits attribute is deprecated and will be removed in version 5 of Transformers." |
|
" Please use the reconstruction attribute to retrieve the final output instead.", |
|
FutureWarning, |
|
) |
|
return self.reconstruction |
|
|
|
|
|
@dataclass |
|
class SwinImageClassifierOutput(ModelOutput): |
|
""" |
|
Swin outputs for image classification. |
|
|
|
Args: |
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): |
|
Classification (or regression if config.num_labels==1) loss. |
|
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): |
|
Classification (or regression if config.num_labels==1) scores (before SoftMax). |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of |
|
shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of |
|
shape `(batch_size, hidden_size, height, width)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to |
|
include the spatial dimensions. |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
logits: torch.FloatTensor = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
def window_partition(input_feature, window_size): |
|
""" |
|
Partitions the given input into windows. |
|
""" |
|
batch_size, height, width, num_channels = input_feature.shape |
|
input_feature = input_feature.view( |
|
batch_size, height // window_size, window_size, width // window_size, window_size, num_channels |
|
) |
|
windows = input_feature.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, num_channels) |
|
return windows |
|
|
|
|
|
def window_reverse(windows, window_size, height, width): |
|
""" |
|
Merges windows to produce higher resolution features. |
|
""" |
|
num_channels = windows.shape[-1] |
|
windows = windows.view(-1, height // window_size, width // window_size, window_size, window_size, num_channels) |
|
windows = windows.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, height, width, num_channels) |
|
return windows |
|
|
|
|
|
class SwinEmbeddings(nn.Module): |
|
""" |
|
Construct the patch and position embeddings. Optionally, also the mask token. |
|
""" |
|
|
|
def __init__(self, config, use_mask_token=False): |
|
super().__init__() |
|
|
|
self.patch_embeddings = SwinPatchEmbeddings(config) |
|
num_patches = self.patch_embeddings.num_patches |
|
self.patch_grid = self.patch_embeddings.grid_size |
|
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.embed_dim)) if use_mask_token else None |
|
|
|
if config.use_absolute_embeddings: |
|
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.embed_dim)) |
|
else: |
|
self.position_embeddings = None |
|
|
|
self.norm = nn.LayerNorm(config.embed_dim) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward( |
|
self, pixel_values: Optional[torch.FloatTensor], bool_masked_pos: Optional[torch.BoolTensor] = None |
|
) -> Tuple[torch.Tensor]: |
|
embeddings, output_dimensions = self.patch_embeddings(pixel_values) |
|
embeddings = self.norm(embeddings) |
|
batch_size, seq_len, _ = embeddings.size() |
|
|
|
if bool_masked_pos is not None: |
|
mask_tokens = self.mask_token.expand(batch_size, seq_len, -1) |
|
|
|
mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) |
|
embeddings = embeddings * (1.0 - mask) + mask_tokens * mask |
|
|
|
if self.position_embeddings is not None: |
|
embeddings = embeddings + self.position_embeddings |
|
|
|
embeddings = self.dropout(embeddings) |
|
|
|
return embeddings, output_dimensions |
|
|
|
|
|
class SwinPatchEmbeddings(nn.Module): |
|
""" |
|
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial |
|
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a |
|
Transformer. |
|
""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
image_size, patch_size = config.image_size, config.patch_size |
|
num_channels, hidden_size = config.num_channels, config.embed_dim |
|
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) |
|
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) |
|
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) |
|
self.image_size = image_size |
|
self.patch_size = patch_size |
|
self.num_channels = num_channels |
|
self.num_patches = num_patches |
|
self.grid_size = (image_size[0] // patch_size[0], image_size[1] // patch_size[1]) |
|
|
|
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) |
|
|
|
def maybe_pad(self, pixel_values, height, width): |
|
if width % self.patch_size[1] != 0: |
|
pad_values = (0, self.patch_size[1] - width % self.patch_size[1]) |
|
pixel_values = nn.functional.pad(pixel_values, pad_values) |
|
if height % self.patch_size[0] != 0: |
|
pad_values = (0, 0, 0, self.patch_size[0] - height % self.patch_size[0]) |
|
pixel_values = nn.functional.pad(pixel_values, pad_values) |
|
|
|
return pixel_values |
|
|
|
def forward(self, pixel_values: Optional[torch.FloatTensor]) -> Tuple[torch.Tensor, Tuple[int]]: |
