Update README.md
Browse files
README.md
CHANGED
@@ -1,7 +1,5 @@
|
|
1 |
---
|
2 |
library_name: peft
|
3 |
-
tags:
|
4 |
-
- generated_from_trainer
|
5 |
metrics:
|
6 |
- precision
|
7 |
- recall
|
@@ -11,6 +9,12 @@ base_model: NousResearch/Llama-2-7b-hf
|
|
11 |
model-index:
|
12 |
- name: billm-llama-7b-conll03-ner
|
13 |
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
---
|
15 |
|
16 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -18,7 +22,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
18 |
|
19 |
# billm-llama-7b-conll03-ner
|
20 |
|
21 |
-
This model is a fine-tuned version of [NousResearch/Llama-2-7b-hf](https://huggingface.co/NousResearch/Llama-2-7b-hf)
|
|
|
22 |
It achieves the following results on the evaluation set:
|
23 |
- Loss: 0.1664
|
24 |
- Precision: 0.9243
|
@@ -26,19 +31,38 @@ It achieves the following results on the evaluation set:
|
|
26 |
- F1: 0.9319
|
27 |
- Accuracy: 0.9860
|
28 |
|
29 |
-
##
|
30 |
|
31 |
-
|
|
|
|
|
32 |
|
33 |
-
|
|
|
|
|
|
|
34 |
|
35 |
-
More information needed
|
36 |
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
## Training
|
42 |
|
43 |
### Training hyperparameters
|
44 |
|
@@ -73,4 +97,23 @@ The following hyperparameters were used during training:
|
|
73 |
- Transformers 4.38.2
|
74 |
- Pytorch 2.0.1
|
75 |
- Datasets 2.16.0
|
76 |
-
- Tokenizers 0.15.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
library_name: peft
|
|
|
|
|
3 |
metrics:
|
4 |
- precision
|
5 |
- recall
|
|
|
9 |
model-index:
|
10 |
- name: billm-llama-7b-conll03-ner
|
11 |
results: []
|
12 |
+
license: mit
|
13 |
+
datasets:
|
14 |
+
- conll2003
|
15 |
+
language:
|
16 |
+
- en
|
17 |
+
pipeline_tag: token-classification
|
18 |
---
|
19 |
|
20 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
22 |
|
23 |
# billm-llama-7b-conll03-ner
|
24 |
|
25 |
+
This model is a fine-tuned version of [NousResearch/Llama-2-7b-hf](https://huggingface.co/NousResearch/Llama-2-7b-hf) using [BiLLM](https://github.com/WhereIsAI/BiLLM).
|
26 |
+
|
27 |
It achieves the following results on the evaluation set:
|
28 |
- Loss: 0.1664
|
29 |
- Precision: 0.9243
|
|
|
31 |
- F1: 0.9319
|
32 |
- Accuracy: 0.9860
|
33 |
|
34 |
+
## Inference
|
35 |
|
36 |
+
```bash
|
37 |
+
python -m pip install -U billm
|
38 |
+
```
|
39 |
|
40 |
+
```python
|
41 |
+
from transformers import AutoTokenizer, pipeline
|
42 |
+
from peft import PeftModel, PeftConfig
|
43 |
+
from billm import MistralForTokenClassification
|
44 |
|
|
|
45 |
|
46 |
+
label2id = {'O': 0, 'B-PER': 1, 'I-PER': 2, 'B-ORG': 3, 'I-ORG': 4, 'B-LOC': 5, 'I-LOC': 6, 'B-MISC': 7, 'I-MISC': 8}
|
47 |
+
id2label = {v: k for k, v in label2id.items()}
|
48 |
+
model_id = 'WhereIsAI/billm-llama-7b-conll03-ner'
|
49 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
50 |
+
peft_config = PeftConfig.from_pretrained(model_id)
|
51 |
+
model = MistralForTokenClassification.from_pretrained(
|
52 |
+
peft_config.base_model_name_or_path,
|
53 |
+
num_labels=len(label2id), id2label=id2label, label2id=label2id
|
54 |
+
)
|
55 |
+
model = PeftModel.from_pretrained(model, model_id)
|
56 |
+
# merge_and_unload is necessary for inference
|
57 |
+
model = model.merge_and_unload()
|
58 |
|
59 |
+
token_classifier = pipeline("token-classification", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
|
60 |
+
sentence = "I live in Hong Kong. I am a student at Hong Kong PolyU."
|
61 |
+
tokens = token_classifier(sentence)
|
62 |
+
print(tokens)
|
63 |
+
```
|
64 |
|
65 |
+
## Training Details
|
66 |
|
67 |
### Training hyperparameters
|
68 |
|
|
|
97 |
- Transformers 4.38.2
|
98 |
- Pytorch 2.0.1
|
99 |
- Datasets 2.16.0
|
100 |
+
- Tokenizers 0.15.0
|
101 |
+
|
102 |
+
## Citation
|
103 |
+
|
104 |
+
```bibtex
|
105 |
+
@inproceedings{li2024bellm,
|
106 |
+
title = "BeLLM: Backward Dependency Enhanced Large Language Model for Sentence Embeddings",
|
107 |
+
author = "Li, Xianming and Li, Jing",
|
108 |
+
booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics",
|
109 |
+
year = "2024",
|
110 |
+
publisher = "Association for Computational Linguistics"
|
111 |
+
}
|
112 |
+
|
113 |
+
@article{li2023label,
|
114 |
+
title={Label supervised llama finetuning},
|
115 |
+
author={Li, Zongxi and Li, Xianming and Liu, Yuzhang and Xie, Haoran and Li, Jing and Wang, Fu-lee and Li, Qing and Zhong, Xiaoqin},
|
116 |
+
journal={arXiv preprint arXiv:2310.01208},
|
117 |
+
year={2023}
|
118 |
+
}
|
119 |
+
```
|