| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						import torch.amp.autocast_mode | 
					
					
						
						| 
							 | 
						import torch.distributed as dist | 
					
					
						
						| 
							 | 
						import torch.multiprocessing as mp | 
					
					
						
						| 
							 | 
						from torch.nn.parallel import DistributedDataParallel as DDP | 
					
					
						
						| 
							 | 
						import os | 
					
					
						
						| 
							 | 
						import sys | 
					
					
						
						| 
							 | 
						import logging | 
					
					
						
						| 
							 | 
						import warnings | 
					
					
						
						| 
							 | 
						import argparse | 
					
					
						
						| 
							 | 
						from PIL import Image | 
					
					
						
						| 
							 | 
						from pathlib import Path | 
					
					
						
						| 
							 | 
						from tqdm import tqdm | 
					
					
						
						| 
							 | 
						from torch import nn | 
					
					
						
						| 
							 | 
						from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM | 
					
					
						
						| 
							 | 
						from typing import List, Union | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						CLIP_PATH = "google/siglip-so400m-patch14-384" | 
					
					
						
						| 
							 | 
						VLM_PROMPT = "A descriptive caption for this image:\n" | 
					
					
						
						| 
							 | 
						MODEL_PATH = "unsloth/Meta-Llama-3.1-8B-bnb-4bit" | 
					
					
						
						| 
							 | 
						CHECKPOINT_PATH = Path("wpkklhc6") | 
					
					
						
						| 
							 | 
						IMAGE_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.bmp', '.webp') | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						warnings.filterwarnings("ignore", category=UserWarning) | 
					
					
						
						| 
							 | 
						logging.getLogger("transformers").setLevel(logging.ERROR) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def setup(rank, world_size): | 
					
					
						
						| 
							 | 
						    os.environ['MASTER_ADDR'] = 'localhost' | 
					
					
						
						| 
							 | 
						    os.environ['MASTER_PORT'] = '12355' | 
					
					
						
						| 
							 | 
						    dist.init_process_group("nccl", rank=rank, world_size=world_size) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def cleanup(): | 
					
					
						
						| 
							 | 
						    dist.destroy_process_group() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class ImageAdapter(nn.Module): | 
					
					
						
						| 
							 | 
						    def __init__(self, input_features: int, output_features: int): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.linear1 = nn.Linear(input_features, output_features) | 
					
					
						
						| 
							 | 
						        self.activation = nn.GELU() | 
					
					
						
						| 
							 | 
						        self.linear2 = nn.Linear(output_features, output_features) | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def forward(self, vision_outputs: torch.Tensor): | 
					
					
						
						| 
							 | 
						        return self.linear2(self.activation(self.linear1(vision_outputs))) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def load_models(rank): | 
					
					
						
						| 
							 | 
						    print(f"Loading CLIP π on GPU {rank}") | 
					
					
						
						| 
							 | 
						    clip_processor = AutoProcessor.from_pretrained(CLIP_PATH) | 
					
					
						
						| 
							 | 
						    clip_model = AutoModel.from_pretrained(CLIP_PATH).vision_model.eval().requires_grad_(False).to(rank) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    print(f"Loading tokenizer πͺ on GPU {rank}") | 
					
					
						
						| 
							 | 
						    tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=False) | 
					
					
						
						| 
							 | 
						    assert isinstance(tokenizer, (PreTrainedTokenizer, PreTrainedTokenizerFast)), f"Tokenizer is of type {type(tokenizer)}" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    print(f"Loading LLM π€ on GPU {rank}") | 
					
					
						
						| 
							 | 
						    text_model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map={"": rank}, torch_dtype=torch.bfloat16).eval() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    print(f"Loading image adapter πΌοΈ on GPU {rank}") | 
					
					
						
						| 
							 | 
						    image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size) | 
					
					
						
						| 
							 | 
						    image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location=f"cuda:{rank}", weights_only=True)) | 
					
					
						
						| 
							 | 
						    image_adapter.eval().to(rank) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    return clip_processor, clip_model, tokenizer, text_model, image_adapter | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@torch.no_grad() | 
					
					
						
						| 
							 | 
						def stream_chat(input_images: List[Image.Image], batch_size: int, pbar: tqdm, models: tuple, rank: int) -> List[str]: | 
					
					
						
						| 
							 | 
						    clip_processor, clip_model, tokenizer, text_model, image_adapter = models | 
					
					
						
						| 
							 | 
						    torch.cuda.empty_cache() | 
					
					
						
						| 
							 | 
						    all_captions = [] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    for i in range(0, len(input_images), batch_size): | 
					