|
_, num_channels, height, width = pixel_values.shape |
|
if num_channels != self.num_channels: |
|
raise ValueError( |
|
"Make sure that the channel dimension of the pixel values match with the one set in the configuration." |
|
) |
|
|
|
pixel_values = self.maybe_pad(pixel_values, height, width) |
|
embeddings = self.projection(pixel_values) |
|
_, _, height, width = embeddings.shape |
|
output_dimensions = (height, width) |
|
embeddings = embeddings.flatten(2).transpose(1, 2) |
|
|
|
return embeddings, output_dimensions |
|
|
|
|
|
class SwinPatchMerging(nn.Module): |
|
""" |
|
Patch Merging Layer. |
|
|
|
Args: |
|
input_resolution (`Tuple[int]`): |
|
Resolution of input feature. |
|
dim (`int`): |
|
Number of input channels. |
|
norm_layer (`nn.Module`, *optional*, defaults to `nn.LayerNorm`): |
|
Normalization layer class. |
|
""" |
|
|
|
def __init__(self, input_resolution: Tuple[int], dim: int, norm_layer: nn.Module = nn.LayerNorm) -> None: |
|
super().__init__() |
|
self.input_resolution = input_resolution |
|
self.dim = dim |
|
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) |
|
self.norm = norm_layer(4 * dim) |
|
|
|
def maybe_pad(self, input_feature, height, width): |
|
should_pad = (height % 2 == 1) or (width % 2 == 1) |
|
if should_pad: |
|
pad_values = (0, 0, 0, width % 2, 0, height % 2) |
|
input_feature = nn.functional.pad(input_feature, pad_values) |
|
|
|
return input_feature |
|
|
|
def forward(self, input_feature: torch.Tensor, input_dimensions: Tuple[int, int]) -> torch.Tensor: |
|
height, width = input_dimensions |
|
|
|
batch_size, dim, num_channels = input_feature.shape |
|
|
|
input_feature = input_feature.view(batch_size, height, width, num_channels) |
|
|
|
input_feature = self.maybe_pad(input_feature, height, width) |
|
|
|
input_feature_0 = input_feature[:, 0::2, 0::2, :] |
|
|
|
input_feature_1 = input_feature[:, 1::2, 0::2, :] |
|
|
|
input_feature_2 = input_feature[:, 0::2, 1::2, :] |
|
|
|
input_feature_3 = input_feature[:, 1::2, 1::2, :] |
|
|
|
input_feature = torch.cat([input_feature_0, input_feature_1, input_feature_2, input_feature_3], -1) |
|
input_feature = input_feature.view(batch_size, -1, 4 * num_channels) |
|
|
|
input_feature = self.norm(input_feature) |
|
input_feature = self.reduction(input_feature) |
|
|
|
return input_feature |
|
|
|
|
|
|
|
def drop_path(input, drop_prob=0.0, training=False, scale_by_keep=True): |
|
""" |
|
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). |
|
|
|
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, |
|
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... |
|
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the |
|
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the |
|
argument. |
|
""" |
|
if drop_prob == 0.0 or not training: |
|
return input |
|
keep_prob = 1 - drop_prob |
|
shape = (input.shape[0],) + (1,) * (input.ndim - 1) |
|
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) |
|
random_tensor.floor_() |
|
output = input.div(keep_prob) * random_tensor |
|
return output |
|
|
|
|
|
|
|
class SwinDropPath(nn.Module): |
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" |
|
|
|
def __init__(self, drop_prob: Optional[float] = None) -> None: |
|
super().__init__() |
|
self.drop_prob = drop_prob |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
return drop_path(hidden_states, self.drop_prob, self.training) |
|
|
|
def extra_repr(self) -> str: |
|
return "p={}".format(self.drop_prob) |
|
|
|
|
|
class SwinSelfAttention(nn.Module): |
|
def __init__(self, config, dim, num_heads, window_size): |
|
super().__init__() |
|
if dim % num_heads != 0: |
|
raise ValueError( |
|
f"The hidden size ({dim}) is not a multiple of the number of attention heads ({num_heads})" |
|
) |
|
|
|
self.num_attention_heads = num_heads |
|
self.attention_head_size = int(dim / num_heads) |
|
self.all_head_size = self.num_attention_heads * self.attention_head_size |
|
self.window_size = ( |
|
window_size if isinstance(window_size, collections.abc.Iterable) else (window_size, window_size) |
|
) |
|
|
|
self.relative_position_bias_table = nn.Parameter( |
|
torch.zeros((2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1), num_heads) |
|
) |
|
|
|
|
|
coords_h = torch.arange(self.window_size[0]) |
|
coords_w = torch.arange(self.window_size[1]) |
|
coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij")) |
|
coords_flatten = torch.flatten(coords, 1) |
|
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] |
|
relative_coords = relative_coords.permute(1, 2, 0).contiguous() |
|
relative_coords[:, :, 0] += self.window_size[0] - 1 |
|
relative_coords[:, :, 1] += self.window_size[1] - 1 |
|
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 |
