ironrock commited on
Commit
cc6c2fa
1 Parent(s): 931cea0

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +90 -43
README.md CHANGED
@@ -1,72 +1,119 @@
1
  ---
2
- library_name: peft
 
3
  tags:
4
- - trl
5
- - dpo
6
- - generated_from_trainer
7
  base_model: Weni/ZeroShot-3.3.34-Mistral-7b-Multilanguage-3.3.0-merged
8
  model-index:
9
- - name: ZeroShot-3.4.19-Mistral-7b-DPO-1.0.0
10
  results: []
 
11
  ---
12
 
13
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
- should probably proofread and complete it, then remove this comment. -->
15
 
16
- # ZeroShot-3.4.19-Mistral-7b-DPO-1.0.0
17
 
18
- This model is a fine-tuned version of [Weni/ZeroShot-3.3.34-Mistral-7b-Multilanguage-3.3.0-merged](https://huggingface.co/Weni/ZeroShot-3.3.34-Mistral-7b-Multilanguage-3.3.0-merged) on an unknown dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 0.1619
21
- - Rewards/chosen: 0.7139
22
- - Rewards/rejected: -3.0282
23
- - Rewards/accuracies: 0.9140
24
- - Rewards/margins: 3.7421
25
- - Logps/rejected: -24.5960
26
- - Logps/chosen: -20.1436
27
- - Logits/rejected: -1.0269
28
- - Logits/chosen: -1.0730
29
 
30
- ## Model description
31
 
32
- More information needed
33
 
34
- ## Intended uses & limitations
35
 
36
- More information needed
37
 
38
- ## Training and evaluation data
 
 
 
 
39
 
40
- More information needed
 
41
 
42
- ## Training procedure
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
 
44
  ### Training hyperparameters
45
 
46
  The following hyperparameters were used during training:
47
  - learning_rate: 2e-05
48
- - train_batch_size: 16
49
- - eval_batch_size: 16
50
- - seed: 42
51
  - gradient_accumulation_steps: 4
 
52
  - total_train_batch_size: 64
53
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
- - lr_scheduler_type: linear
55
- - lr_scheduler_warmup_ratio: 0.1
56
- - training_steps: 72
57
- - mixed_precision_training: Native AMP
58
 
59
  ### Training results
60
 
61
- | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
62
- |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
63
- | 0.2337 | 2.04 | 50 | 0.1755 | 0.9994 | -2.4318 | 0.9026 | 3.4312 | -23.4032 | -19.5726 | -1.0282 | -1.0753 |
64
-
65
-
66
  ### Framework versions
67
 
68
- - PEFT 0.8.2
69
- - Transformers 4.38.2
70
- - Pytorch 2.1.0+cu118
71
- - Datasets 2.17.1
72
- - Tokenizers 0.15.2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: mit
3
+ library_name: "trl"
4
  tags:
5
+ - DPO
6
+ - ZeroShot
 
7
  base_model: Weni/ZeroShot-3.3.34-Mistral-7b-Multilanguage-3.3.0-merged
8
  model-index:
9
+ - name: Weni/ZeroShot-3.4.19-Mistral-7b-DPO-1.0.0
10
  results: []
11
+ language: ['en', 'es', 'pt']
12
  ---
13
 
14
+ # Weni/ZeroShot-3.4.19-Mistral-7b-DPO-1.0.0
 
15
 
16
+ This model is a fine-tuned version of [Weni/ZeroShot-3.3.34-Mistral-7b-Multilanguage-3.3.0-merged] on the dataset Weni/zeroshot-dpo-1.1.0 with the DPO trainer. It is part of the ZeroShot project for [Weni](https://weni.ai/).
17
 
 
18
  It achieves the following results on the evaluation set:
19
+ {'eval_loss': 0.161897674202919, 'eval_runtime': 86.3666, 'eval_samples_per_second': 2.015, 'eval_steps_per_second': 0.127, 'eval_rewards/chosen': 0.7138946652412415, 'eval_rewards/rejected': -3.0281739234924316, 'eval_rewards/accuracies': 0.9139610528945923, 'eval_rewards/margins': 3.7420690059661865, 'eval_logps/rejected': -24.59595489501953, 'eval_logps/chosen': -20.143592834472656, 'eval_logits/rejected': -1.0268757343292236, 'eval_logits/chosen': -1.0730220079421997, 'epoch': 2.94}
 
 
 
 
 
 
 