					
						
						| 
							 | 
						        batch = input_images[i:i+batch_size] | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        try: | 
					
					
						
						| 
							 | 
						            images = clip_processor(images=batch, return_tensors='pt', padding=True).pixel_values.to(rank) | 
					
					
						
						| 
							 | 
						        except ValueError as e: | 
					
					
						
						| 
							 | 
						            print(f"Error processing image batch: {e}") | 
					
					
						
						| 
							 | 
						            print("Skipping this batch and continuing...") | 
					
					
						
						| 
							 | 
						            continue | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        with torch.amp.autocast_mode.autocast(rank, enabled=True): | 
					
					
						
						| 
							 | 
						            vision_outputs = clip_model(pixel_values=images, output_hidden_states=True) | 
					
					
						
						| 
							 | 
						            image_features = vision_outputs.hidden_states[-2] | 
					
					
						
						| 
							 | 
						            embedded_images = image_adapter(image_features).to(dtype=torch.bfloat16) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        prompt = tokenizer.encode(VLM_PROMPT, return_tensors='pt') | 
					
					
						
						| 
							 | 
						        prompt_embeds = text_model.model.embed_tokens(prompt.to(rank)).to(dtype=torch.bfloat16) | 
					
					
						
						| 
							 | 
						        embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=rank, dtype=torch.int64)).to(dtype=torch.bfloat16) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        inputs_embeds = torch.cat([ | 
					
					
						
						| 
							 | 
						            embedded_bos.expand(embedded_images.shape[0], -1, -1), | 
					
					
						
						| 
							 | 
						            embedded_images, | 
					
					
						
						| 
							 | 
						            prompt_embeds.expand(embedded_images.shape[0], -1, -1), | 
					
					
						
						| 
							 | 
						        ], dim=1).to(dtype=torch.bfloat16) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        input_ids = torch.cat([ | 
					
					
						
						| 
							 | 
						            torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long).expand(embedded_images.shape[0], -1), | 
					
					
						
						| 
							 | 
						            torch.zeros((embedded_images.shape[0], embedded_images.shape[1]), dtype=torch.long), | 
					
					
						
						| 
							 | 
						            prompt.expand(embedded_images.shape[0], -1), | 
					
					
						
						| 
							 | 
						        ], dim=1).to(rank) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attention_mask = torch.ones_like(input_ids) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        generate_ids = text_model.generate( | 
					
					
						
						| 
							 | 
						            input_ids=input_ids, | 
					
					
						
						| 
							 | 
						            inputs_embeds=inputs_embeds, | 
					
					
						
						| 
							 | 
						            attention_mask=attention_mask, | 
					
					
						
						| 
							 | 
						            max_new_tokens=300, | 
					
					
						
						| 
							 | 
						            do_sample=True, | 
					
					
						
						| 
							 | 
						            top_k=10, | 
					
					
						
						| 
							 | 
						            temperature=0.5, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        generate_ids = generate_ids[:, input_ids.shape[1]:] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        for ids in generate_ids: | 
					
					
						
						| 
							 | 
						            caption = tokenizer.decode(ids[:-1] if ids[-1] == tokenizer.eos_token_id else ids, skip_special_tokens=True, clean_up_tokenization_spaces=True) | 
					
					
						
						| 
							 | 
						            caption = caption.replace('<|end_of_text|>', '').replace('<|finetune_right_pad_id|>', '').strip() | 
					
					
						
						| 
							 | 
						            all_captions.append(caption) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if pbar and rank == 0: | 
					
					
						
						| 
							 | 
						            pbar.update(len(batch)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    return all_captions | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def process_directory(rank, world_size, input_dir: Path, output_dir: Path, batch_size: int, models: tuple): | 
					
					
						
						| 
							 | 
						    output_dir.mkdir(parents=True, exist_ok=True) | 
					
					
						
						| 
							 | 
						    image_files = [f for f in input_dir.iterdir() if f.suffix.lower() in IMAGE_EXTENSIONS] | 
					
					
						
						| 
							 | 
						    images_to_process = [f for f in image_files if not (output_dir / f"{f.stem}.txt").exists()] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if not images_to_process: | 
					
					
						
						| 
							 | 
						        if rank == 0: | 
					
					
						
						| 
							 | 
						            print("No new images to process.") | 
					
					
						
						| 
							 | 
						        return | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    images_per_gpu = len(images_to_process) // world_size | 
					