|
relative_position_index = relative_coords.sum(-1) |
|
self.register_buffer("relative_position_index", relative_position_index) |
|
|
|
self.query = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) |
|
self.key = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) |
|
self.value = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) |
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) |
|
|
|
def transpose_for_scores(self, x): |
|
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) |
|
x = x.view(new_x_shape) |
|
return x.permute(0, 2, 1, 3) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor]: |
|
batch_size, dim, num_channels = hidden_states.shape |
|
mixed_query_layer = self.query(hidden_states) |
|
|
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
query_layer = self.transpose_for_scores(mixed_query_layer) |
|
|
|
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) |
|
|
|
attention_scores = attention_scores / math.sqrt(self.attention_head_size) |
|
|
|
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)] |
|
relative_position_bias = relative_position_bias.view( |
|
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1 |
|
) |
|
|
|
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() |
|
attention_scores = attention_scores + relative_position_bias.unsqueeze(0) |
|
|
|
if attention_mask is not None: |
|
|
|
mask_shape = attention_mask.shape[0] |
|
attention_scores = attention_scores.view( |
|
batch_size // mask_shape, mask_shape, self.num_attention_heads, dim, dim |
|
) |
|
attention_scores = attention_scores + attention_mask.unsqueeze(1).unsqueeze(0) |
|
attention_scores = attention_scores.view(-1, self.num_attention_heads, dim, dim) |
|
|
|
|
|
attention_probs = nn.functional.softmax(attention_scores, dim=-1) |
|
|
|
|
|
|
|
attention_probs = self.dropout(attention_probs) |
|
|
|
|
|
if head_mask is not None: |
|
attention_probs = attention_probs * head_mask |
|
|
|
context_layer = torch.matmul(attention_probs, value_layer) |
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() |
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) |
|
context_layer = context_layer.view(new_context_layer_shape) |
|
|
|
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) |
|
|
|
return outputs |
|
|
|
|
|
class SwinSelfOutput(nn.Module): |
|
def __init__(self, config, dim): |
|
super().__init__() |
|
self.dense = nn.Linear(dim, dim) |
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) |
|
|
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class SwinAttention(nn.Module): |
|
def __init__(self, config, dim, num_heads, window_size): |
|
super().__init__() |
|
self.self = SwinSelfAttention(config, dim, num_heads, window_size) |
|
self.output = SwinSelfOutput(config, dim) |
|
self.pruned_heads = set() |
|
|
|
def prune_heads(self, heads): |
|
if len(heads) == 0: |
|
return |
|
heads, index = find_pruneable_heads_and_indices( |
|
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads |
|
) |
|
|
|
|
|
self.self.query = prune_linear_layer(self.self.query, index) |
|
self.self.key = prune_linear_layer(self.self.key, index) |
|
self.self.value = prune_linear_layer(self.self.value, index) |
|
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) |
|
|
|
|
|
self.self.num_attention_heads = self.self.num_attention_heads - len(heads) |
|
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads |
|
self.pruned_heads = self.pruned_heads.union(heads) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor]: |
|
self_outputs = self.self(hidden_states, attention_mask, head_mask, output_attentions) |
|
attention_output = self.output(self_outputs[0], hidden_states) |
|
outputs = (attention_output,) + self_outputs[1:] |
|
return outputs |
|
|
|
|
|
class SwinIntermediate(nn.Module): |
|
def __init__(self, config, dim): |
|
super().__init__() |
|
self.dense = nn.Linear(dim, int(config.mlp_ratio * dim)) |
|
if isinstance(config.hidden_act, str): |
|
self.intermediate_act_fn = ACT2FN[config.hidden_act] |
|
else: |
|
self.intermediate_act_fn = config.hidden_act |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.intermediate_act_fn(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class SwinOutput(nn.Module): |
|
def __init__(self, config, dim): |
|
super().__init__() |
|
self.dense = nn.Linear(int(config.mlp_ratio * dim), dim) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class SwinLayer(nn.Module): |
|
def __init__(self, config, dim, input_resolution, num_heads, shift_size=0): |
|
super().__init__() |
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward |
|
self.shift_size = shift_size |
|
self.window_size = config.window_size |
|
self.input_resolution = input_resolution |
|
