ironrock commited on
Commit
c19acca
·
verified ·
1 Parent(s): d3c4dac

Model save

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: peft
4
+ tags:
5
+ - trl
6
+ - sft
7
+ - generated_from_trainer
8
+ base_model: mistralai/Mistral-7B-Instruct-v0.2
9
+ model-index:
10
+ - name: ZeroShot-3.3.34-Mistral-7b-Multilanguage-3.3.0
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # ZeroShot-3.3.34-Mistral-7b-Multilanguage-3.3.0
18
+
19
+ This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.3779
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 0.0002
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - gradient_accumulation_steps: 2
45
+ - total_train_batch_size: 16
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: cosine
48
+ - lr_scheduler_warmup_ratio: 0.1
49
+ - num_epochs: 1
50
+ - mixed_precision_training: Native AMP
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss |
55
+ |:-------------:|:-----:|:----:|:---------------:|
56
+ | 0.4843 | 0.09 | 100 | 0.4538 |
57
+ | 0.4334 | 0.17 | 200 | 0.4199 |
58
+ | 0.3905 | 0.26 | 300 | 0.4081 |
59
+ | 0.4113 | 0.34 | 400 | 0.4017 |
60
+ | 0.4019 | 0.43 | 500 | 0.3948 |
61
+ | 0.38 | 0.51 | 600 | 0.3901 |
62
+ | 0.3883 | 0.6 | 700 | 0.3860 |
63
+ | 0.3894 | 0.68 | 800 | 0.3826 |
64
+ | 0.3679 | 0.77 | 900 | 0.3800 |
65
+ | 0.3764 | 0.85 | 1000 | 0.3784 |
66
+ | 0.3717 | 0.94 | 1100 | 0.3779 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - PEFT 0.9.0
72
+ - Transformers 4.38.2
73
+ - Pytorch 2.2.1+cu121
74
+ - Datasets 2.18.0
75
+ - Tokenizers 0.15.2