Model save
Browse files
README.md
CHANGED
@@ -1,103 +1,72 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
-
library_name:
|
4 |
tags:
|
5 |
-
-
|
6 |
-
-
|
|
|
7 |
base_model: HuggingFaceH4/zephyr-7b-beta
|
8 |
model-index:
|
9 |
-
- name:
|
10 |
results: []
|
11 |
-
language: ['pt']
|
12 |
---
|
13 |
|
14 |
-
|
|
|
15 |
|
16 |
-
|
17 |
-
Description: Hyperparameter search, altering desired and undesired weights for KTO task.
|
18 |
|
|
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
##
|
23 |
-
|
24 |
-
This model has not been trained to avoid specific intructions.
|
25 |
-
|
26 |
-
## Training procedure
|
27 |
-
|
28 |
-
Finetuning was done on the model HuggingFaceH4/zephyr-7b-beta with the following prompt:
|
29 |
-
|
30 |
-
```
|
31 |
-
---------------------
|
32 |
-
System_prompt:
|
33 |
-
Agora você se chama {name}, você é {occupation} e seu objetivo é {chatbot_goal}. O adjetivo que mais define a sua personalidade é {adjective} e você se comporta da seguinte forma:
|
34 |
-
{instructions_formatted}
|
35 |
-
|
36 |
-
Na sua memória você tem esse contexto:
|
37 |
-
{context}
|
38 |
|
39 |
-
|
40 |
-
- Responda de forma natural, mas nunca fale sobre um assunto fora do contexto.
|
41 |
-
- Nunca traga informações do seu próprio conhecimento.
|
42 |
-
- Repito é crucial que você responda usando apenas informações do contexto.
|
43 |
-
- Nunca mencione o contexto fornecido.
|
44 |
-
- Nunca mencione a pergunta fornecida.
|
45 |
-
- Gere a resposta mais útil possível para a pergunta usando informações do conexto acima.
|
46 |
-
- Nunca elabore sobre o porque e como você fez a tarefa, apenas responda.
|
47 |
-
|
48 |
-
|
49 |
-
---------------------
|
50 |
-
Question:
|
51 |
-
{question}
|
52 |
|
|
|
53 |
|
54 |
-
|
55 |
-
Response:
|
56 |
-
{answer}
|
57 |
|
|
|
58 |
|
59 |
-
|
60 |
|
61 |
-
|
62 |
|
63 |
### Training hyperparameters
|
64 |
|
65 |
The following hyperparameters were used during training:
|
66 |
- learning_rate: 0.0002
|
67 |
-
-
|
68 |
-
-
|
|
|
69 |
- gradient_accumulation_steps: 4
|
70 |
-
- num_gpus: 1
|
71 |
- total_train_batch_size: 16
|
72 |
-
- optimizer:
|
73 |
-
- lr_scheduler_type:
|
74 |
-
-
|
75 |
-
-
|
76 |
-
-
|
77 |
|
78 |
### Training results
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
### Framework versions
|
81 |
|
82 |
-
-
|
83 |
-
-
|
84 |
-
-
|
85 |
-
-
|
86 |
-
-
|
87 |
-
- bitsandbytes==0.43
|
88 |
-
- huggingface_hub==0.20.3
|
89 |
-
- seqeval==1.2.2
|
90 |
-
- optimum==1.17.1
|
91 |
-
- auto-gptq==0.7.1
|
92 |
-
- gpustat==1.1.1
|
93 |
-
- deepspeed==0.14.0
|
94 |
-
- wandb==0.16.3
|
95 |
-
- # trl==0.8.1
|
96 |
-
- git+https://github.com/kawine/trl.git#egg=trl
|
97 |
-
- accelerate==0.28.0
|
98 |
-
- coloredlogs==15.0.1
|
99 |
-
- traitlets==5.14.1
|
100 |
-
- autoawq@https://github.com/casper-hansen/AutoAWQ/releases/download/v0.2.0/autoawq-0.2.0+cu118-cp310-cp310-linux_x86_64.whl
|
101 |
-
|
102 |
-
### Hardware
|
103 |
-
- Cloud provided: runpod.io
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
library_name: peft
|
4 |
tags:
|
5 |
+
- trl
|
6 |
+
- kto
|
7 |
+
- generated_from_trainer
|
8 |
base_model: HuggingFaceH4/zephyr-7b-beta
|
9 |
model-index:
|
10 |
+
- name: WeniGPT-Agents-Zephyr-1.0.9-KTO
|
11 |
results: []
|
|
|
12 |
---
|
13 |
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
|
17 |
+
# WeniGPT-Agents-Zephyr-1.0.9-KTO
|
|
|
18 |
|
19 |
+
This model is a fine-tuned version of [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) on the None dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.5443
|
22 |
+
- Rewards/chosen: -157.2410
|
23 |
+
- Logps/chosen: -1859.8108
|
24 |
+
- Rewards/rejected: -156.3582
|
25 |
+
- Logps/rejected: -1831.8481
|
26 |
+
- Kl: 0.0
|
27 |
+
- Rewards/margins: 2.0475
|
28 |
|
29 |
+
## Model description
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
More information needed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
## Intended uses & limitations
|
34 |
|
35 |
+
More information needed
|
|
|
|
|
36 |
|
37 |
+
## Training and evaluation data
|
38 |
|
39 |
+
More information needed
|
40 |
|
41 |
+
## Training procedure
|
42 |
|
43 |
### Training hyperparameters
|
44 |
|
45 |
The following hyperparameters were used during training:
|
46 |
- learning_rate: 0.0002
|
47 |
+
- train_batch_size: 4
|
48 |
+
- eval_batch_size: 4
|
49 |
+
- seed: 42
|
50 |
- gradient_accumulation_steps: 4
|
|
|
51 |
- total_train_batch_size: 16
|
52 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
53 |
+
- lr_scheduler_type: linear
|
54 |
+
- lr_scheduler_warmup_ratio: 0.03
|
55 |
+
- training_steps: 145
|
56 |
+
- mixed_precision_training: Native AMP
|
57 |
|
58 |
### Training results
|
59 |
|
60 |
+
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Logps/chosen | Rewards/rejected | Logps/rejected | Kl | Rewards/margins |
|
61 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:------------:|:----------------:|:--------------:|:---:|:---------------:|
|
62 |
+
| 0.5606 | 0.34 | 50 | 0.5443 | -151.0505 | -1797.9062 | -151.0357 | -1778.6233 | 0.0 | 2.7896 |
|
63 |
+
| 0.4995 | 0.68 | 100 | 0.5443 | -157.2410 | -1859.8108 | -156.3582 | -1831.8481 | 0.0 | 2.0475 |
|
64 |
+
|
65 |
+
|
66 |
### Framework versions
|
67 |
|
68 |
+
- PEFT 0.10.0
|
69 |
+
- Transformers 4.39.1
|
70 |
+
- Pytorch 2.1.0+cu118
|
71 |
+
- Datasets 2.18.0
|
72 |
+
- Tokenizers 0.15.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|