self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps) |
|
self.attention = SwinAttention(config, dim, num_heads, window_size=self.window_size) |
|
self.drop_path = SwinDropPath(config.drop_path_rate) if config.drop_path_rate > 0.0 else nn.Identity() |
|
self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps) |
|
self.intermediate = SwinIntermediate(config, dim) |
|
self.output = SwinOutput(config, dim) |
|
|
|
def set_shift_and_window_size(self, input_resolution): |
|
if min(input_resolution) <= self.window_size: |
|
|
|
self.shift_size = 0 |
|
self.window_size = min(input_resolution) |
|
|
|
def get_attn_mask(self, height, width, dtype): |
|
if self.shift_size > 0: |
|
|
|
img_mask = torch.zeros((1, height, width, 1), dtype=dtype) |
|
height_slices = ( |
|
slice(0, -self.window_size), |
|
slice(-self.window_size, -self.shift_size), |
|
slice(-self.shift_size, None), |
|
) |
|
width_slices = ( |
|
slice(0, -self.window_size), |
|
slice(-self.window_size, -self.shift_size), |
|
slice(-self.shift_size, None), |
|
) |
|
count = 0 |
|
for height_slice in height_slices: |
|
for width_slice in width_slices: |
|
img_mask[:, height_slice, width_slice, :] = count |
|
count += 1 |
|
|
|
mask_windows = window_partition(img_mask, self.window_size) |
|
mask_windows = mask_windows.view(-1, self.window_size * self.window_size) |
|
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) |
|
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) |
|
else: |
|
attn_mask = None |
|
return attn_mask |
|
|
|
def maybe_pad(self, hidden_states, height, width): |
|
pad_right = (self.window_size - width % self.window_size) % self.window_size |
|
pad_bottom = (self.window_size - height % self.window_size) % self.window_size |
|
pad_values = (0, 0, 0, pad_right, 0, pad_bottom) |
|
hidden_states = nn.functional.pad(hidden_states, pad_values) |
|
return hidden_states, pad_values |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
input_dimensions: Tuple[int, int], |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = False, |
|
always_partition: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
if not always_partition: |
|
self.set_shift_and_window_size(input_dimensions) |
|
else: |
|
pass |
|
height, width = input_dimensions |
|
batch_size, _, channels = hidden_states.size() |
|
shortcut = hidden_states |
|
|
|
hidden_states = self.layernorm_before(hidden_states) |
|
|
|
hidden_states = hidden_states.view(batch_size, height, width, channels) |
|
|
|
|
|
hidden_states, pad_values = self.maybe_pad(hidden_states, height, width) |
|
|
|
_, height_pad, width_pad, _ = hidden_states.shape |
|
|
|
if self.shift_size > 0: |
|
shifted_hidden_states = torch.roll(hidden_states, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) |
|
else: |
|
shifted_hidden_states = hidden_states |
|
|
|
|
|
hidden_states_windows = window_partition(shifted_hidden_states, self.window_size) |
|
hidden_states_windows = hidden_states_windows.view(-1, self.window_size * self.window_size, channels) |
|
attn_mask = self.get_attn_mask(height_pad, width_pad, dtype=hidden_states.dtype) |
|
if attn_mask is not None: |
|
attn_mask = attn_mask.to(hidden_states_windows.device) |
|
|
|
attention_outputs = self.attention( |
|
hidden_states_windows, attn_mask, head_mask, output_attentions=output_attentions |
|
) |
|
|
|
attention_output = attention_outputs[0] |
|
|
|
attention_windows = attention_output.view(-1, self.window_size, self.window_size, channels) |
|
shifted_windows = window_reverse(attention_windows, self.window_size, height_pad, width_pad) |
|
|
|
|
|
if self.shift_size > 0: |
|
attention_windows = torch.roll(shifted_windows, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) |
|
else: |
|
attention_windows = shifted_windows |
|
|
|
was_padded = pad_values[3] > 0 or pad_values[5] > 0 |
|
if was_padded: |
|
attention_windows = attention_windows[:, :height, :width, :].contiguous() |
|
|
|
attention_windows = attention_windows.view(batch_size, height * width, channels) |
|
|
|
hidden_states = shortcut + self.drop_path(attention_windows) |
|
|
|
layer_output = self.layernorm_after(hidden_states) |
|
layer_output = self.intermediate(layer_output) |
|
layer_output = hidden_states + self.output(layer_output) |
|
|
|
layer_outputs = (layer_output, attention_outputs[1]) if output_attentions else (layer_output,) |
|
return layer_outputs |
|
|
|
|
|
class SwinStage(nn.Module): |
|
def __init__(self, config, dim, input_resolution, depth, num_heads, drop_path, downsample): |
|
super().__init__() |
|
self.config = config |
|
self.dim = dim |
|
self.blocks = nn.ModuleList( |
|
[ |
|
SwinLayer( |
|
config=config, |
|
dim=dim, |
|
input_resolution=input_resolution, |
|
num_heads=num_heads, |
|
