beamaia commited on
Commit
b96e66f
1 Parent(s): 5f031f7

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +63 -43
README.md CHANGED
@@ -1,72 +1,92 @@
1
  ---
2
- license: apache-2.0
3
- library_name: peft
4
  tags:
5
- - trl
6
- - kto
7
- - generated_from_trainer
8
  base_model: mistralai/Mixtral-8x7B-Instruct-v0.1
9
  model-index:
10
- - name: WeniGPT-QA-Mixstral-7B-5.0.0-KTO
11
  results: []
 
12
  ---
13
 
14
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
- should probably proofread and complete it, then remove this comment. -->
16
 
17
- # WeniGPT-QA-Mixstral-7B-5.0.0-KTO
 
18
 
19
- This model is a fine-tuned version of [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) on the None dataset.
20
  It achieves the following results on the evaluation set:
21
- - Loss: 0.0411
22
- - Eval/rewards/chosen: 3.7071
23
- - Eval/rewards/rejected: -19.9912
24
- - Eval/kl: 0.0
25
- - Eval/logps/chosen: -122.6795
26
- - Eval/logps/rejected: -363.1288
27
- - Eval/rewards/margins: 23.6983
28
 
29
- ## Model description
30
 
31
- More information needed
32
 
33
- ## Intended uses & limitations
34
 
35
- More information needed
36
 
37
- ## Training and evaluation data
 
 
 
 
 
 
38
 
39
- More information needed
 
40
 
41
- ## Training procedure
 
 
 
 
 
 
 
 
 
42
 
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
  - learning_rate: 0.0002
47
- - train_batch_size: 4
48
- - eval_batch_size: 4
49
- - seed: 42
50
  - gradient_accumulation_steps: 8
 
51
  - total_train_batch_size: 32
52
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
- - lr_scheduler_type: linear
54
- - lr_scheduler_warmup_ratio: 0.03
55
- - training_steps: 131
56
- - mixed_precision_training: Native AMP
57
 
58
  ### Training results
59
 
60
- | Training Loss | Epoch | Step | Validation Loss | |
61
- |:-------------:|:-----:|:----:|:---------------:|:-------:|
62
- | 0.0944 | 0.38 | 50 | 0.0584 | 15.2866 |
63
- | 0.0446 | 0.76 | 100 | 0.0411 | 23.6983 |
64
-
65
-
66
  ### Framework versions
67
 
68
- - PEFT 0.10.0
69
- - Transformers 4.39.1
70
- - Pytorch 2.1.0+cu118
71
- - Datasets 2.18.0
72
- - Tokenizers 0.15.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: mit
3
+ library_name: "trl"
4
  tags:
5
+ - KTO
6
+ - WeniGPT
 
7
  base_model: mistralai/Mixtral-8x7B-Instruct-v0.1
8
  model-index:
9
+ - name: Weni/WeniGPT-QA-Mixstral-7B-5.0.0-KTO
10
  results: []
11
+ language: ['pt']
12
  ---
13
 
14
+ # Weni/WeniGPT-QA-Mixstral-7B-5.0.0-KTO
 
15
 
16
+ This model is a fine-tuned version of [mistralai/Mixtral-8x7B-Instruct-v0.1] on the dataset Weni/WeniGPT-QA-Binarized-1.2.0 with the KTO trainer. It is part of the WeniGPT project for [Weni](https://weni.ai/).
17
+ Description: WeniGPT Experiment using KTO trainer with no collator, Mixstral model and random system prompt.
18
 
 
19
  It achieves the following results on the evaluation set:
20
+ {'eval_loss': 0.041092585772275925, 'eval_runtime': 962.9422, 'eval_samples_per_second': 0.494, 'eval_steps_per_second': 0.124, 'eval/rewards/chosen': 3.7070999145507812, 'eval/rewards/rejected': -19.991207122802734, 'eval/kl': 0.0, 'eval/logps/chosen': -122.67949676513672, 'eval/logps/rejected': -363.1288146972656, 'eval/rewards/margins': 23.698307037353516, 'epoch': 1.0}
 
 
 
 
 
 
21
 
22
+ ## Intended uses & limitations
23
 
24
+ This model has not been trained to avoid specific intructions.
25
 
26
+ ## Training procedure
27
 
28
+ Finetuning was done on the model mistralai/Mixtral-8x7B-Instruct-v0.1 with the following prompt:
29
 
30
+ ```
31
+ ---------------------
32
+ Question:
33
+ <|system|>
34
+ Você é um médico tratando um paciente com amnésia. Para responder as perguntas do paciente, você irá ler um texto anteriormente para se contextualizar. Se você trouxer informações desconhecidas, fora do texto lido, poderá deixar o paciente confuso. Se o paciente fizer uma questão sobre informações não presentes no texto, você precisa responder de forma educada que você não tem informação suficiente para responder, pois se tentar responder, pode trazer informações que não ajudarão o paciente recuperar sua memória. Lembre, se não estiver no texto, você precisa responder de forma educada que você não tem informação suficiente para responder. Precisamos ajudar o paciente.
35
+ <|user|>
36
+ Contexto: {context}
37
 
38
+ Questão: {question}</s>
39
+ <|assistant|>
40
 
41
+
42
+
43
+ ---------------------
44
+ Response:
45
+ {response}</s>
46
+
47
+
48
+ ---------------------
49
+
50
+ ```
51
 
52
  ### Training hyperparameters
53
 
54
  The following hyperparameters were used during training:
55
  - learning_rate: 0.0002
56
+ - per_device_train_batch_size: 4
57
+ - per_device_eval_batch_size: 4
 
58
  - gradient_accumulation_steps: 8
59
+ - num_gpus: 1
60
  - total_train_batch_size: 32
61
+ - optimizer: AdamW
62
+ - lr_scheduler_type: cosine
63
+ - num_steps: 131
64
+ - quantization_type: bitsandbytes
65
+ - LoRA: ("\n - bits: 4\n - use_exllama: True\n - device_map: auto\n - use_cache: False\n - lora_r: 16\n - lora_alpha: 32\n - lora_dropout: 0.05\n - bias: none\n - target_modules: ['q_proj', 'k_proj', 'v_proj', 'o_proj']\n - task_type: CAUSAL_LM",)
66
 
67
  ### Training results
68
 
 
 
 
 
 
 
69
  ### Framework versions
70
 
71
+ - transformers==4.39.1
72
+ - datasets==2.18.0
73
+ - peft==0.10.0
74
+ - safetensors==0.4.2
75
+ - evaluate==0.4.1
76
+ - bitsandbytes==0.43
77
+ - huggingface_hub==0.20.3
78
+ - seqeval==1.2.2
79
+ - optimum==1.17.1
80
+ - auto-gptq==0.7.1
81
+ - gpustat==1.1.1
82
+ - deepspeed==0.14.0
83
+ - wandb==0.16.3
84
+ - # trl==0.8.1
85
+ - git+https://github.com/claralp/trl.git@fix_nans#egg=trl
86
+ - accelerate==0.28.0
87
+ - coloredlogs==15.0.1
88
+ - traitlets==5.14.1
89
+ - autoawq@https://github.com/casper-hansen/AutoAWQ/releases/download/v0.2.0/autoawq-0.2.0+cu118-cp310-cp310-linux_x86_64.whl
90
+
91
+ ### Hardware
92
+ - Cloud provided: runpod.io