					
						
						| 
							 | 
						    start_idx = rank * images_per_gpu | 
					
					
						
						| 
							 | 
						    end_idx = start_idx + images_per_gpu if rank < world_size - 1 else len(images_to_process) | 
					
					
						
						| 
							 | 
						    gpu_images = images_to_process[start_idx:end_idx] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if rank == 0: | 
					
					
						
						| 
							 | 
						        pbar = tqdm(total=len(images_to_process), desc="Processing images", unit="image") | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        pbar = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    for i in range(0, len(gpu_images), batch_size): | 
					
					
						
						| 
							 | 
						        batch_files = gpu_images[i:i+batch_size] | 
					
					
						
						| 
							 | 
						        batch_images = [Image.open(f).convert('RGB') for f in batch_files] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        captions = stream_chat(batch_images, batch_size, pbar, models, rank) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        for file, caption in zip(batch_files, captions): | 
					
					
						
						| 
							 | 
						            with open(output_dir / f"{file.stem}.txt", 'w', encoding='utf-8') as f: | 
					
					
						
						| 
							 | 
						                f.write(caption) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        for img in batch_images: | 
					
					
						
						| 
							 | 
						            img.close() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if rank == 0: | 
					
					
						
						| 
							 | 
						        pbar.close() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def parse_arguments(): | 
					
					
						
						| 
							 | 
						    parser = argparse.ArgumentParser(description="Process images and generate captions.") | 
					
					
						
						| 
							 | 
						    parser.add_argument("input", nargs='+', help="Input image file or directory (or multiple directories)") | 
					
					
						
						| 
							 | 
						    parser.add_argument("--output", help="Output directory (optional)") | 
					
					
						
						| 
							 | 
						    parser.add_argument("--bs", type=int, default=4, help="Batch size (default: 4)") | 
					
					
						
						| 
							 | 
						    return parser.parse_args() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def run(rank, world_size, args): | 
					
					
						
						| 
							 | 
						    setup(rank, world_size) | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    input_paths = [Path(input_path) for input_path in args.input] | 
					
					
						
						| 
							 | 
						    batch_size = args.bs | 
					
					
						
						| 
							 | 
						    models = load_models(rank) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    for input_path in input_paths: | 
					
					
						
						| 
							 | 
						        if input_path.is_file() and input_path.suffix.lower() in IMAGE_EXTENSIONS: | 
					
					
						
						| 
							 | 
						            if rank == 0: | 
					
					
						
						| 
							 | 
						                output_path = input_path.with_suffix('.txt') | 
					
					
						
						| 
							 | 
						                print(f"Processing single image ποΈ: {input_path.name}") | 
					
					
						
						| 
							 | 
						                with tqdm(total=1, desc="Processing image", unit="image") as pbar: | 
					
					
						
						| 
							 | 
						                    captions = stream_chat([Image.open(input_path).convert('RGB')], 1, pbar, models, rank) | 
					
					
						
						| 
							 | 
						                    with open(output_path, 'w', encoding='utf-8') as f: | 
					
					
						
						| 
							 | 
						                        f.write(captions[0]) | 
					
					
						
						| 
							 | 
						                print(f"Output saved to {output_path}") | 
					
					
						
						| 
							 | 
						        elif input_path.is_dir(): | 
					
					
						
						| 
							 | 
						            output_path = Path(args.output) if args.output else input_path | 
					
					
						
						| 
							 | 
						            if rank == 0: | 
					
					
						
						| 
							 | 
						                print(f"Processing directory π: {input_path}") | 
					
					
						
						| 
							 | 
						                print(f"Output directory π¦: {output_path}") | 
					
					
						
						| 
							 | 
						                print(f"Batch size ποΈ: {batch_size}") | 
					
					
						
						| 
							 | 
						            process_directory(rank, world_size, input_path, output_path, batch_size, models) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            if rank == 0: | 
					
					
						
						| 
							 | 
						                print(f"Invalid input: {input_path}") | 
					
					
						
						| 
							 | 
						                print("Skipping...") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    cleanup() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def main(): | 
					
					
						
						| 
							 | 
						    args = parse_arguments() | 
					
					
						
						| 
							 | 
						    world_size = torch.cuda.device_count() | 
					
					
						
						| 
							 | 
						    if world_size > 1: | 
					
					
						
						| 
							 | 
						        mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True) | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        run(0, 1, args) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						if __name__ == "__main__": | 
					
					
						
						| 
							 | 
						    main() | 
					
					
						
						| 
							 | 
						
 |