shift_size=0 if (i % 2 == 0) else config.window_size // 2, |
|
) |
|
for i in range(depth) |
|
] |
|
) |
|
|
|
|
|
if downsample is not None: |
|
self.downsample = downsample(input_resolution, dim=dim, norm_layer=nn.LayerNorm) |
|
else: |
|
self.downsample = None |
|
|
|
self.pointing = False |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
input_dimensions: Tuple[int, int], |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = False, |
|
always_partition: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor]: |
|
height, width = input_dimensions |
|
for i, layer_module in enumerate(self.blocks): |
|
layer_head_mask = head_mask[i] if head_mask is not None else None |
|
|
|
layer_outputs = layer_module( |
|
hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
hidden_states_before_downsampling = hidden_states |
|
if self.downsample is not None: |
|
height_downsampled, width_downsampled = (height + 1) // 2, (width + 1) // 2 |
|
output_dimensions = (height, width, height_downsampled, width_downsampled) |
|
hidden_states = self.downsample(hidden_states_before_downsampling, input_dimensions) |
|
else: |
|
output_dimensions = (height, width, height, width) |
|
|
|
stage_outputs = (hidden_states, hidden_states_before_downsampling, output_dimensions) |
|
|
|
if output_attentions: |
|
stage_outputs += layer_outputs[1:] |
|
return stage_outputs |
|
|
|
|
|
class SwinEncoder(nn.Module): |
|
def __init__(self, config, grid_size): |
|
super().__init__() |
|
self.num_layers = len(config.depths) |
|
self.config = config |
|
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))] |
|
self.layers = nn.ModuleList( |
|
[ |
|
SwinStage( |
|
config=config, |
|
dim=int(config.embed_dim * 2**i_layer), |
|
input_resolution=(grid_size[0] // (2**i_layer), grid_size[1] // (2**i_layer)), |
|
depth=config.depths[i_layer], |
|
num_heads=config.num_heads[i_layer], |
|
drop_path=dpr[sum(config.depths[:i_layer]) : sum(config.depths[: i_layer + 1])], |
|
downsample=SwinPatchMerging if (i_layer < self.num_layers - 1) else None, |
|
) |
|
for i_layer in range(self.num_layers) |
|
] |
|
) |
|
|
|
self.gradient_checkpointing = True |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
input_dimensions: Tuple[int, int], |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = False, |
|
output_hidden_states: Optional[bool] = False, |
|
output_hidden_states_before_downsampling: Optional[bool] = False, |
|
always_partition: Optional[bool] = False, |
|
return_dict: Optional[bool] = True, |
|
) -> Union[Tuple, SwinEncoderOutput]: |
|
all_hidden_states = () if output_hidden_states else None |
|
all_reshaped_hidden_states = () if output_hidden_states else None |
|
all_self_attentions = () if output_attentions else None |
|
|
|
if output_hidden_states: |
|
batch_size, _, hidden_size = hidden_states.shape |
|
|
|
reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size) |
|
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) |
|
all_hidden_states += (hidden_states,) |
|
all_reshaped_hidden_states += (reshaped_hidden_state,) |
|
|
|
for i, layer_module in enumerate(self.layers): |
|
layer_head_mask = head_mask[i] if head_mask is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs, output_attentions) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(layer_module), hidden_states, input_dimensions, layer_head_mask |
|
) |
|
else: |
|
layer_outputs = layer_module( |
|
hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
hidden_states_before_downsampling = layer_outputs[1] |
|
output_dimensions = layer_outputs[2] |
|
|
|
input_dimensions = (output_dimensions[-2], output_dimensions[-1]) |
|
|
|
if output_hidden_states and output_hidden_states_before_downsampling: |
|
batch_size, _, hidden_size = hidden_states_before_downsampling.shape |
|
|
|
|
|
reshaped_hidden_state = hidden_states_before_downsampling.view( |
|
batch_size, *(output_dimensions[0], output_dimensions[1]), hidden_size |
|
) |
|
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) |
|
all_hidden_states += (hidden_states_before_downsampling,) |
|
all_reshaped_hidden_states += (reshaped_hidden_state,) |
|
elif output_hidden_states and not output_hidden_states_before_downsampling: |
|
batch_size, _, hidden_size = hidden_states.shape |
|
|
|
reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size) |
|
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) |
|
all_hidden_states += (hidden_states,) |
|
all_reshaped_hidden_states += (reshaped_hidden_state,) |
|
|
|
if output_attentions: |
|
all_self_attentions += layer_outputs[3:] |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) |
|
|
|
return SwinEncoderOutput( |
|
last_hidden_state=hidden_states, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