 
20
 
21
+ ## Intended uses & limitations
22
 
23
+ This model has not been trained to avoid specific intructions.
24
 
25
+ ## Training procedure
26
 
27
+ Finetuning was done on the model Weni/ZeroShot-3.3.34-Mistral-7b-Multilanguage-3.3.0-merged with the following prompt:
28
 
29
+ ```
30
+ ---------------------
31
+ Portuguese:
32
+ [INST] Você é muito especialista em classificar a frase do usuário em um chatbot sobre: {context}
33
+ Pare, pense bem e responda com APENAS UM ÚNICO \`id\` da classe que melhor represente a intenção para a frase do usuário de acordo com a análise de seu contexto, responda APENAS com o \`id\` da classe só se você tiver muita certeza e não explique o motivo. Na ausência, falta de informações ou caso a frase do usuário não se enquadre em nenhuma classe, classifique como "-1".
34
 
35
+ # Essas são as Classes com seus Id e Contexto:
36
+ {all_classes}
37
 
38
+ # Frase do usuário: {input}
39
+ # Id da Classe: [/INST]
40
+
41
+
42
+ ---------------------
43
+ Spanish:
44
+ [INST] Eres muy experto en clasificar la frase del usuario en un chatbot sobre: {context}
45
+ Deténgase, piense bien y responda con SOLO UN ÚNICO \`id\` de la clase que mejor represente la intención para la frase del usuario de acuerdo con el análisis de su contexto, responda SOLO con el \`id\` de la clase si está muy seguro y no explique el motivo. En ausencia, falta de información o en caso de que la frase del usuario no se ajuste a ninguna clase, clasifique como "-1".
46
+
47
+ # Estas son las Clases con sus Id y Contexto:
48
+ {all_classes}
49
+
50
+ # Frase del usuario: {input}
51
+ # Id de la Clase: [/INST]
52
+
53
+
54
+ ---------------------
55
+ English:
56
+ [INST] You are very expert in classifying the user sentence in a chatbot about: {context}
57
+ Stop, think carefully, and respond with ONLY ONE SINGLE \`id\` of the class that best represents the intention for the user's sentence according to the analysis of its context, respond ONLY with the \`id\` of the class if you are very sure and do not explain the reason. In the absence, lack of information, or if the user's sentence does not fit into any class, classify as "-1".
58
+
59
+ # These are the Classes and its Context:
60
+ {all_classes}
61
+
62
+ # User's sentence: {input}
63
+ # Class Id: [/INST]
64
+
65
+
66
+ ---------------------
67
+ Chosen_response:
68
+ {chosen_response}
69
+
70
+
71
+ ---------------------
72
+ Rejected_response:
73
+ {rejected_response}
74
+
75
+
76
+ ---------------------
77
+
78
+ ```
79
 
80
  ### Training hyperparameters
81
 
82
  The following hyperparameters were used during training:
83
  - learning_rate: 2e-05
84
+ - per_device_train_batch_size: 16
85
+ - per_device_eval_batch_size: 16
 
86
  - gradient_accumulation_steps: 4
87
+ - num_gpus: 1
88
  - total_train_batch_size: 64
89
+ - optimizer: AdamW
90
+ - lr_scheduler_type: cosine
91
+ - num_steps: 72
92
+ - quantization_type: bitsandbytes
93
+ - LoRA: ("\n - bits: 4\n - use_exllama: True\n - device_map: auto\n - use_cache: False\n - lora_r: 8\n - lora_alpha: 16\n - lora_dropout: 0.1\n - bias: none\n - target_modules: ['k_proj', 'q_proj', 'v_proj', 'o_proj']\n - task_type: CAUSAL_LM",)
94
 
95
  ### Training results
96
 
 
 
 
 
 
97
  ### Framework versions
98
 
99
+ - transformers==4.38.2
100
+ - datasets==2.17.1
101
+ - peft==0.8.2
102
+ - safetensors==0.4.2
103
+ - evaluate==0.4.1
104
+ - bitsandbytes==0.42
105
+ - huggingface_hub==0.20.3
106
+ - seqeval==1.2.2
107
+ - optimum==1.17.1
108
+ - auto-gptq==0.7.0
109
+ - gpustat==1.1.1
110
+ - deepspeed==0.13.2
111
+ - wandb==0.16.3
112
+ - trl==0.7.11
113
+ - accelerate==0.27.2
114
+ - coloredlogs==15.0.1
115
+ - traitlets==5.14.1
116
+ - autoawq@https://github.com/casper-hansen/AutoAWQ/releases/download/v0.2.0/autoawq-0.2.0+cu118-cp310-cp310-linux_x86_64.whl
117
+
118
+ ### Hardware
119
+ - Cloud provided: runpod.io