reshaped_hidden_states=all_reshaped_hidden_states, |
|
) |
|
|
|
|
|
class SwinPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = SwinConfig |
|
base_model_prefix = "swin" |
|
main_input_name = "pixel_values" |
|
supports_gradient_checkpointing = True |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
if isinstance(module, (nn.Linear, nn.Conv2d)): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, SwinEncoder): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
SWIN_START_DOCSTRING = r""" |
|
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use |
|
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and |
|
behavior. |
|
|
|
Parameters: |
|
config ([`SwinConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
SWIN_INPUTS_DOCSTRING = r""" |
|
Args: |
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): |
|
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`] |
|
for details. |
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): |
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Swin Model transformer outputting raw hidden-states without any specific head on top.", |
|
SWIN_START_DOCSTRING, |
|
) |
|
class SwinModel(SwinPreTrainedModel): |
|
def __init__(self, config, add_pooling_layer=True, use_mask_token=False): |
|
super().__init__(config) |
|
self.config = config |
|
self.num_layers = len(config.depths) |
|
self.num_features = int(config.embed_dim * 2 ** (self.num_layers - 1)) |
|
|
|
self.embeddings = SwinEmbeddings(config, use_mask_token=use_mask_token) |
|
self.encoder = SwinEncoder(config, self.embeddings.patch_grid) |
|
|
|
|
|
self.pooler = nn.AdaptiveAvgPool1d(1) if add_pooling_layer else None |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings.patch_embeddings |
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|
class PreTrainedModel |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.encoder.layer[layer].attention.prune_heads(heads) |
|
|
|
@add_start_docstrings_to_model_forward(SWIN_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=SwinModelOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
modality="vision", |
|
expected_output=_EXPECTED_OUTPUT_SHAPE, |
|
) |
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
bool_masked_pos: Optional[torch.BoolTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, SwinModelOutput]: |
|
r""" |
|
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*): |
|
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if pixel_values is None: |
|
raise ValueError("You have to specify pixel_values") |
|
|
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, len(self.config.depths)) |
|
|
|
embedding_output, input_dimensions = self.embeddings(pixel_values, bool_masked_pos=bool_masked_pos) |
|
|
|
encoder_outputs = self.encoder( |
|
embedding_output, |
|
input_dimensions, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = encoder_outputs[0] |
|
|
|
|
|
pooled_output = None |
|
if self.pooler is not None: |
|
pooled_output = self.pooler(sequence_output.transpose(1, 2)) |
|
pooled_output = torch.flatten(pooled_output, 1) |
|
|
|
if not return_dict: |
|
output = (sequence_output, pooled_output) + encoder_outputs[1:] |
|
|
|
return output |
|
|
|
return SwinModelOutput( |
|
last_hidden_state=sequence_output, |
|
pooler_output=pooled_output, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
reshaped_hidden_states=encoder_outputs.reshaped_hidden_states, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
"""Swin Model with a decoder on top for masked image modeling, as proposed in [SimMIM](https://arxiv.org/abs/2111.09886). |
|
|
|
<Tip> |
|
|
|
Note that we provide a script to pre-train this model on custom data in our [examples |
|
directory](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining). |
|
|
|
</Tip> |
|
""", |
|
SWIN_START_DOCSTRING, |
|
) |
|
class SwinForMaskedImageModeling(SwinPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.swin = SwinModel(config, add_pooling_layer=False, use_mask_token=True) |
|
|
|
num_features = int(config.embed_dim * 2 ** (config.num_layers - 1)) |
|
self.decoder = nn.Sequential( |
|
nn.Conv2d( |
|
in_channels=num_features, out_channels=config.encoder_stride**2 * config.num_channels, kernel_size=1 |
|
), |
|
nn.PixelShuffle(config.encoder_stride), |
|
) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(SWIN_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=SwinMaskedImageModelingOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
bool_masked_pos: Optional[torch.BoolTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, SwinMaskedImageModelingOutput]: |
|
r""" |
|
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`): |
|
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). |
|
|
|
Returns: |
|
|
|
Examples: |
|
```python |
|
>>> from transformers import AutoImageProcessor, SwinForMaskedImageModeling |
|
>>> import torch |
|
>>> from PIL import Image |
|
>>> import requests |
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/swin-base-simmim-window6-192") |
|
>>> model = SwinForMaskedImageModeling.from_pretrained("microsoft/swin-base-simmim-window6-192") |
|
|
|
>>> num_patches = (model.config.image_size // model.config.patch_size) ** 2 |
|
>>> pixel_values = image_processor(images=image, return_tensors="pt").pixel_values |
|
>>> # create random boolean mask of shape (batch_size, num_patches) |
|
>>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool() |
|
|
|
>>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos) |
|
>>> loss, reconstructed_pixel_values = outputs.loss, outputs.reconstruction |
|
>>> list(reconstructed_pixel_values.shape) |
|
[1, 3, 192, 192] |
|
```""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.swin( |
|
pixel_values, |
|
bool_masked_pos=bool_masked_pos, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
|
|
sequence_output = sequence_output.transpose(1, 2) |
|
batch_size, num_channels, sequence_length = sequence_output.shape |
|
height = width = math.floor(sequence_length**0.5) |
|
sequence_output = sequence_output.reshape(batch_size, num_channels, height, width) |
|
|
|
|
|
reconstructed_pixel_values = self.decoder(sequence_output) |
|
|
|
masked_im_loss = None |
|
if bool_masked_pos is not None: |
|
size = self.config.image_size // self.config.patch_size |
|
bool_masked_pos = bool_masked_pos.reshape(-1, size, size) |
|
mask = ( |
|
bool_masked_pos.repeat_interleave(self.config.patch_size, 1) |
|
.repeat_interleave(self.config.patch_size, 2) |
|
.unsqueeze(1) |
|
.contiguous() |
|
) |
|
reconstruction_loss = nn.functional.l1_loss(pixel_values, reconstructed_pixel_values, reduction="none") |
|
masked_im_loss = (reconstruction_loss * mask).sum() / (mask.sum() + 1e-5) / self.config.num_channels |
|
|
|
if not return_dict: |
|
output = (reconstructed_pixel_values,) + outputs[2:] |
|
return ((masked_im_loss,) + output) if masked_im_loss is not None else output |
|
|
|
return SwinMaskedImageModelingOutput( |
|
loss=masked_im_loss, |
|
reconstruction=reconstructed_pixel_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
reshaped_hidden_states=outputs.reshaped_hidden_states, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
Swin Model transformer with an image classification head on top (a linear layer on top of the final hidden state of |
|
the [CLS] token) e.g. for ImageNet. |
|
""", |
|
SWIN_START_DOCSTRING, |
|
) |
|
class SwinForImageClassification(SwinPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.num_labels = config.num_labels |
|
self.swin = SwinModel(config) |
|
|
|
|
|
self.classifier = ( |
|
nn.Linear(self.swin.num_features, config.num_labels) if config.num_labels > 0 else nn.Identity() |
|
) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(SWIN_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
checkpoint=_IMAGE_CLASS_CHECKPOINT, |
|
output_type=SwinImageClassifierOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, |
|
) |
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, SwinImageClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the image classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.swin( |
|
pixel_values, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
pooled_output = outputs[1] |
|
|
|
logits = self.classifier(pooled_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(logits, labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SwinImageClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
reshaped_hidden_states=outputs.reshaped_hidden_states, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
Swin backbone, to be used with frameworks like DETR and MaskFormer. |
|
""", |
|
SWIN_START_DOCSTRING, |
|
) |
|
class SwinBackbone(SwinPreTrainedModel, BackboneMixin): |
|
def __init__(self, config: SwinConfig): |
|
super().__init__(config) |
|
|
|
self.stage_names = config.stage_names |
|
|
|
self.embeddings = SwinEmbeddings(config) |
|
self.encoder = SwinEncoder(config, self.embeddings.patch_grid) |
|
|
|
self.out_features = config.out_features if config.out_features is not None else [self.stage_names[-1]] |
|
if config.out_indices is not None: |
|
self.out_indices = config.out_indices |
|
else: |
|
self.out_indices = tuple(i for i, layer in enumerate(self.stage_names) if layer in self.out_features) |
|
self.num_features = [config.embed_dim] + [int(config.embed_dim * 2**i) for i in range(len(config.depths))] |
|
|
|
|
|
hidden_states_norms = {} |
|
for stage, num_channels in zip(self.out_features, self.channels): |
|
hidden_states_norms[stage] = nn.LayerNorm(num_channels) |
|
self.hidden_states_norms = nn.ModuleDict(hidden_states_norms) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings.patch_embeddings |
|
|
|
def forward( |
|
self, |
|
pixel_values: torch.Tensor, |
|
output_hidden_states: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> BackboneOutput: |
|
""" |
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import AutoImageProcessor, AutoBackbone |
|
>>> import torch |
|
>>> from PIL import Image |
|
>>> import requests |
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> processor = AutoImageProcessor.from_pretrained("shi-labs/nat-mini-in1k-224") |
|
>>> model = AutoBackbone.from_pretrained( |
|
... "microsoft/swin-tiny-patch4-window7-224", out_features=["stage1", "stage2", "stage3", "stage4"] |
|
... ) |
|
|
|
>>> inputs = processor(image, return_tensors="pt") |
|
>>> outputs = model(**inputs) |
|
>>> feature_maps = outputs.feature_maps |
|
>>> list(feature_maps[-1].shape) |
|
[1, 768, 7, 7] |
|
```""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
|
embedding_output, input_dimensions = self.embeddings(pixel_values) |
|
|
|
outputs = self.encoder( |
|
embedding_output, |
|
input_dimensions, |
|
head_mask=None, |
|
output_attentions=output_attentions, |
|
output_hidden_states=True, |
|
output_hidden_states_before_downsampling=True, |
|
always_partition=True, |
|
return_dict=True, |
|
) |
|
|
|
hidden_states = outputs.reshaped_hidden_states |
|
|
|
feature_maps = () |
|
for stage, hidden_state in zip(self.stage_names, hidden_states): |
|
if stage in self.out_features: |
|
batch_size, num_channels, height, width = hidden_state.shape |
|
hidden_state = hidden_state.permute(0, 2, 3, 1).contiguous() |
|
hidden_state = hidden_state.view(batch_size, height * width, num_channels) |
|
hidden_state = self.hidden_states_norms[stage](hidden_state) |
|
hidden_state = hidden_state.view(batch_size, height, width, num_channels) |
|
hidden_state = hidden_state.permute(0, 3, 1, 2).contiguous() |
|
feature_maps += (hidden_state,) |
|
|
|
if not return_dict: |
|
output = (feature_maps,) |
|
if output_hidden_states: |
|
output += (outputs.hidden_states,) |
|
return output |
|
|
|
return BackboneOutput( |
|
feature_maps=feature_maps, |
|
hidden_states=outputs.hidden_states if output_hidden_states else None, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
Swin transformer with an semantic segmentation head on top. |
|
|
|
""", |
|
SWIN_START_DOCSTRING, |
|
) |
|
class SwinForSemanticSegmentation(SwinPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.num_labels = config.num_labels |
|
self.swin = SwinModel(config) |
|
|
|
self.hw_shape = round(config.image_size / config.patch_size / 8) |
|
|
|
self.decoder_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.decoder_mlp = nn.Linear(config.hidden_size, 256) |
|
|
|
self.decoder_classifier = nn.Linear(256, config.num_labels) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(SWIN_INPUTS_DOCSTRING) |
|
|
|
|
|
|
|
|
|
|
|
|
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, SemanticSegmenterOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the image classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.swin( |
|
pixel_values, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
|
|
|
|
out = outputs['hidden_states'][-1] |
|
out = self.decoder_norm(out) |
|
B, _, C = out.shape |
|
|
|
out = out.reshape(B, self.hw_shape, self.hw_shape, C) |
|
out = self.decoder_mlp(out) |
|
out = out.permute(0, 3, 1, 2).contiguous() |
|
out = nn.functional.interpolate(out, scale_factor=8, mode='bilinear', align_corners=False) |
|
out = out.permute(0, 2, 3, 1).contiguous() |
|
logits = self.decoder_classifier(out) |
|
logits = logits.permute(0, 3, 1, 2).contiguous() |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
upsampled_logits = nn.functional.interpolate( |
|
logits, size=labels.shape[-2:], mode="bilinear", align_corners=False |
|
) |
|
if self.config.num_labels > 1: |
|
loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index) |
|
loss = loss_fct(upsampled_logits, labels) |
|
elif self.config.num_labels == 1: |
|
valid_mask = ((labels >= 0) & (labels != self.config.semantic_loss_ignore_index)).float() |
|
loss_fct = BCEWithLogitsLoss(reduction="none") |
|
loss = loss_fct(upsampled_logits.squeeze(1), labels.float()) |
|
loss = (loss * valid_mask).mean() |
|
else: |
|
raise ValueError(f"Number of labels should be >=0: {self.config.num_labels}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return SemanticSegmenterOutput( |
|
loss=loss, |
|
logits=upsampled_logits , |
|
hidden_states=outputs.hidden_states if output_hidden_states else None, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|